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Abstract: In higher eukaryotes DNA methylation is a prominent epigenetic mark important for chro-
matin structure and gene expression. Thus, profiling DNA methylation is important for predicting
gene expressions associated with specific traits or diseases. DNA methylation is achieved by DNA
methyltransferases and can be actively removed by specific enzymes in a replication-independent
manner. DEMETER (DME) is a bifunctional 5-methylcytosine (5mC) DNA glycosylase responsible
for active DNA demethylation that excises 5mC from DNA and cleaves a sugar-phosphate bond
generating a single strand break (SSB). In this study, DME was used to analyze DNA methylation
levels at specific epialleles accompanied with gain or loss of DNA methylation. DME treatment on
genomic DNA generates SSBs in a nonsequence-specific fashion proportional to 5mC density, and
thus DNA methylation levels can be easily measured when combined with the quantitative PCR
(qPCR) method. The DME-qPCR analysis was applied to measure DNA methylation levels at the
FWA gene in late-flowering Arabidopsis mutants and the CNR gene during fruit ripening in tomato.
Differentially methylated epialleles were successfully distinguished corresponding to their expression
levels and phenotypes. DME-qPCR is proven a simple yet effective method for quantitative DNA
methylation analysis, providing advantages over current techniques based on methylation-sensitive
restriction digestion.
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1. Introduction

DNA methylation is a prominent epigenetic modification in higher eukaryotes crucial
for many biological processes such as differentiation, gene imprinting, and X chromo-
some inactivation [1–3]. DNA methylation is generally referred to as the addition of a
methyl group to cytosine producing 5-methylcytosine (5mC) in DNA. DNA methyla-
tion is established and maintained by de novo DNA methyltransferase and maintenance
DNA methyltransferase, respectively, and can also be removed by a passive or an active
mechanism in response to developmental cues. Passive DNA demethylation is replication-
dependent, whereas active DNA demethylation is replication-independent and requires
enzyme activity [2,3]. DNA methylation changes are often associated with alteration of
genes expression causing various diseases and, notably cancer in humans. Therefore,
changes in DNA methylation patterns of specific gene can serve as biomarkers in cancer di-
agnosis. For example, hypermethylation of glutathione S-transferase P (GSTP1) is a hallmark
of prostate cancer in humans [4,5]. In plants, alteration of DNA methylation may contribute
to changes in gene expression and phenotypic variations that can be sometimes transmitted
to next generations. The inherited alleles that maintain differences in DNA methylation
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and expression patterns are referred to as epialleles [6], and several epialleles are reported
to be associated with important traits in plants such as flower architecture, flowering time,
fruit ripening, sex determination, starch metabolism, vitamin E accumulation, and oil
productivity [7–12].

In DNA methylation investigation, DNA samples are often subjected to chemical or
enzyme treatment prior to analysis depending on the analytical platform. Methylation-
dependent pretreatments on genomic DNA were required to distinguish 5mC from un-
methylated cytosine. Three main principles are utilized to distinguish methylated vs. un-
methylated cytosines: (1) endonuclease digestion, (2) affinity enrichment, and (3) bisulfite
conversion. First, endonuclease digestion relies on methylation-sensitive restriction en-
donucleases (MSREs) that are inhibited by 5mC in the recognition sequence, generating dif-
ferent cleavage patterns from the isoschizomers that recognize the same sequence. Second,
affinity enrichment utilizes the methyl-binding protein such as MeCP2 and MBD2 [13,14]
and immunoprecipitation with antibody against them. Alternatively, methylated genomic
DNA can be immunoprecipitated with antibody specific for 5mC [15]. Third, sodium bisul-
fite treatment chemically converts only unmethylated cytosine residues, but not 5mC, to
uracil, and therefore the methylation status can be distinguished at the base pair level [16].

Following the pretreatment, an array of techniques can be employed to delineate
methylation profiles. Recent advances in high-throughput sequencing also allow genome-
scale methylation profiling. In particular, whole-genome shotgun bisulphite sequencing
(WGSBS) is achieved on an Illumina Genome Analyzer platform providing a single-base
level high-resolution methylome profile in many eukaryote genomes, and thus regarded
as a gold standard method at the moment [17]. In addition, BeadChip arrays which can
detect a 5mC-specific “pseudo-SNP” through bisulfite conversion are popular as a low-cost
alternative for genome-wide methylation profiling of a large number of samples, especially
in humans [18].

