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Abstract: In this work, we reported a new insight on the kinetics of photoisomerization and
time evolution of hybrid thin films considering the azo-dye methyl red (MR) incorporated with
graphene accommodated in polyethylene oxide (PEO). The kinetics of photoisomerization and
time-evolution of hybrid thin films were investigated using UV-Vis s and FTIR spectroscopies, as well
as appropriate models developed with new analytical methods. The existence of azo-dye MR in
the complex is crucial for the resource action of the trans↔ cis cycles through UV-illumination↔
Visible-illumination relaxations. The results of the UV–Vis and the FTIR investigations prove the
cyclical trans ↔ cis-states. Consequently, PEO-(MR-Graphene) hybrid composite thin films can
be introduced as possible applicants for photochromic molecular switches, light-gated transistors,
and molecular solar thermal energy storage media.

Keywords: polymerized nanocomposite thin films; photoisomerization processes; trans-cis-isomers;
molecular solar thermal energy storage media; photo-switchable thin films

1. Introduction

Photo-switchable thin films can be isomerized between two metastable states through
light-illumination. This type of thin-film has gained noticeable attention in many applications
in physics, chemistry, and biology. The striking feature of photo-switchable thin films is that the
two isomers have different physical and chemical properties. Recently, the azobenzene (AZO) has
gained great momentum owing to its potential applications in photochromic molecular switches [1],
light-gated transistors [2], and molecular solar thermal energy storage media [3–6]. AZO has two
geometric forms, trans-state and cis-state. All AZO thin films are initially in the trans- isomerization
state since it is thermally stable at room temperature [7,8]. The trans→ cis isomerization may occur
by exposing thin films to the UV-light illumination, while the reverse cis→ trans isomerization can
occur by either illuminating thin films with visible light (400–450 nm) or by thermal excitation in
a dark environment [9,10]. The photoisomerization mechanisms of the trans↔cis isomers in the
blended polymers play a key role in extracting the proper chemo physical properties of additive azo
benzene [7,10–13].

Polymers go under a photodegradation process via UV light-absorption (in particular) by
backbone-carbonyl groups induced by photochemical reactions. Photodegradation of polymers usually
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occurs through either chain scission (reduction in molecular weight) formatting C=C double bonds,
cross-linking, and hydroperoxide O–H reactions that activate the polymer-molecule while absorbing
light. The degradation process begins with light-absorption by a photo-initiator, then photo-cleavage of
polymeric-molecules, transferring them into free-radicals that further enhances the degradation process.
The level of degradation (breakage) is relevant to the light-energy used. Shorter light-wavelengths
do not need oxygen for the hydroperoxide process, while low-wavelength sources need an oxygen
environment [14–17]. Azo dyes usually degrade under the influence of UV-irradiation, especially
when a photocatalytic source of metal oxide is presented. ZnO, TiO2, SnO2, and CuO are mostly used
as photocatalytic oxidation sources for the degradation process [18,19]. Methyl red is of those azo dyes
which contain one or more azo groups (–N=N–) as a chromophore group that is influenced by UV
absorption. Recently, 2D carbon as graphene and graphene oxides were used as support materials for
photocatalytic processes [20,21].

The mutuality of the exceptional transformation of the photoisomerization processes via thermally
relaxed stable trans-isomerization and nonstable cis-isomerization via illumination has become of
the main theoretical and practical perspectives [22–24]. Generally, the photoisomerization process
exhibits several mutual operations involving bending or non-bending aromatic rings in micromolecular
composite chains [25,26].

We selected polyethylene oxide (PEO) as a host polymer owing to its semi-crystallinity nature
with two phases of crystallite and amorphous forms coexisting at normal conditions [27] and its low
absorbance values compared to the other host polymers [28–30]. Graphene has flattened sp2-crossed
networks with π-electron restrained over the rings [31]. Graphene integrates groups of carboxylic,
carbonyl, and hydroxyl assemblies at the boundaries, including hydroxyl and epoxy assemblies at the
basal planes. In addition, the aromatic AZO acts as a frail electrophile and outbreaks carbon atoms in
a dense electron fog form in a hydroxybenzene ring [32]. One of the important benefits of selecting
graphene in the composite is its behavior as a photo-initiator [33].

