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Abstract
Background: Starting with low metastatic capability, T4N0M0 (diameter ≥ 7 cm)
non-small cell lung cancers (NSCLCs) constitute a unique tumor subset, as with a
large tumor size but no regional or distant metastases. We systematically investigated
intratumoral heterogeneity, clonal structure, chromosomal instability (CIN), and
immune microenvironment in T4N0M0 (≥7 cm) NSCLCs.
Methods: Whole-exome sequencing, RNA sequencing, and multiplex immunohisto-
chemistry (mIHC) staining were conducted to analyze 24 spatially segregated tumor
samples from eight patients who were pathologically diagnosed with T4N0M0
(diameter ≥ 7 cm) NSCLCs. The adjacent normal tissues and peripheral blood served
as controls.
Results: In total, 35.2% of mutations and 91.1% of somatic copy number alterations
were classified as subclonal events, which exhibited widespread genetic intratumoral
heterogeneity. In contrast, a low degree of CIN was observed. None of the patients
had genome doubling. The burden of loss of heterozygosity, aneuploidy, and the
genome instability index of these tumors were significantly lower than those in the
TRACERx cohort. Expression profiles revealed significantly upregulated expression of
cell division-related signals and the G2/M checkpoint pathway. In addition, a similar
expression pattern of the immune microenvironment was observed in different
regions of the tumor, which was confirmed by mIHC profiles.
Conclusions: Our study indicates the presence of intratumoral genetic heterogeneity
and immune microenvironmental heterogeneity features in T4N0M0 NSCLCs, and
the low degree of CIN may be related to the low metastatic capability.
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INTRODUCTION

Unlimited proliferation is a principal characteristic of cancer
cells. Accordingly, tumor progression and metastasis remain
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the major causes of cancer-related mortality.1 However, over
the course of tumor evolution, a proportion of non-small
cell lung cancers (NSCLCs) may exhibit a low metastatic
capacity at a particular stage. A well-recognized example is
localized pleural seeding observed unexpectedly during sur-
gery (s-pM1a). Several studies have reported that s-pM1a
NSCLCs inherit a profound prognosis and lower metastatic
ability than other stage IV NSCLCs.2–6 Nevertheless, the
underlying genomic features of this biological behavior have
not been elucidated.

In recent years, multiomics analysis of intratumoral hetero-
geneity (ITH) has revolutionized our understanding of the
molecular and genetic bases of cancer development and evolu-
tion. In particular, the Tracking Non–Small-Cell Lung Cancer
Evolution through Therapy (TRACERx) project has provided
critical insight into the intrinsic driving force of chromosome
instability (CIN) in ITH, which contributes to an increased risk
of recurrence or death.7 Several studies have further expounded
on the relationship between tumor invasiveness and CIN,
including whole-genome or segmental duplication, loss of het-
erozygosity, and somatic copy number (CN) variation.8–12

Additionally, recent studies have highlighted the critical role of
the imbalance between tumor and host immunity in tumor
progression, a process termed as immune escape.13 Further-
more, novel routes to immune evasion are being discovered,
including T cell exhaustion,14 depletion of expressed neoan-
tigens,15 and loss of human leucocyte antigen (HLA).16 There-
fore, analyses of ITH, CIN and immune microenvironment of
NSCLCs with low metastatic capability will facilitate our knowl-
edge of tumor growth and invasiveness.

In clinical practice, a subset of NSCLCs that exceed 7 cm
in diameter and lack regional lymph node or distant organ
metastases (stage T4N0M0) is occasionally observed. Patients
with T4N0M0 NSCLCs present exhibited a relatively favor-
able prognosis after radical resection, with a 47% 5-year sur-
vival rate.17,18 Hence, T4N0M0 (≥7 cm) NSCLCs could
constitute a distinct class of tumors with low metastatic capa-
bility. Nevertheless, the genomic characteristics of this class
of tumors have not been defined. In this study, we harnessed
a multifaceted approach comprising whole-exome and trans-
criptome sequencing in addition to multiplex immunohisto-
chemistry (mIHC) by multiregion sampling to systematically
investigate the ITH, clonal structure, CIN, and immune
microenvironment of T4N0M0 (≥7 cm) NSCLCs.

METHODS

Patients and tumor samples

We prospectively enrolled patients who were diagnosed with
stage T4N0M0 (≥7 cm) NSCLCs and underwent surgical resec-
tion. Preoperative positron emission tomography-computed
tomography staging, and postoperative pathological diagnosis
confirmed that none of the patients had regional lymph node
or distant metastasis. The clinicopathological features of the
enrolled patients are summarized in Table S1.