Despite the benefits of bisulfite-based methods, enzyme-based approaches are still
widely used for methylation analysis, because they provide a rapid, simple, cost-effective,
and convenient platform that can be applied to a large sample size in many organisms [17,19].
MSREs such as Hpa II and Sma I are blocked by 5mC in their recognition sequences,
whereas their isoschizomers Msp I and Xma I are not. Following digestion with MSREs,
either gel electrophoresis combined with Southern hybridization or PCR amplification is
widely used for DNA methylation analysis [20]. However, utilization of MSREs is highly
restricted due mainly to specific recognition sequences that intrinsically limit the range
of application. Besides MSREs, another enzyme-based technique employs a methylation-
dependent homing endonuclease McrBC that recognizes and cleaves methylated DNA
between two nonpalindromic G/A mC sites 40–3000 bp apart from each other [21]. The
low sequence specificity of McrBC enables to reveal various DNA methylation patterns.
Nevertheless, most enzyme-based methods are applied in practice to locus-specific analysis
rather than genome-wide investigation.

Such enzyme-based techniques are substantially affected by the availability of recogni-
tion sequences, and thus DNA methylation analysis at any sequence context is not feasible.
DEMETER (DME) is a bifunctional DNA glycosylase that directly recognizes and excises
5mC from DNA upon base excision via β- and δ-elimination in all sequence contexts; CG,
CHG, and CHH (H = A, C or T) [22]. Unlike most DNA methylation-dependent restriction
enzymes, DME acts in a sequence nonspecific manner [22]. Moreover, DME mechanistically
permits a cleavage of only one strand of double-stranded DNA template at a symmetrically
methylated site, generating a single strand break (SSB), rather than a double strand break
(DSB) [22]. Therefore, DME-induced SSBs are proportional to the 5mC density within a
methylated DNA fragment, and the quantification of 5mC-specific SSBs induced by DME
treatment may overcome technical limitations of conventional enzyme-based methods,
permitting the quantitative measurement of DNA methylation in all sequence contexts.

Here, we described a novel DNA methylation analysis technique to rapidly measure
DNA methylation levels at specific loci. In the pretreatment step, DME excises 5mC and
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generates SSBs in proportion to the density DNA methylation, distinguishing methylated
DNA from unmethylated DNA. The next step involves quantitative-PCR (qPCR) ampli-
fication of DME-treated template, whereby only under-methylated DNA fragments are
more efficiently amplified. We demonstrated that the DME-qPCR method was sensitive
and accurate enough to measure the ratio of methylated DNA vs. unmethylated DNA in
heterogeneous samples. This technique was also successfully applied to the identification
of hypomethylated fwa alleles in Arabidopsis according to the late flowering phenotype,
and to monitoring changes in DNA methylation level at the CNR gene in tomato whose
expression is affected by differentially methylated regions (DMRs) in the promoter during
fruit ripening [8,9,23].

2. Results
2.1. DME Induces Single-Strand DNA Breaks Proportional to DNA Methylation Density

Most MSRE-dependent DNA methylation assays are rapid and cost-effective but have
intrinsic limitations due largely to a narrow sequence specificity. First, we tested whether
DME can distinguish unmethylated vs. methylated DNA using artificially methylated
DNA fragments. Note that DME catalyzes 5mC excision generating SSBs at symmetrically
methylated CG and CHG sequences, while DSB formation is intrinsically inhibited [22].
Genomic DNA isolated from Saccharomyces cerevisiae whose genome is devoid of DNA
methylation [24] was in vitro methylated with Hpa II methyltransferase that methylates
internal cytosine residues at the recognition sequence 5′-CCGG-3′. The Hpa II-methylated
DNA was treated with DME and subjected to PCR amplification. The genomic region
on yeast chromosome 1 (128,103–126,904) was PCR-amplified using the primer pairs that
amplify the fragments with a single and three Hpa II sites, respectively (Figure 1A). The
region on chromosome 7 (12,940–13,242) without an Hpa II sequence was chosen as an
unmethylated control. The PCR amplification for the region with three Hpa II sites (with
primers F1a and R1) was less than with a single site (with primers F1b and R1) (Figure 1B).
This indicates that PCR amplification of DME-treated fragments is negatively proportional
to the number of 5mCs in the target region. Additionally, in order to confirm that DME
induced SSBs, rather than DSBs, DME-treated genomic DNA was digested with BAL-31
endonuclease, which induces DSBs at sites of SSBs. BAL-31 endonuclease incises the
strand opposite the nick forming a DSB. We found that BAL-31 digestion of DME-treated
fragments generated DSBs at methylated sites regardless of the number of 5mC bases
(Figure 1C). This suggests that DME-induced SSB formation serves as an indicator of DNA
methylation density in the region of interest, which can be measured by PCR amplification.