This work’s main objective is to investigate the kinetics of photoisomerization processes of
polymeric thin films performed with azo-dye (methyl red) incorporated with graphene accommodated
in polyethylene oxide (PEO). Understanding the mechanism of photoisomerization is crucial for
the practical implementation of this nanocomposite in device fabrication. The optical and chemical
characteristics of the trans- and cis-isomers of the PEO-MR-Graphene hybrid complexes are usually
investigated via the UV–Vis and the FTIR techniques. To the best of our knowledge, we are not aware
of any practical investigation of the kinetics of PEO-MR-Graphene hybrid composites’ methodological
isomerization via optical studies.

2. Experimental Details

2.1. Materials

Polyethylene Oxide (PEO) (–CH2CH2O–)n with a molecular weight of 300,000 g/mol and graphene
powder (<20 µm) with a molecular weight of 12.01 g/mol were obtained from Sigma-Aldrich Co. Inc:
Munich, Germany Methyl-Red (MR) (C15H15N3O3) of pH level between 4.2 and 4.6 powder supplied
by SCP SCIENCE: Montreal, QC, Canada.

2.2. Synthesis of PEO-MR-Graphene Hybrid Composite Thin Films

All solutions were prepared using absolute methanol (CH3OH, with a purity of 99.8%). One gram
of PEO was successively dissolved in 100 mL methanol at 45 ◦C by using continuous magnetic
stirring for 5 h. MR-Graphene solution (1 mole: 1 mole) was mixed via solid-state blending using
an agate mortar (BUCHI™ Achat Mörser mit Pistill: Fisher scientific, Hampton, NH, United States).
After that, one gram of MR-Graphene mixture was dissolved in 100 mL methanol at room temperature.
The hybrid solution of PEO-(MR-Graphene)/methanol was obtained by mixing PEO/methanol and
MR-Graphene/methanol in a (3 to 1) ratio via stirring them magnetically for a duration of 6 h.
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The composites were homogenized via sonication for 6 h. The final solution was treated with a 0.45 µm
Millipore filter. The hybrid thin films with 300 nm thickness (measured in cross-sectional view using a
SEM micrograph: Fisher scientific, Hampton, NH, United States) were dip-coated for one hour on
glass substrates. The solvents were evaporated, and the organic residues were removed by air drying
the films at 70 ◦C for half an hour.

2.3. Characterization

The absorbance measurements were performed by a Double-Beam UV–vis Spectrophotometer
(U-3900H:Hitachi, Tokyo, Japan) at room temperature. The hybrid nanocomposite vibrational bands
were obtained using the Fourier transform infrared spectroscopy (FTIR) (Bruker Tensor 27 spectrometer
with a disc of KBr: Billerica, MA, United States spectrometer with a disc of KBr). FTIR measurements
were performed by pealing-off the films out of the glass substrates and used as a solid form in the
system. The thermal stability was investigated using the Thermogravimetric Analysis (TGA) technique.

The PEO-(MR-Graphene) thin-film were illuminated by a UV-light source with 366 nm wavelength
and 6 Watts of power (32 W/cm2 of intensity) for 0, 30, 60, 120, 240, and 480 s in order to investigate the
impact of the time-evolved in transforming the trans-isomerization phase to cis-phase. The absorbance
spectra were measured at every UV-illumination time-exposure. The films were exposed to blue
light-illumination by a visible source with a wavelength of 467 nm and power of 6 Watts (32 W/cm2

of intensity) for 0, 90, 180, 360, 720, 1440 s. The process was done to inspect the influence of the
exposure-time on the reversal of the monomer cis-isomerization state back to the original trans-state.
The absorbance spectra were measured at every exposure-time evolved by the visible-illumination.
Moreover, the FTIR spectroscopy measurements were employed as additional supportive evidence of
the influence of the UV-Vis illuminations via exploring the vibrational changes that occurred in the
bonding modes of the trans- and the cis-cases, accordingly.