In total, 24 fresh tumor tissues and matched adjacent nor-
mal tissues were collected from all eight patients during
surgery. Peripheral blood was used as the control (Figure S1).
To assess ITH, three different regions separated by at least
2 cm (Figure 1a) were sampled per tumor. Large patches of
necrotic regions were avoided; tumor samples were washed in
phosphate-buffered saline to exclude residual necrotic material.
The TRACERx study was used as an external cohort.19 Whole-
exome sequencing was performed on DNA samples from the
same tissue, as previously described by Jamal-Hanjani et al.7

This study was approved by the Institutional Review Board
of the Guangdong Provincial People’s Hospital (Approval
no. GDREC2019523H). Written informed consent was obtained
from all patients.

Multiregion whole-exome sequencing

DNA and RNA were extracted using the Qiagen All Prep
DNA/RNA FFPE kit or separately with QIAamp DNA FFPE
Tissue Kit and RNeasy FFPE kit, respectively. The DNA
extracted from multiple regions and collected from each
tumor was prepared to generate a library with dual-unique
molecular identifiers for the MGISEQ-2000 platform with
paired-end 100 bp. Raw sequencing data were removed from
low-quality reads and low-quality bases using fastp,20 mapped
to the human genome (hg19) using BWA-MEM (bwa-4.0.8.1)
and sorted. Duplications were removed separately using
samtools (v1.3.1) (http://samtools.sourceforge.net) and Picard
(2.6.0) (https://broadinstitute.github.io/picard/). Neoantigens
were predicted with netMHCpan-3.0.21

Somatic mutation calling

TNscope (https://www.sentieon.com/) was employed to detect
somatic mutation variants, insertions, and deletions (indels)
with default parameters based on paired alignment BAM files.
Mutations were filtered out if they met the following criteria:
variant allele fraction (VAF) of <0.03 and rare variant fraction
of ≧0.01 in databases, including ExAC, ESP6500, dbSNP, and
1000G. Mutations identified in one or two regions were res-
cued in other regions with the following filters: support by
both strands, vaf ≧0.01, total mutant reads ≧5, and supporting
≧30� depth at loci in tumors; and normal reads ≥10 with
mutant reads ≤5 and vaf ≤0.01 in normal tissues. Variant clas-
sifications, including splice-site, nonsense mutations, missense
mutations, frameshift, and in-frame indels, were reserved.
Cross-contamination among patients was assessed using hier-
archical clustering of Spearman correlations of germline
single-nucleotide variants (SNVs) between samples.22

Chromosomal aberration detection

Somatic copy number alterations (SCNAs) were estimated
using FACETS.23 Ploidy, purity, and loss of heterozygosity
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(LOH) were detected using the R package ABSOLUTE.24

Significant SCNAs and arm-level SCNAs were detected
using GISTIC2.25 Whole-genome doubling (WGD) was esti-
mated using the algorithm developed by McGranahan.9 In
particular, the observed CN gain or loss was compared to
the simulated CN gain or loss 10,000 times. The sample was
considered to experience WGD if p < 0.001 at diploid or
triploid, p < 0.05 at tetraploid, p < 0.5 at pentaploid, or
p ≦ 1 at hexaploid.9

CN gain was defined as CN/ploidy ≥2.5/2, whereas CN
loss was defined as CN/ploidy ≤1.5/2.7 The genome instabil-
ity index was defined as the ploidy-corrected ratio of regions
with CN gain or loss to the whole-genome length.26

Clonal structure analysis

All somatic nonsilent mutations and SCNAs were used to
construct clone structures using Pyclone-VI.27 Clonal muta-
tions were defined as those in the cluster with the highest
cellular cancer frequency. Other mutations were set as sub-
clonal mutations. For clonal SCNAs, SCNA gain or loss
occurring in all three regions within tumors was defined as a
clonal somatic copy number variation. SCNA gain or loss
observed in only one or two regions within tumors was
defined as subclonal SCNAs.

Gene expression data analysis

mRNA libraries were prepared using the NEBNext Ultra
RNA Library Prep Kit for Illumina according to the
manufacturer’s protocol. RNA-seq libraries were paired-
end sequenced on an MGISEQ-2000 sequencer. Sequenc-
ing reads containing adaptor sequences and low-quality
reads were filtered, and 24.2–81.4 Mb clean reads were
mapped to hg19 using STAR v2.7.5. Differential analysis
was performed using DESeq2 and EdgeR (jfold
changej ≥ 2 and p < 0.05). Pathway enrichment was per-
formed using clusterProfiler28 and gene set enrichment
analysis (GSEA).29 Quantitative measurements of
immune cell infiltration were generated using single-
sample GSEA (ssGSEA),30,31 which has been applied in
several studies to infer the relative level of immune cell
infiltration based on RNA profiling data.32,33