2.2. DME-qPCR Allows a Quantitative DNA Methylation Analysis

In order to assess the efficacy of DME treatment measuring the level of DNA methyla-
tion, we examined relative amplifications of DME-treated templates with different 5mC
densities. The pUC19 plasmid was in vitro methylated with M.Sss I and Hpa II methyl-
transferases for methylation at CG and CCGG sequences, producing a heavily methylated
region (HMR) with 20 5mCG and a low methylated region (LMR) with three 5mCG sites,
respectively (Figure 2A). DME-induced SSB formation was compared with restriction by
McrBC endonuclease, which is a type IV homing endonuclease cleaving one or two sites
between two (A/T) 5mC sequences 40–2000 bp apart from each other. Both DME and
McrBC treatments caused less PCR amplification for M.Sss I-methylated HMR than for the
unmethylated region (UMR) (Figure 2B). DME treatment also caused less PCR amplification
at the LMR, whereas McrBC treatment allowed amplification of both unmethylated and
methylated templates to similar levels due to a lack of recognition sequences (Figure 2B).
In order to assess the efficiency of DME treatment for quantitative measurement of DNA
methylation in given samples, both unmethylated and M.Sss I-methylated plasmids were
mixed in different ratios and subjected to DME treatment followed by quantitative real-time
PCR (DME-qPCR) amplification. As shown in Figure 2C, the level of DME-qPCR ampli-
fication for HMR was proportional to the relative abundance of unmethylated template
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in the reaction. This allowed to quantitatively measure the ratio of methylated templates
of the same sequence according to the equation fitted to the observed data (Figure 2C).
These results strongly suggest that DME-qPCR can be utilized to analyze the level of DNA
methylation at specific regions without concerning the sequence specificity that is regarded
as one of the limitations of currently available MSRE-based methods.

2.3. DME-qPCR Distinguishes DNA Methylation Levels at the FWA Gene in Wild Type and Late
Flowering Mutants in Arabidopsis

Epimutants display heritable changes in gene expression and phenotype associated
with gain or loss of DNA methylation. Arabidopsis fwa mutants display a late-flowering
phenotype caused by the loss of DNA methylation at the SINE elements proximal to
the 5′-regulatory region [25]. Local bisulfite sequencing showed hypermethylation in
the promoter region, particularly at CG sequences, of the FWA gene in early-flowering
wild type (Figure 3A) but hypomethylation in late flowering fwa mutants (Figure 3B). We
performed DME-qPCR for the FWA alleles in early-flowering Col-0 and Ler wild-type
accessions and late-flowering fwa mutants in the Ler background. DME-qPCR produced
significantly more amplification products for the hypomethylated fwa allele relative to
hypermethylated FWA alleles of the wild type (Figure 3C), indicating that flowering time
was determined by DNA methylation rather than by accession-specific genotypes. DME-
qPCR enabled to successfully distinguish differences in DNA methylation between the
wild type and fwa epimutants associated with flowering phenotypes.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Quantitative analysis of DNA methylation by DEMETER (DME) treatment and PCR am-
plification. (A) Schematic diagrams of differentially methylated regions. Yeast genomic DNA was 
in vitro methylated with Hpa II methyltransferase for CCGG methylation. Methylated regions with 
a single or three CCGG sites were subjected to DME treatment and PCR amplification with F1a/R1 
and F1b/R1 primer pairs, respectively. Unmethylated control region was amplified with F2/R2 
primer pairs. (B) DME-induced SSBs decreases PCR amplification in proportion to DNA methyla-
tion levels. Hpa II-methylated yeast genomic DNA was treated with DME and subjected to multi-
plex PCR amplification. Primer pairs are denoted to the right of the panel. (C) DME and BAL-31 
treatment induces DSBs at methylated regions. DSB formation by DME and BAL-31 treatment 
prevents PCR amplification regardless of the number of methylated sites. 

2.2. DME-qPCR Allows a Quantitative DNA Methylation Analysis 
In order to assess the efficacy of DME treatment measuring the level of DNA meth-

ylation, we examined relative amplifications of DME-treated templates with different 
5mC densities. The pUC19 plasmid was in vitro methylated with M.Sss I and Hpa II me-
thyltransferases for methylation at CG and CCGG sequences, producing a heavily meth-
ylated region (HMR) with 20 5mCG and a low methylated region (LMR) with three 5mCG 
sites, respectively (Figure 2A). DME-induced SSB formation was compared with re-
striction by McrBC endonuclease, which is a type IV homing endonuclease cleaving one 
or two sites between two (A/T) 5mC sequences 40–2000 bp apart from each other. Both 
DME and McrBC treatments caused less PCR amplification for M.Sss I-methylated HMR 
than for the unmethylated region (UMR) (Figure 2B). DME treatment also caused less PCR 
amplification at the LMR, whereas McrBC treatment allowed amplification of both un-
methylated and methylated templates to similar levels due to a lack of recognition se-
quences (Figure 2B). In order to assess the efficiency of DME treatment for quantitative 
measurement of DNA methylation in given samples, both unmethylated and M.Sss I-
methylated plasmids were mixed in different ratios and subjected to DME treatment fol-
lowed by quantitative real-time PCR (DME-qPCR) amplification. As shown in Figure 2C, 
the level of DME-qPCR amplification for HMR was proportional to the relative abundance 
of unmethylated template in the reaction. This allowed to quantitatively measure the ratio 