3. Results and Discussion

3.1. Characterization of PEO-(MR-Graphene) Hybrid Nanocomposite Thin Film

As previously reported [3,33], the chemical structure of the AZO-Graphene used in this work
can be visualized, as shown in Figure 1a. The coupling agent forming the AZO-Graphene hybrid
contains the AZO-nitrogen atom bonded covalently with the carbon atom that is also bonded with the
graphene aromatic ring. The chemical formula of PEO is C2nH4n+2On+1, and that of MR is given by
C15H15N3O3. The covalent linkage between methyl red and Graphene exterior superficial shells can
be determined by FTIR patterns shown in Figure 1b. The vibrational bands for graphene located at
2015 cm−1 and 2161 cm−1 represent C=C and C=O. FTIR spectrum for PEO exhibited vibrational bands
between 700–1000 cm−1 representing bending C–H. Vibrational bands between 1000–1400 cm–1 are
assigned to C–O stretching vibration, a band at 1470 cm–1 that could be ascribed to the –CH2 bending
vibration, while a band appearing at the 2886 cm–1 could be ascribed to the symmetric and asymmetric
C–H stretching modes of the CH2 group. Moreover, the significant pronounced vibrational bonds that
appeared in PEO-(MR–Graphene) hybrid nanocomposite thin films were found to be related to the
aromatic rings, the azo- chromophores (–N=N–), the stretching bonds of C–N, and others such as C–H.
The in-plane C–H vibrational peak was found at 1122 cm−1, and the out-of-plane vibrational peaks
were found between 1000–700 cm−1. The aromatic bands were observed between 1600 and 1400 cm−1.
Moreover, the spectral peak observed at 1342 cm−1 was apportioned to the C–O stretching bond in
PEO. According to W. Pang et al. study [3], the absorption due to the C–N bonding is unlike the
C=C bonding, and its frequency-range is centered at 1342 cm−1 caused by the influence of resonance
which upsurges the bond-order assigned to that particular ring in the chain and the dangling N-atom.
The presence of C–N bonds designates the covalent bonding between MR to the graphene-outer
surface. The peak observed at 3732 cm−1 was assigned to the O–H bond in PEO. However, the peak at
2861 cm−1 was dispensed to C–H stretching. Moreover, the peak found at 2114 cm−1 was assigned
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to double bonding C=C. The peaks observed at 1692 cm−1 and 1583 cm−1 were related to the double
bonding of C=O. Finally, the peak observed at 3732 cm−1 was consigned to the single bonding of O–H.
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Figure 1. (a) The molecular structures of trans-AZO-Graphene hybrid, (b) FTIR spectra of PEO,
Graphene and PEO-(MR–Graphene) hybrid composite thin film, (c) Absorbance spectra of PEO
and PEO-(MR–Graphene) hybrid composite thin films versus the wavelength, (d) TGA curve for
PEO-(MR–Graphene) hybrid composite thin film.

Figure 1c shows PEO and PEO’s absorbance spectra-(MR–Graphene) hybrid composite thin
films as a function of wavelength. The PEO absorption spectra-(MR–Graphene) hybrid composite is
characterized by a band transition. Namely, the π−π∗ in the range of 350–650 nm. However, PEO thin
film does not contain any absorption band identified in this region [9]. Clearly, the absorbance of
the PEO-(MR–Graphene) hybrid composite thin film exhibits π − π∗ transition in the (350–650) nm
range with a maximum at 422.5 nm. This spectral behavior is believed to occur due to the presence of
MR in the film nanocomposite giving the films the red-appearance color. Hence, the films show high
absorbance for green, blue, and violet-colored light [7,10–13].

Furthermore, PEO’s thermal stability-(MR–Graphene) hybrid nanocomposites were investigated
using the thermogravimetric analysis (TGA) technique at temperatures up to 400 ◦C, as shown in
Figure 1d. The PEO-(MR–Graphene) hybrid nanocomposite shows a stable weight-loss starting at
the ambient temperature T and extends to 150 ◦C, at which the mass-loss becomes 8% approximately.
The mass-loss was considered as the loss of water/solvents adsorbed in the sample. The mass-loss
curve versus temperature then sharply declined in the temperature interval ranging between
150 to 200 ◦C. Within this interval, the mass-loss is significant (80%), indicating the influence of
the intermolecular/intramolecular bonding change when the nanocomposite is exposed to high
temperatures. PEO’s thermal stability-(MR-Graphene) hybrid nanocomposite is lower than that of
PEO, as shown in Figure 1d. For PEO, the mass-loss versus temperature drops sharply at around
300 ◦C [34,35]. Interestingly, despite the slight negligible slope in the TGA relation below 150 ◦C,
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TGA thermograms confirm that the PEO-(MR–Graphene) hybrid composite was stable below 150 ◦C.
Most of the practical optical applications are feasible below 150 ◦C.

