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A B S T R A C T

Telomerase consists of the catalytic subunit Telomerase Reverse Transcriptase (TERT) and the Telomerase RNA
Component. Its canonical function is the prevention of telomere erosion. Over the last years it became evident
that TERT is also present in tissues with low replicative potential. Important non-canonical functions of TERT are
protection against apoptosis and maintenance of the cellular redox homeostasis in cancer as well as in somatic
tissues. Intriguingly, TERT and reactive oxygen species (ROS) are interdependent on each other, with TERT
being regulated by changes in the redox balance and itself controlling ROS levels in the cytosol and in the
mitochondria. The latter is achieved because TERT is present in the mitochondria, where it protects mi-
tochondrial DNA and maintains levels of anti-oxidative enzymes. Since numerous diseases are associated with
oxidative stress, increasing the mitochondrial TERT level could be of therapeutic value.

1. Introduction

Telomeres are located at the ends of each chromosome and consist
of repetitive hexanucleotide sequences – in vertebrates 5′-TTAGGG-3' –
with a single-stranded overhang. Together with a number of associated
proteins they form a unique structure in which the single-stranded re-
gion invades the adjacent DNA duplex (for review see Ref. [1]. This
prevents recognition of free double-stranded DNA ends at the termini of
the chromosomes as damaged DNA, which could lead to chromosomal
rearrangements. Thus, telomeres are critical for the preservation of the
integrity and stability of chromosomes. The length of human telomeres
has been estimated to be approximately 11 kilobases around birth [2]
and decreases with age [3]. Due to the end-replication problem, telo-
meres shorten with each DNA replication cycle and a critical limit
serves as a trigger for senescence induction [4,5].

The inevitable shortening of telomeres over generations, the so-
called telomere erosion is counteracted by the enzyme telomerase.
Telomerase is a ribonucleoprotein consisting of a catalytic subunit,

Telomerase Reverse Transcriptase (TERT) and the Telomerase RNA
Component (TERC). These two molecules cooperate to execute the ca-
nonical function of telomerase. After TERC binds to the single-stranded
overhang at the telomere, it is used as template for reverse transcription
by TERT resulting in the addition of a hexameric repeat. Recurrent
relocation of TERT and TERC to the 3′-end of the chromosome and
reverse transcription allows for telomere elongation. A DNA-dependent
polymerase can then synthesize the opposite strand except for the ex-
treme end, again leaving a single-stranded overhang consisting of the
telomeric repeats. TERT and TERC are associated with accessory pro-
teins required for assembly, activity and telomere recognition by the
holoenzyme complex (for review see Ref. [6]. Although TERT and TERC
are both essential for telomere maintenance, TERC, but not TERT seems
to be the limiting component for telomerase activity [7].

Typically, TERT is expressed and, thus, telomerase activity is de-
tectable in cells with a high replicative capacity such as stem cells, germ
cells and tumors, thereby preventing telomere erosion. However, over
the last years it became evident that TERT is also present in tissues with
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low replicative potential such as the vasculature [8,9], the heart
[10,11] and the brain [12,13].

2. Regulation of TERT

On the transcriptional level, regulation of TERT varies from cell type
to cell type and is still not completely understood. Myc was the first
transcription factor described to directly activate transcription of the
TERT gene in primary epithelial cells and fibroblasts via E-boxes, ca-
nonical binding sites for Myc/Max heterodimers. Importantly, this
transcriptional upregulation was independent of the proliferation state
of the cells and of de novo protein synthesis, suggesting a direct role of
Myc in the regulation of TERT transcription [14]. However, the me-
chanistic details of how Myc activates the TERT promoter have not
been elucidated completely [15]. Besides Myc, E2F has been shown to
be involved in transcriptional activation of TERT in normal somatic
cells [16].