Figure 1. Quantitative analysis of DNA methylation by DEMETER (DME) treatment and PCR
amplification. (A) Schematic diagrams of differentially methylated regions. Yeast genomic DNA was
in vitro methylated with Hpa II methyltransferase for CCGG methylation. Methylated regions with a
single or three CCGG sites were subjected to DME treatment and PCR amplification with F1a/R1
and F1b/R1 primer pairs, respectively. Unmethylated control region was amplified with F2/R2
primer pairs. (B) DME-induced SSBs decreases PCR amplification in proportion to DNA methylation
levels. Hpa II-methylated yeast genomic DNA was treated with DME and subjected to multiplex PCR
amplification. Primer pairs are denoted to the right of the panel. (C) DME and BAL-31 treatment
induces DSBs at methylated regions. DSB formation by DME and BAL-31 treatment prevents PCR
amplification regardless of the number of methylated sites.
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methylated with M.Sss I and Hpa II methyltransferases, respectively, producing differentially methylated HMR (20 5mC
sites) and LMR (three 5mC sites) regions. Differentially methylated HMR and LMR, along with unmethylated UMR as
a control, were subjected to qPCR analysis with corresponding primers. HMR, heavily methylated region; LMR, low
methylated region; UMR, unmethylated region. (B) Comparison between DME and McrBC treatments for quantification
of DNA methylation. Following the enzyme treatment, HMR, LMR, and UMR were subjected to qPCR analysis with
corresponding primer pairs. Relative amplification was calculated using the ∆∆Ct method for unmethylated (white bar)
and methylated (black bar) pUC19 plasmids normalized with the value obtained from UMR. (C) Relative amplifications
for different ratios of methylated DNA by DME-qPCR. The percentage (x-axis) indicates the ratio of M.Sss I-methylated
plasmids to the total plasmids in the reaction. Relative amplification values were obtained for HMR from DME-qPCR, and a
regression line fitted to the observed data. The data represent the mean ± S.D. for three replicates (B,C). Asterisks indicate
statistically significant differences between the unmethylated and methylated plasmids (**: p < 0.01; Student’s t-test).

We performed a cross between Col-0 wild type and Ler fwa-1 mutant to investigate
whether DME-qPCR was also able to identify the epialleles associated with corresponding
phenotypes in the segregating population. The F1 plant flowered late due to the domi-
nant nature of fwa epimutation, and F2 individuals segregated for flowering time (early
or late) (Figure 3D). DME-qPCR analysis successfully identified the hypermethylated
or hypomethylated status of the FWA alleles in accordance with the time of flowering
(Figure 3D). For instance, all individuals showing very low DME-qPCR amplification were
early flowering and homozygous for FWA, whereas ones showing high amplification levels
were found to carry at least one fwa allele with a late flowering phenotype (Figure 3D).
Moreover, it is noteworthy that DME-qPCR was sensitive enough to distinguish between
homozygous and heterozygous fwa mutants, where homozygous fwa mutants always
produced more amplification signals than fwa heterozygotes (Figure 3D).