3.2. Kinetics of Photoisomerization Processes

In this section, we investigated and reported the kinetics of PEO transformation-(MR–Graphene)
hybrid nanocomposite thin films from the original trans-state to cis-state using UV-exposure.
The reversed transformation to trans-state via visible-illumination was also discussed and interpreted.
UV–light primarily illuminates the PEO-(MR–Graphene) hybrid nanocomposite thin films for a
certain period of time. The films are then exposed to Blue-light illumination for another period.
Figure 2a illustrates the absorbance spectra of the PEO-(MR–Graphene) hybrid nanocomposite thin
films illuminated by UV-light for various periods. The major absorption peak of PEO-(MR–Graphene)
at the initial trans-state in the visible range was found to be at 422.5 nm with an absorbance amplitude
of 0.169%. The film was then exposed to UV light of 366 nm for 30, 60, 120, 240, and 480 s,
respectively. Moreover, the films show a variant absorbance band in the middle of the visible
region (380–625 nm) with a peak-blue-shifted and amplitude-decrease transferring the trans-state to
a cis-state, as expected. The photoisomerization process is not a spontaneous instantaneous process.
Instead, it occurs through steadily building up sub-stages. The film exposure to the UV-illumination
reveals a noticeable reduction in the absorbance at ~422.5 nm in the trans-isomerization stage and
the presence of a dual peak at ~470 nm created from the cis-isomerization state. A steady reduction
in the π–π∗ electron transition band of the trans-state upon the increasing of UV-illumination time
duration until a photostationary equilibrium state between the trans- and the cis-isomers was detected.
The absorbance spectra of PEO-(MR–Graphene) thin films prior-to and in post-UV illumination
revealed the existence of dual isosbestic figure-tips that appeared close to 380 and 625 nm, respectively.
Moreover, the UV-illumination of PEO-(MR–Graphene) hybrid nanocomposite thin film leads to the
transformation from trans-state to a cis-state. In other words, the absorbance peak at wavelengths
ranging from 380 nm to 625 nm decreased as the period of illumination increased. The prolonged
illumination does not lead to any changes in the absorption spectra, confirming that a quasi-state of
photo-stationary phase occurs between the trans- and the cis-stats. The long-time isomerization (480 s
of illumination) is needed until a photo-stationary equilibrium is achieved, compared with previous
results reported [7,9,10]. The observed electronic transitions in the visible range indicated a suitably
effective absorption of solar power with high-energy. The solar energy absorbed in the material is of
prime necessity to achieve two- or three-multiples of energy more than the activation barrier-energy
∆Ei (needed for complete isomerization of AZO-molecules) [36]. Based on the findings in the literature,
the energy reserved/AZO-molecules (∆H) for cis-isomerization has to be less than ∆Ei. In other words,
∆H = ∆Ei − ∆Ea, where, ∆Ei is the activation barrier (energy needed to isomerize one AZO molecule),
∆Ea is the thermal/optical activation barrier and efficiency of storing energy (the energy stored per the
solar energy absorbed) is normally < 30% [36,37].

The kinetics of the trans-cis photoisomerization of PEO-(MR–Graphene) hybrid nanocomposite
thin films were investigated using the first-order kinetics via calculating the rate of photoisomerization,
as well as the thermal/optical activation barrier ∆Ea for trans-cis photoisomerization [38,39].
The photoionization rate as a function of time (p) could be written as,

ln
At −A∞
A0 −A∞

= −pt (1)

where A0, At and A∞ are the absorbance at various time conducts, namely prior to the light exposure
(initial trans-state), during radiation in time t, and post to the light exposure for a protracted time.
The average value of ln(At −A∞/A0 −A∞) of PEO-(MR–Graphene) hybrid nanocomposite thin film
is plotted against the period (t), as shown in Figure 2b. Obviously, ln(At −A∞/A0 −A∞) − t relation
has two distinct linarites. The discontinuity occurs at tc ∼ 240 min, then the curve falls off with less
steepness as a function of illumination time. The area’s ratio under the absorption curve in the visible
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range for all UV-illumination periods for the cis-hybrid isomerization was calculated with respect to the
trans-hybrid isomerization. It was found to be around 95.5% at tc for the PEO-(MR–Graphene) hybrid
nanocomposite thin films. The rate constant (p) was found from the slope to be p1 = 3.822 × 10−3 s−1

for 0 < t < tc, p2 = 1.634 × 10−4 s−1 for t∞ > t > tc. Moreover, the variations in p could be reasonably
attributed to the disparity of ∆Ea [37] and calculated as,