On the post-translational level, TERT is regulated by several kinases
like protein kinase B (Akt), protein kinase C, and the Src kinase family.
A dominant role in regulating telomerase activity has been described
for Akt. Upon phosphorylation on serine 823, human TERT is activated
[17,18]. The activation of TERT by Akt is accompanied by complex
formation of TERT, Akt and the heat shock protein 90 (Hsp90), which is
required for stabilization of this complex [18]. Moreover, phosphor-
ylation of TERT by Akt is also required for nuclear import of TERT,
since a dominant-negative mutant of Akt or treatment with an Akt in-
hibitor attenuated nuclear localization of TERT. This process, however,
depends on phosphorylation on serine 227 [19]. In contrast, phos-
phorylation of TERT on tyrosine 707 by the Src kinase family leads to
nuclear export of TERT, which is completely inhibited in Src-, Fyn-, Yes-
deficient fibroblasts and counteracted by the tyrosine phosphatase Shp-
2 [20–22]. The different phosphorylation events on TERT and their
consequences are summarized in Fig. 1.

TERT is not only regulated by phosphorylation, but also by changes
in the intracellular redox homeostasis. Redox homeostasis describes the
balance between intracellular oxidants and antioxidants. The most
prominent producers of reactive oxygen species (ROS) are NADPH
oxidases and mitochondria. On the other hand, the dominant

antioxidants are Superoxide Dismutases (SODs), Catalase as well as the
Thioredoxin and Glutathione systems. An imbalance in the redox
homeostasis - either due to an increase in oxidants or a decrease in the
anti-oxidant capacity - results in intracellular oxidative stress. Oxidative
stress plays a key role in the development of various diseases, including
atherosclerosis, diabetes, cancer, neurodegeneration, but also in aging.
ROS also serve as signaling molecules and thereby regulate several
cellular signaling pathways leading to e.g. proliferation and survival
[23]. However, the influence of ROS on cellular processes and the
communication between ROS and other signaling molecules are not
entirely understood. With respect to TERT, we demonstrated that oxi-
dative stress induces nuclear export of TERT by phosphorylation of
tyrosine 707 by the Src kinase family in a time dependent manner [20].
In line with our findings, the Saretzki group showed that TERT is ex-
ported from the nucleus upon hydrogen peroxide (H2O2) treatment
[24]. Interestingly, upon export of TERT from the nucleus, no de-
gradation of the protein is observed, but rather a concomitant increase
within the mitochondria [20,24]. In depth analysis of the TERT protein
revealed that it contains nuclear localization signals as well as a mi-
tochondrial targeting sequence. Furthermore, under physiological
conditions reflecting an intact redox homeostasis, about 10–20% of the
TERT protein is present in the mitochondria [25,26]. Within this or-
ganelle, TERT is localized in the mitochondrial matrix and associated
with mitochondrial DNA (mtDNA) as well as mitochondrial tRNA
[26,27].

3. Non-canonical functions of TERT

The majority of tumors is characterized by an upregulation of TERT
and, thus, telomerase activity. Intuitively, this would imply a protection
against telomere erosion in tumor cells. However, it was shown that
telomerase also affects another hallmark of cancer, namely apoptosis
resistance. This was demonstrated by studies showing that down-
regulation of TERT induces apoptosis or increases sensitivity towards
apoptotic stimuli in cancer cells ex vivo and in vivo [28–30], in-
dependent of its telomeric function [31–33]. This goes along with ac-
tivation of Bax and caspases [30,31,33]. Moreover, overexpression of
TERT or a catalytically inactive mutant protected various tumor cell
lines against apoptosis, clearly showing that the observed phenomena
were independent of the canonical function of TERT [34]. Later, this
anti-apoptotic effect of TERT was linked to effects on the cellular redox
status. TERT overexpression in tumor cell lines reduced basal cellular
ROS levels as well as intracellular ROS generation in response to dif-
ferent stimuli and inhibited apoptosis. Conversely, downregulation of
TERT potentiated the increase in cellular ROS. These anti-oxidative
effects of TERT are linked to an increase in reduced Glutathione (GSH)
and nonoxidized peroxiredoxin [35]. An interdependence between
TERT and ROS was demonstrated by treatment of tumor cell lines of
different origin with sulphoraphane, an isothiocyanate found in cruci-
ferous vegetables, known to possess anti-cancer and anti-inflammatory
activities, which led to increased ROS and inhibition of TERT expres-
sion as well as telomerase activity [36].