2.4. DME-qPCR Detects Changes in DNA Methylation Levels at the CNR Gene during Fruit
Ripening in Tomato

The Colorless non-ripening (Cnr) mutant in tomato (Solanum lycopersicum) is a naturally
occurring epimutant with a severe delay in fruit ripening, which is caused by gain of
DNA methylation and transcriptional silencing of the CNR gene [9]. Bisulfite sequencing
revealed that the upstream region of CNR gene of normal ripening ‘Ailsa Craig’ cultivar was
nearly devoid of DNA methylation at any sequence context (Figure 4A), whereas the same
region of non-ripening Cnr mutant was heavily methylated at CG and CHH sequences
(Figure 4B). DME-qPCR also produced a high level of amplification for ‘Ailsa Craig’ CNR
gene compared to the mutant Cnr, indicating that the Cnr epiallele is hypermethylated
(Figure 4C). It was reported that two differentially methylated regions (DMRs) located
at 0.7 and 1.9 kb upstream of the translation start site of CNR underwent gradual loss
of DNA methylation during fruit ripening allowing transcriptional activation [23]. We
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harvested tomato fruits at different developmental stages and examined expression levels
of CNR in the fruit pericarp of ‘Ailsa Craig’. Expression of CNR gradually increased until
42 days post-anthesis (d.p.a.) and decreased at 52 d.p.a. (Figure 4D). However, expression
levels remained relatively low during the entire course of fruit ripening in Cnr mutants
(Figure 4D). This is consistent with previous study showing Cnr expression patterns in wild
type and Cnr mutant during tomato fruit ripening [9]. Accordingly, bisulfite sequencing
revealed that DNA methylation at the −0.7 kb DMR of CNR progressively decreased in
ripening ‘Ailsa Craig’ fruits but remained at high level in Cnr mutant fruits (Figure 4E).
DME-qPCR analysis also verified dynamic changes in DNA methylation level for wild-type
CNR during ripening (Figure 4F). In contrast, DME-qPCR amplification was constantly low
in Cnr mutant fruits, indicating that the DMR retained a high level of DNA methylation
responsible for transcriptional silencing and non-ripening phenotype (Figure 4F). These
data suggest that DME-qPCR is highly applicable to monitoring DNA methylation changes
at the gene of interest during developmental processes.
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Figure 3. DME-qPCR for quantitative DNA methylation analysis for FWA alleles in Arabidopsis. (A,B) Flowering time
phenotypes and DNA methylation profiles of Col-0 wild type (A) and fwa-1 mutant in the Ler background (B). The
5′-FWA represents an upstream region of the translation start site of FWA. DNA methylation patterns were analyzed
using bisulfite sequencing. Genomic DNA isolated from individual plants was subjected to bisulfite sequencing analysis.
Scale bar = 10 mm. (C) DME-qPCR analysis for wild type (Col-0 and Ler) and fwa-1 mutant plants. Relative amplifications
were calculated using the ∆∆Ct method with the value for unmethylated ASA1 gene as a control. Asterisks indicate
statistically significant differences between wild type and fwa-1 (**: p < 0.01; Student’s t-test). (D) DME-qPCR analysis for
FWA alleles in the F2 population. F2 population was generated by selfing F1 obtained from a cross between wild type (Col-0)
and fwa-1 (Ler). ‘E’ and ‘L’ indicate early and late flowering phenotype, respectively. ‘+’ and ‘−’ indicate wild type (Col-0)
and fwa-1 (Ler) genotypes, respectively, at the FWA locus analyzed with the CAPS marker. Light, medium and dark gray
colors indicate genotypes +/+, +/− and −/− at the FWA locus. DME-qPCR amplification values were calculated relative
to ASA1. The data represent the mean ± S.D. of three replicates (C,D).
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Figure 4. DME-qPCR for quantitative DNA methylation analysis for Cnr alleles during fruit ripening in tomato. (A,B) Mature
fruit colors and DNA methylation profiles at 2.4–2.5 kb upstream of the translation start site of CNR gene in wild type Ailsa
Craig (A) and Cnr mutant (B), respectively. DNA methylation profiles were analyzed by bisulfite sequencing. Genomic
DNA isolated from individual plants was subjected to bisulfite sequencing analysis. Scale bar = 10 mm. (C) DME-qPCR
analysis for CNR in wild type Ailsa Craig and Cnr mutant leaves. DME-qPCR amplification values were calculated
relative to unmethylated ATP1 gene. Asterisks indicate statistically significant differences between WT and Cnr (*: p < 0.05;
Student’s t-test). (D) Expression of CNR in wild-type and Cnr mutant tomato fruits during ripening. CNR expression
was determined by RT-qPCR in fruit pericarp at 17, 39, 42, and 53 d.p.a. Expression levels were relative to combined
expressions of CAC and TIP41 [26]. (E) DNA methylation levels of CNR in wild-type and Cnr mutant tomato fruits during
ripening. DNA methylation levels at the DMR 0.7 kb upstream of the translation start site of Cnr gene were determined by
bisulfite sequencing in pericarp tissues of wild type Ailsa Craig and Cnr mutant at 17, 39, 42, and 52 d.p.a. (F) DME-qPCR
analysis for detection of DNA methylation changes at CNR during fruit ripening. Changes in DNA methylation level at the
−0.7 kb DMR of Cnr gene were examined by DME-qPCR. DME-qPCR amplification values were calculated relative to Actin
(Solyc01g066800). The data represent the mean ± S.D. of three replicates (C,D,F).
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3. Discussion

Despite the benefits of using high-throughput technologies, enzyme-based DNA
methylation analysis is still widely used because it offers a rapid, simple, and cost-effective
solution. Current enzyme-based techniques mostly rely on the unique properties of MSREs
that recognize but do not digest methylated CpG sites within recognition sequences.
Therefore, use of MSREs, along with methylation-insensitive isoschizomers, provides
unique restriction patterns reflecting the presence or density of DNA methylation, which
can be readily detected by PCR amplification, electrophoresis, or gel blot analysis. However,
application of MSREs is restricted to genomic regions that harbor recognition sequences,
and thus, sequence coverage or resolution is relatively low. In addition, most MSREs such
as Hha I, Hpa II, and Sma I and corresponding isoschizomers generate DSBs as a hallmark
to indicate the presence or absence of 5mC, and therefore, quantitative analysis relying on
DSB formation is impractical for densely methylated regions with multiple recognition
sites or ones without it at all.