∆Ea = −kT ln
h ln 2
τ1/2kT

(2)

where: τ1/2 is the time needed to transfer half the trans-states into cis-states; τ1/2 = ln 2/p, k is
Boltzmann constant, h is Plank constant, and T is the temperature. Table 1 shows that τ1

1/2 = 3.022 min
for films illuminated for a time less than tc, while τ1

1/2 = 70.692 min for those films kept under irradiation
for time-periods longer than tc. Equation (2) indicates that ∆Ea = 2.012 eV at 0 < t < tc and = 2.093 eV
at (t∞ > t > tc), respectively.
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Figure 2. (a) Absorbance spectra of PEO-(MR–Graphene) hybrid composite thin film for
various UV-illumination times, (b) the kinetic constants for trans → cis photoisomerization of
PEO-(MR–Graphene) hybrid composite thin film, (c) the chemical structures for the trans AZO-Graphene
hybrid, and (d,e) the cis AZO- Graphene hybrid before and after tc.
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Table 1. Kinetic constant (p) and thermal energy barrier (∆Ea) of PEO-(MR–Graphene) hybrid composite
thin film (tc = 240 s).

0<t<tc t∞>t>tc

p1 (s-1) τ1
1/2 (min) ∆Ea (eV) p2 (s-1) τ2

1/2 (min) ∆Ea (eV)

AZO–Graphene 3.822 × 10−3 3.022 2.012 1.634 × 10−4 70.692 2.093

Beyond tc, the isomerization energy barrier is higher than that below, and the process proceeds
even slower. The calculations agree well with the observed red-shift for the band n–π∗ in the absorption
spectrum beyond tc where the cis-isomer contents have exceeded the trans-isomer contents in the
PEO-(MR–Graphene) hybrid nanocomposite thin film. Therefore, the separation between the two
neighboring trans-isomers gets longer, and the intermolecular interactions reduce accordingly. In this
scenario, the transformation from the trans-to-cis photoisomerization is limited to its steric effect,
and consequently, the reaction barriers are primarily dominated by the electronic configuration of the
−N = N− group [3]. Based on the related findings in the literature [3,33], one may plot the chemical
structure of AZO-Graphene used in this work, as shown in Figure 2c. The chemical structure alters
as the period of UV-illumination increases leading to enhanced transformation from trans-states to
cis-states. Figure 2d,e shows the cis-isomerization of the AZO-Graphene hybrid composite prior to and
beyond the tc reaching the 95.5%.

Another evidence for the kinematic transformation from trans-state to cis-state for the
PEO-(MR–Graphene) hybrid composite thin film is revealed by analyzing the FTIR spectrum. Figure 3
shows the FTIR spectra for the trans- and cis-states in the spectral range of 500–4000 cm−1. It was
observed that the spectral peak for the O–H bond found at 3732 cm−1 in the trans–state had disappeared
in the cis–state. This indicated that the free radicals generated by the films’ UV irradiation had broken
the weak O–H bonds in a photoreaction process. Moreover, the transmittance spectra as a function of
frequency for cis- and trans-MR showed nearly similar trends with small portions of the bands that
were shifted to lower energies. This reflection confirmed that such interactions had a slight influence
on N=N bands at frequencies between 1400–1600 cm−1. The evaluated intensity in the infra-red region
of N=N band for the cis-MR was enormously high compared to that for the trans-MR, confirming the
enhanced photoisomerization process of the PEO-(MR–Graphene) hybrid nanocomposite thin film.
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Furthermore, Figure 2a indicates that each absorbance peak of the PEO-(MR–Graphene)
hybrid nanocomposite thin film contains two single absorption peaks (two frequency bands).
As the UV-illumination duration increased, the absorption amplitude decreased, indicating that
the transformation from trans-state to cis-state had occurred accordingly. Increasing the duration of the
UV-light exposure leads to developing new configured dual-shapes in the absorption peaks shown
in Figure 2a, which indicates the development of an impeded dual-frequency bands forming two
distinct crests instead of one main absorption peak. Additional evidence for the existence of dual
overlapped sub-peaks was revealed from the clear shoulders that appeared mainly at the lower and
higher frequency spectrum segments. Namely, at 470 nm and 422.5 nm, respectively.