This made TERT an interesting target in tumor therapy. However, as
mentioned above, TERT is present in somatic cells, where it also plays a
role in apoptosis protection. Already in 2000, it was shown that sup-
pression of TERT expression rendered neurons more susceptible to
apoptosis [37]. In addition, TERT also protects normal human fibro-
blasts against stress-induced apoptosis [38]. We demonstrated an anti-
apoptotic activity of TERT in primary human endothelial cells, which
was dependent on complex formation between TERT, Akt and Hsp90
[18]. Similar to tumor cells, TERT exerts anti-oxidative properties in
non-transformed cells. Differentiated cells derived from TERT-over-
expressing embryonic stem cells showed reduced intracellular ROS le-
vels suggesting increased resistance to oxidative stress [39]. Moreover,
TERT knockdown in embryonic kidney cells led to an increase in ROS
and the opposite effects were observed upon TERT overexpression [26].Fig. 1. Regulation of TERT by phosphorylation and functional consequences.
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The mutual connection between TERT and ROS is evident from the fact
that an increase in ROS entails a loss of TERT, which can be inhibited by
antioxidant treatment [8,40].

Mitochondrial functions of TERT have been discussed con-
troversially. As the circular mtDNA does not contain telomeres, the
enzyme has to have non-telomeric functions within the mitochondria.
Initially, Santos et al. showed aggravated mtDNA damage and apoptosis
in TERT-overexpressing fibroblast cell lines upon oxidative stress
[41,42]. This was later challenged by the finding - also in fibroblast cell
lines - that TERT protects mtDNA, reduces mitochondrial ROS pro-
duction, improves mitochondrial membrane potential [24] and in-
creases manganese SOD protein levels [43]. Supporting this latter view,
we demonstrated for the first time in primary cells that TERT protects
mtDNA against UV-induced damage and that TERT-deficient cardiac
mitochondria have reduced state 3 respiration, clearly indicating a
protective role for TERT in mitochondria [26]. This was further sup-
ported by the notion that expression of a TERT variant that is excluded
from the mitochondria increased mitochondrial ROS, reduced manga-
nese SOD levels and ATP [44,45], while expression of mitochondrially-
targeted TERT in lung fibroblasts from TERT-deficient animals, reduced
mitochondrial ROS [46]. This could potentially be explained by the
balance between the electron transport chain subunits, which are en-
coded in the nuclear and mitochondrial DNA. Thus, damage to mtDNA
would alter the stoichiometry of respiratory chain complexes leading to
increased ROS production. Therefore, one could assume that mi-
tochondrial TERT - by protecting mtDNA - is essential for proper re-
spiratory complex assembly and maintenance of the cellular redox
homeostasis.

Interestingly, it has been shown that upon short-term oxidative

stress, TERT is exported from the nucleus and increased in the mi-
tochondria [20,24] (Fig. 2). This leads to the hypothesis that one of the
primary responses of cells to oxidative stress is the protection of mi-
tochondria by TERT. Currently, it is not clear, whether TERT is directly
shuttled from the nucleus to the mitochondria or if newly synthesized
molecules are directly funneled into these organelles. Sustained oxi-
dative stress, however, finally leads to a reduction in mitochondrial
TERT levels [47]. This downregulation is - like nuclear export - medi-
ated by the Src kinase, which is also present in these organelles and
activated upon persistent oxidative stress [47].

Nowadays it is clear that mitochondria play a key role in onco-
genesis, although glycolysis has long been viewed as the major meta-
bolic process providing cancer cells with energy [48]. Indeed, TERT is
also localized in mitochondria of cancer cells, where it improves mi-
tochondrial function, inhibits endogenous ROS production [35] and
apoptosis [49].