DME was first identified in Arabidopsis as a bifunctional 5mC DNA glycosylase [22,27].
DME removes a 5mC base in a sequence nonspecific manner by cleaving an N-glycosylic
bond between 5mC and a ribose sugar, and accompanied lyase activity generates an SSB via
β- and δ-elimination processes [22,28]. Notably, DME only induces an SSB at symmetrically
methylated sites preventing DSB formation [22]. Therefore, DME-induced SSBs are formed
in proportion to the 5mC density at methylated fragments, and an intact single DNA strand
that still persists can serve as a template for PCR amplification.

In this study, we propose DME-qPCR as an alternative method to quantify DNA
methylation density while overcoming the limits of current MSRE-based DNA methylation
analyses. The advantages of DME-qPCR over MSRE-dependent techniques may include
sequence nonspecificity, better sensitivity that allows quantitative analysis, and a higher
resolution it provides. Since DME is able to excise 5mC from both symmetrically and
asymmetrically methylated DNA, it is also suitable to interrogate DNA methylation at
CHH sequences, which are vastly abundant in plant genomes.

We demonstrated that DME-qPCR allowed precise quantification of 5mC at any
sequence context in a sequence nonspecific manner (Figure 2). Moreover, DME-qPCR
successfully distinguished different methylation levels at the regulatory regions of two rep-
resentative epialleles of plants, FWA and Cnr, corresponding to their respective phenotypes
(Figures 3 and 4). DME-qPCR was able to discern differently methylated alleles of FWA in
the segregating population (Figure 3D), which may serve as epigenetic molecular markers
that can predict flowering time even at seedling stages. Importantly, the 5′ upstream region
of FWA has no Hpa II/Msp I recognition sites (Figure 3A,B), and thus, only DME-qPCR can
be applicable to any genomic regions of interest without concerns about the availability
of recognition sequences of MSREs. In addition, DME-qPCR easily detected changes in
DNA methylation level at the DMR of CNR during the course of fruit ripening in tomato
(Figure 4), and therefore, it will offer valuable information on dynamic changes of DNA
methylation in diverse developmental processes in many eukaryotic organisms.

Although we propose DME-qPCR as a promising method for quantitative analysis
of DNA methylation, cautions should be taken in several cases. First, incomplete DME
reaction may generate false-positive signals during PCR amplification because DME-qPCR
depends upon the generation of DNA strand breaks as most MSRE-based PCR assays.
Second, DME-qPCR results may not precisely reflect DNA methylation levels at densely
methylated regions such as CG repeats because DME 5mC excision is inhibited by nearby
strand breaks [22], and excessive SSBs exponentially decrease the template availability.
Third, fully and hemi-methylated sites, although the latter is supposedly uncommon at CG
dinucleotides in biological samples, cannot be distinguished by DME-qPCR because both
generate the same SSB by DME treatment.

Previously, we extensively modified the full-length DME peptide by trimming cat-
alytically unnecessary regions, producing a compact but active fragment [29]. This greatly
improved stability and solubility of the protein when purified from E. coli, where conven-
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tional affinity purification methods were employed, and a batch of purification was stored
at −80 ◦C and used for many reactions. Moreover, most E. coli host cells generally used
for recombinant protein expression are cytosine methylation-deficient B strain-derivatives
(dcm-) tolerable to DME expression, although DNA methylation-proficient hosts (K strain-
derivatives) are sensitive to DME-induced 5mC excision [22]. Therefore, it is fairly afford-
able to prepare DME proteins in a quantity enough to conduct a small scale DME-qPCR
analysis even in budget-tight laboratories.

Although regarded as a gold standard for genome-wide DNA methylation analysis
while providing a single-base resolution, BS-Seq still has several intrinsic drawbacks—first,
sodium bisulfite converts unmethylated cytosine to thymine reducing sequence complexity;
second, C/T single nucleotide polymorphisms (SNPs) present between different samples
will be neglected upon bisulfite conversion; third, sodium bisulfite treatment is often
destructive towards DNA severely compromising the template quality. Therefore, it is
imminent that more precise, cost-effective, and researcher-friendly tools must be developed
for better epigenetic analysis replacing current techniques.