Figure 4a–f shows the major peaks of PEO-(MR–Graphene) hybrid nanocomposite thin films for
all durations of the UV-light exposure in the visible range of the spectrum as fitted to pair Gaussian
crests [9]. Figure 4a describes the major peak of PEO-(MR–Graphene) hybrid nanocomposite thin films
in the starting trans-state fitted to the dual Gaussian crests. The absorption spectra exhibited two bands
(high- and low-frequency) with maxima starting at around 417.89 and 471.13 nm and line widths of
53.58 and 120.26 nm, respectively. The absorbance spectrum changed in its configured shape as the
UV-illumination exposer time increased, as shown in Figure 4b–f showing the transformation from the
trans-state to the cis-state.

Figure 4. Double peaks fit for the absorbance spectra of PEO-(MR–Graphene) hybrid nanocomposite
thin film for various UV-illumination exposure periods (a) 0 s, (b) 30 s, (c) 60 s, (d) 120 s, (e) 240 s and
(f) 480 s.

A detailed quantitative analysis for the lower- and higher-frequency bands was performed
to obtain a more in-depth insight into the influence of the UV-illumination time. A closer look
at Figure 4 shows the specific detailed structure for each peak specifying the amplitude and the
area variation underneath the absorbance curve as plotted in Figure 5a,b during the transformation
from trans- to cis-isomerization. Each sub-band’s single configuration behavior varies with the
UV-light exposure duration as generated through the systematic deviation from the line-width in the
related Gaussian function. As can be seen from Figure 5a,b, the area and the amplitude of overall
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absorbance, low-frequency, high-frequency bands decrease continuously with time till the tc is reached.
However, beyond the tc, the amplitude and area under the main overall absorbance curve for the
low-, high-frequency bands become constant, confirming the achievement of 95.5% proportion of the
cis-hybrid in AZO-Graphene hybrid nanocomposite. Moreover, the high-frequency sub-band has
suffered from a blue-shifting process, which indicates a bathochromic change occurred due to the
light absorbed by MR. This is considered as an H-bond donor source or a dissociated-intermediate
H-bond donor source [40,41]. Consequently, the overall absorption band is anticipated to occur
due to the H-bond’s mutual interaction among the PEO and the azo-nitrogen contents through MR
molecules. The blue-shifting for both sub-bands (low- and high-frequency bands) exhibit similar trends
indicating that H-bonds have a fundamental influence on MR molecules’ various sites. Moreover,
the high-frequency band demonstrates steady bathochromic shifts during the UV-illumination process,
demonstrating two unambiguous symmetries at the H-bonds’ backgrounds accompanied by MR
transformation. The shift in all bands’ amplitude ensures that the time-dependent photoisomerization
process is achieved by more than one step [42]. This is because the photoisomerization process
is a complex response to the four-level model of trans- and cis- isomerization as demonstrated by
Sekkat Z. et al. [23] and Lee G.T. et al. [43], as shown in Figure 6. The four-levels model describing the
trans- and the cis- isomerization has been investigated thoroughly by Al-Bataineh Q.M. [9]. As is well
known, the ground state of AZO-band is a singlet (S0) while the S1 and S2 are first and second singlet
excited states, respectively. The S1 state can be generated by either direct excited transition from S0
to S1 or via intersystem crossing between S1 and S2 states (i.e., relaxation of the S2 state down to S1)
seen in Figure 6. The states S1 and S2 generated via trans–AZO excitations are different from those of
cis–AZO excited states in their energy and conformations.
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Figure 6. Four-levels diagram illustrating the trans- and the cis-isomerization.