Recent investigations in microvascular arterioles revealed an in vivo
role for mitochondrial TERT in the regulation of vasodilation related to
its function in controlling mitochondrial ROS production. Inhibition of
telomerase with BIBR-1532 in these vessels led to a switch from nitric
oxide as physiological dilation mediator to mitochondrial H2O2 [44].
Moreover, this switch was already in operation in arterioles from pa-
tients with coronary artery disease, which had reduced cardiac and
vascular TERT levels, but normal telomere length. Interestingly, this
switch could be reverted with a telomerase activator. The authors
concluded that mitochondrial TERT regulates mitochondrial ROS pro-
duction with direct physiological consequences for the vessels [50].

In a therapeutic setting, the telomerase activator TA-65 was used in
patients with metabolic syndrome, which is characterized by oxidative

Fig. 2. Intracellular redistribution of TERT upon oxidative stress. Under physiological conditions, TERT is distributed between the nucleus and the mitochondria
with the majority being imported into the nucleus. In the nucleus, TERT is required for telomere maintenance and could, in addition, have non-telomeric functions.
Mitochondrial TERT binds to and protects mitochondrial DNA (mtDNA), which might help to maintain proper electron transport chain (ETC) function; con-
comitantly, levels of mitochondrial reactive oxygen species (ROS) decrease. Upon short-term oxidative stress, TERT is exported from the nucleus with a concomitant
increase in the mitochondria, which might serve as a mechanism to protect these organelles. Currently it is unclear, whether this is due to direct nuclear-mi-
tochondrial shuttling or increased import of newly synthesized TERT molecules into the mitochondria.

J. Rosen, et al. Redox Biology 34 (2020) 101543

3



stress as one of its hallmarks [51]. TA-65 is small-molecule purified
from the root of Astragalus membranaceus. It has been previously shown
that TA-65 given over a 5-year period and an estimated 7000 person-
years of use had no adverse events and reduced fasting blood sugar,
insulin, total cholesterol and blood pressure [52], all considered posi-
tive changes of health state indicating that this treatment regimen could
be effective in metabolic syndrome patients. Indeed, a recent crossover
study showed not only an increase in HDL-cholesterol, a reduction in
body mass index, plasma tumor necrosis factor α and C-reactive pro-
tein, but also in the ratio between total antioxidant capacity and 8-
isoprostane levels, a marker for oxidative lipid damage during the TA-
65 treatment period. These data demonstrate that telomerase activation
may also affect the redox homeostasis in humans. It has to be noted that
the effects of TA-65 on telomerase and the redox balance could be in-
dependent of each other. Nevertheless, one might speculate that some
observations made after TA-65 treatment could be ascribed to mi-
tochondrial TERT, as no changes in mean telomere length were ob-
served [53,54]. However, the shortest telomeres seem to be stabilized
by slightly elevated telomerase activity after treatment with TA-65
[53]. Thus, TA-65 could affect TERT in the nucleus and the mi-
tochondria.

Although this substance has been used for nearly a decade and
shows promising effects in humans, studies aimed at elucidating the
molecular and biochemical mechanisms as to how TA-65 affects TERT
are still missing. Studies in this direction are urgently needed to close
this gap of knowledge and to exclude potential side effects.

4. Conclusion

Contrary to textbook knowledge, Telomerase Reverse Transcriptase
(TERT), the catalytic subunit of telomerase, is not only present in tis-
sues and cells with high proliferative capacity, like germ and stem cells
as well as most all tumors, but also in slowly or non-proliferating tissues
and cells. There, it has mostly non-canonical functions by protecting

against apoptosis and maintaining the cellular redox homeostasis
(Table 1). Moreover, nowadays it is undeniable that TERT is also pre-
sent in mitochondria. Based on the recent evidence, one could speculate
that most of the redox-dependent functions as well as the regulation of
the cellular redox balance can be assigned to mitochondrial TERT.
Therefore, it seems feasible to design therapeutic strategies aimed at
increasing mitochondrial TERT levels, one of which could be treatment
with TA-65. However this would require detailed analyses of the mo-
lecular and biochemical mechanisms underlying the TA-65 effects.
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