The unique enzyme property of DME may be utilized to develop DNA methylation
analysis techniques with different principles. For instance, DME-treated genomic fragments
will generate distinct fragmentation patterns according to DNA methylation profiles, which
may be considered an ‘epigenetic polymorphism’ at the molecular level. Detection of a
‘nick’ created by DME may give positional information where 5mC exists. It is thus
plausible that high throughput sequencing technology combined with DME pre-treatment
may provide genome-wide DNA methylation information in high resolution. Recent study
reported a ‘Nick-seq’ method that was utilized to map diverse DNA modifications at
single-nucleotide resolution [30], and the same method can be used for DME-induced nick
detection, which would likely offer DNA methylation information comparable to BS-Seq
at the genome-wide level. Upon 5mC excision, DME generates unusual 3′ end structures
such as 3′-phosphate and 3′-phospor-α, β-unsaturated aldehyde (3′-PUA), which are
further processed by AP endonuclease providing 3′-OH for nucleotide extension [28]. We
already showed that the trimmed 3′ ends can be extended with a fluorophore-containing
nucleotide [28], and such fluorescence-labeled fragments may be used for hybridization-
based analysis using microarrays.

Since 5mC is prevalent in many eukaryote genomes serving as a primary epigenetic
modification that controls chromatin structure and gene expression, it is important to
understand DNA methylation profiles and regulation processes associated with diverse
biological phenomena. It is also evident that aberrant DNA methylation is responsible for
certain diseases and cancer development in humans [31]. A number of DNA methylation
analysis tools are available at the moment, but none of them satisfy all demands from
researchers and pharmaceutical industries. Therefore, it is crucial to have a novel method
developed serving a better purpose, and we believe that DME has a great versatility and
specificity in conceiving innovative methods because DME and its related members are
yet the only enzymes that are capable of directly removing 5mC from DNA as a canonical
DNA demethylase.

4. Materials and Methods
4.1. Protein Expression and Purification

DME∆677∆IDR1::lnk with 6xHis and maltose binding protein tag [28,32] was ex-
pressed in the Escherichia coli Rosetta 2 (DE3) strain (Novagen, Darmstadt, Germany). The
protein purification steps were essentially the same as described by Mok et al. [29]. Briefly,
the recombinant DME protein was sequentially purified through a HisTrap FF column
(GE Healthcare, Chicago, IL, USA) and a HiTrap Heparin HP column (GE Healthcare,
Chicago, IL, USA), and gel filtration was performed on a HiLoad 16/60 Superdex 200-pg
column (GE Healthcare, Chicago, IL, USA). The final eluted fractions were concentrated
and aliquoted with 50% glycerol.
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4.2. DME Treatment and Bal-31 Digestion Followed by PCR on Methylated DNA Fragments

Yeast genomic DNA was extracted using a standard protocol [33]. In total, 10 µg
of yeast gDNA was in vitro methylated using 10 units of Hpa II methyltransferase (NEB,
Ipswich, MA, USA) at 37 ◦C for 2 h. The methylated yeast gDNA (2 µg) was treated with
200 ng of DME∆N677∆IDR1::lnk at 37 ◦C for 2 h in glycosylase reaction buffer (10 mM
Tris-HCl, pH 7.4, 50 mM NaCl, 0.5 mM dithiothreitol (DTT), 200 µg/mL BSA) and the
reaction was inactivated at 65 ◦C for 15 min. For DBS formation, the reaction was incubated
with 1 unit of the single-strand specific nuclease BAL-31 (NEB, Ipswich, MA, USA) at
30 ◦C for 1 h in BAL-31 reaction buffer (NEB, Ipswich, MA, USA) (600 mM NaCl, 12 mM
CaCl2, 12 mM MgCl2, 20 mM Tris-HCl pH 8, 1 mM EDTA). The reactions with DME and
BAL-31 were carried out sequentially in a single tube. The PCR primers for amplification of
unmethylated and methylated regions are listed in Table S1. After an initial denaturation at
95 ◦C for 5 min, the thermal cycling conditions were as following: 95 ◦C for 30 s, 56 ◦C for 30
s, and 72 ◦C for 60 s. The PCR cycles were adjusted between 20 and 26 for the quantification.