As understood from azobenzene’s behavior, it experiences a revocable photoisomerization
process, i.e., a transformation from cis- to trans-isomerization. This process is usually associated
with enormous quantum yields with no significant reactions in the process [44]. Figure 7a illustrates
the absorption varieties of the PEO-(MR–Graphene) hybrid films at cis-state for numerous visible
blue-light illumination durations. Beyond 480 s of UV-light exposure, the films appeared to show a
cis-isomerization case (lowest solid yellow line). The PEO’s main absorption peak-(MR–Graphene)
hybrid film in the visible region originated at 423 nm with a peak-amplitude of 0.134. The hybrid film
was further exposed to the blue-visible light for 90, 180, 360, 720, and 1440 s, respectively. Figure 7a
shows that the film gains various absorption bands in the intermedium portion of the visible region
(380–625 nm) associated with a red-shift behavior in the crest value transporting back the film from cis- to
the trans-isomerization case as predicted. We noticed that the process of transforming the material from
cis- to trans-state is not a sudden spontaneous nor instantaneous transformation. However, it has been
transferred via a sequence of phases. Interestingly, the kinematic process of transferring the cis-to-trans
state demonstrates a kind of deformation from the first-order kinetics, as seen in Figure 7bEach
hybrid form, the departure from the first-order kinetics is quite obvious. It may be assigned to the
intermolecular interactions between AZO and Graphene and the modifications of AZO’s electronic
structure due to the novel steric structure of the hybrid. It is clear that ln(A∞ −At/A∞ −A0) − t has
one discrete segment which behaves linearly. The rate constant κ could be extracted from the slope.
The obtained value of p1 = 2.621 × 10−3 s−1.
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3.3. Investigating the Photoisomerization Cycles

Exposing the material in the trans-isomerization state to UV-light reveals the conversion to the
cis-isomerization state. The new cis-isomer state could be converted back to the trans-isomerization
state by either a thermal or optical relaxation process. The PEO-(MR–Graphene) hybrid films
are treated with the optimum UV-illumination conditions for trans to cis-state and then converted
back to trans-state via blue-light relaxation process several times. Figure 8 shows a periodically
repeated photoisomerization by optical relaxation process, confirming reliable hysteresis cycles for
PEO-(MR–Graphene) hybrid nanocomposite thin films with no significant characteristic-loss. This fact
confirms that the PEO-(MR-graphene) hybrid composite thin films may be considered candidates for
many applications such as photochromic molecular switches, light-gated transistors, and molecular
solar thermal energy storage media.
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3.4. Atomic Force Microscope (AFM) Studies

Atomic Force Microscope (AFM) measurements were performed to investigate the morphological
features of the PEO-(MR–Graphene) hybrid nanocomposite thin films. Figure 9 shows the AFM before
(a) and after curing (b). In both cases, films exhibit amorphous nature. Before UV curing, films’ surfaces
appeared to be inhomogeneous compared with the surfaces of films after curing. Exposing films to
UV curing induces strong film polymerization, yielding highly homogenous surfaces—the random
distribution of the inserted MR–Graphene into PEO-host results in extremely inhomogeneous surfaces.
However, illuminating films with UV light triggers MR–Graphene components of the composite to
rearrange, occupying ordered sites throughout the PEO matrix. The relaxation of different composite
components occurred to satisfy the minimum energy requirements and smoothen the surfaces greatly.
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Figure 9. 2D and 3D AFM images of PEO-(MR–Graphene) hybrid nanocomposite thin films:
(a) without curing and (b) with curing.

4. Conclusions

The fundamental mechanisms of the kinetics of photoisomerization of the PEO-(MR-Graphene)
hybrid nanocomposite thin films are explored, evaluated, and investigated thoroughly. Deliberately,
we explore and provide a new insight into the photoisomerization kinetics and time evolution for a
hybrid thin-film based on Azo dye methyl red (MR) incorporated with graphene hosted in polyethylene
oxide. The kinetics of photoisomerization and time evolution of the hybrid thin film was examined via
the UV-Vis and the FTIR spectroscopic techniques and by using specific analytical models. The existence
of the Azo Dye MR in the amalgamated composites is crucial for the effectual acts of the trans↔ cis
cyclic isomerization via UV-illumination↔ Visible light-relaxation. Moreover, the UV–Vis and FTIR
investigations confirm the hysteresis cycles of trans-cis-states. In conclusion, the PEO-(MR-Graphene)
hybrid nanocomposite thin films are proven to be potential candidates for many applications. These
applications include photochromic molecular switches, light-gated transistors, in addition to molecular
solar thermal energy storage media.
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