4.3. Comparison of DME Treatment and McrBC Digestion

Unmethylated pUC19 plasmid was purified from the methylation-deficient E. coli
strain JM110. Next, 1 µg of the pUC19 plasmid was methylated using either 10 units
of the CG methyltransferase M.Sss I (NEB, Ipswich, MA, USA) or eight units of Hpa II
methyltransferase. For representing various DNA methylation levels, unmethylated and
M.Sss I-methylated plasmids were mixed at different ratios. pUC19 plasmid (20 ng) was
incubated either with 400 ng of DME∆N677∆IDR1::lnk in glycosylase reaction buffer or
with 20 units of McrBC (NEB, Ipswich, MA, USA) and 1 mM GTP in NEBuffer 2 (10 mM
Tris-HCl, pH 7.9, 50 mM NaCl, 10 mM MgCl2, 1 mM DTT) at 37 ◦C for 1 h, and the reactions
were inactivated at 65 ◦C for 15 min. An untreated control, neither treated with DME or
McrBC, was prepared following the same procedure. The reaction products were diluted
1:2000 for subsequent tests. Quantitative PCR (qPCR) was performed using the Rotor-Gene
Q system (Qiagen, Hilden, Germany) with SYBR green Q-master mix (Genet Bio, Daejeon,
Korea). The PCR primers for amplification of the UMR, HMR, and LMR are listed in
Table S1. qPCR was performed at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 10 s,
60 ◦C for 15 s, and 72 ◦C for 35 s. The relative amplification was calculated using the ∆∆Ct
method. To calculate ∆Ct, the Ct of the unmethylated control region was subtracted from
the Ct of the target region. To obtain ∆∆Ct, the ∆Ct value of the untreated sample was
subtracted from the ∆Ct value of the enzyme-treated sample. The relative amplification
(RA) value was determined using the equation RA = 2(−∆∆Ct), and the standard deviations
were calculated after 2−Ct transformation [34].

4.4. Plant Materials

Arabidopsis thaliana ecotypes Columbia (Col-0), Landsberg erecta (Ler), and fwa-1 in
the Ler background were used in this study [35]. The seeds were sterilized and stratified
at 4 ◦C for 2 days in the dark, grown on half-strength Murashige–Skoog (MS) media agar
plates, and transplanted to soil in a growth chamber with 16 h per day of fluorescent light
(20 ± 5 µmol m−2 s−1) at 22 ± 1 ◦C and 70 ± 5% relative humidity. The F2 progenies
were generated by crossing Col-0 and fwa-1 (Ler) followed by self-crossing. Flowering
time was measured by counting the number of days from sowing and rosette leaf number
until bolting.

Wild-type tomatoes (Solanum lycopersicum cultivar Ailsa Craig) and the corresponding
Cnr mutant were also used in this study [9]. The seeds were sterilized and grown in a
growth chamber for 1 month. They were transplanted to soil and grown in greenhouse
conditions (12 h with supplemental lighting at 25 ◦C and 12 h at 20 ◦C) with regular
additions of N-P-K fertilizer (Hyponex). Tomato fruit pericarp tissues were harvested at 17,
39, 42, and 52 d.p.a.
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4.5. CAPS Analysis

Genomic DNA was extracted from Arabidopsis leaves using CTAB extraction method.
PCR products were amplified with CAPS primers and then digested with 20 units of TaqαI
restriction enzyme for 4 h at 65 ◦C. Gel electrophoresis was conducted on a 2.5% agarose
gel at 25 V. CAPS primers were designed to contain SNPs between Col-0 and Ler within
the TaqαI restriction site (Table S1).

4.6. Reverse Transcriptase-qPCR

Total RNA was extracted from fruit pericarp tissues, which were harvested at 17, 39,
42, and 52 d.p.a., of wild type (Ailsa Craig) and Cnr mutant using the TRIzol (Ambion,
Waltham, MA, USA). Next, 1 µg of total RNA was reverse transcribed into cDNA by using
the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) with manufacturer’s
instruction. The PCR primers for amplification of CAC, TIP41, and Cnr genes are listed
in Table S1. The average Ct value of CAC and TIP41 was used as a control. The relative
amplification was calculated using the ∆∆ Ct method [34].

4.7. Locus-Specific Bisulfite Sequencing

Bisulfite conversion of genomic DNA was performed using the EpiTect Bisulfite kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocols. The degenerative
primers for PCR amplification are listed in Table S1. The PCR products were cloned into
the TA vector (Real Biotech Corporation, Banqiao City, Taipei), and individual clones were
sequenced. DNA methylation in each context (CG, CHG, and CHH) was analyzed using
CyMATE software [36].

4.8. DME-qPCR

Approximately 500 ng of gDNA was incubated with 600 ng of DME∆N677∆IDR1::lnk
in glycosylase reaction buffer at 37 ◦C for 2 h in 20 µL. Following heat-inactivation at 65 ◦C
for 15 min, 50 ng of DME-treated DNA was subjected to qPCR amplification. An untreated
control, not treated with DME, was prepared following the same procedure. The remainder
of the qPCR procedures were performed as described above. The relative amplification
of target region was normalized to the unmethylated region. The DME-qPCR primers are
listed in Table S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/3/1072/s1, Table S1: List of primers for PCR amplification.
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