Immune cell scores and stromal scores were deter-
mined using the ESTIMATE R package.34 Immune cell
infiltration was estimated using the TIMER2 platform
(http://timer.cistrome.org/) using multiple algorithms, in-
cluding TIMER, CIBORSORT, CIBORSORT-ABS, MCP-
counter, and QUANTISEQ.35 Immune cells were assessed
with markers reported by Danaher36 and CD8 cell mark-
ers15 using ssGSEA. Immune-related gene sets were deter-
mined based on relevant published references, such as those

F I G U R E 1 Genomic heterogeneity and clonal structure. (a) Schematic diagram of multiregion sampling of tumors over 7 cm in diameter without lymph
node or distant metastasis. (b) Clonal structure of nonsynonymous mutations and a heatmap diagram of driver mutations and clinical features in each tumor
region. (c) Clonal mutation burden and subclonal mutation ratio of T4N0M0 NSCLC versus TRACERx tumors. (d) Correlation analysis of tumor mutation
burden or subclonal mutation ratio with average tumor purity. NSCLC, non-small cell lung cancer
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for antigen presentation,15 chemokines,37 and T cell inflam-
matory genes.38

Multiplex immunohistochemistry (mIHC)
staining

The microenvironment of all tumor samples and adjacent
normal tissues was comprehensively assessed using the
Akoya Opal seven-color fluorescent platform. All sections
were stained using the Opal Polaris 7 Color Automation
IHC Detection Kit (Akoya Biosciences) for the simultaneous
detection and quantification of Pan-CK, CD8, FoxP3, PD-1,
Granz-B, Ki-67, and DAPI (Table S2).

Statistical analysis

All statistical analyses were conducted using R4.0.2 (https://
www.r-project.org/). Quantitative data were analyzed using
the Mann–Whitney U test for comparisons between groups.
Spearman correlation analysis was performed to assess the
associations between the samples. Statistical significance was
set at p < 0.05.

RESULTS

High levels of intratumoral heterogeneity

Based on the low metastatic capacity of these tumors, we
hypothesized that a higher homogeneity would be observed.
Curiously, an extremely high level of ITH was observed.

In total, 24 samples were sequenced, with three regions
from each patient (mean depth, 378�). Overall, 4175 SNVs
and indels were identified, affecting the exons of 1787 genes
(Figure 1b). We identified 181 driver events (median, 19.5;
range, 5–49) based on previously reported criteria (Figure 1b).39

Of SNV/indels, 35.2% were identified as subclonal mutations.
The average subclonal ratio of SNVs/indels exceeded 80% in
three of them, P02 (85.1%), P11 (90.4%), and P12 (91.7%), in
contrast with the data reported in previous studies of subclonal
mutation ratios in lung cancer (~30%) (Figure 1b).7 Further
analysis revealed that the subclonal mutation ratio of these
T4N0M0 NSCLCs was significantly higher than that in the
TRACERx cohort (Figure 1c).

SCNAs of all tumor sections were successfully profiled. In
total, 905 SCNA events were identified (median: 95.5, range:
35–233, Figure 2a,b), including 426 gains and 479 losses pre-
sent in at least one tumor region. A median of 91.1% was

F I G U R E 2 Intratumoral heterogeneity of somatic copy number alterations (SCNAs) and chromosomal instability. (a) Number and clonal to subclonal ratio of
SCNAs in each tumor region. The ploidy-corrected fraction of the genome altered by SCNAs, which is defined as the genomic instability index (GII), is presented in
the figure. Whole-genome doubling status and genome ploidy are also presented. (b) Heatmap diagram of SCNAs occurring in at least two tumor regions. (c) SCNA
burden, loss of heterozygosity (LOH), ploidy, and GII for T4N0M0 NSCLCs versus TRACERx tumors. (d) Amplification (red) and deletion (blue) q values from
GISTIC2.0 for SCNA peaks of significant copy number gain and loss plotted for T4N0M0 NSCLCs versus TRACERx tumors. NSCLC, non-small cell lung cancer
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identified as subclonal SCNAs (Figure 2a), which was higher
than the 28%–48% of NSCLCs previously reported.7,10 More-
over, none of the SCNAs were shared among the three
regions as trunk events for P01, P02, and P12.

In consideration of misidentified and cross-contaminated
tumor samples, we mapped the genetic distances between all
samples to verify their identity. All patient-specific genomic
DNA samples clustered together, as expected (Figure S2).
Another concern was that the extremely high ITH and vari-
able mutation burden may have been a misestimate due to
the tumor purity in different tumor regions. However,
no significant correlation between tumor purity and tumor
mutational burden or subclonal mutation ratio was observed
(Figure 1d; Figure S3).

Low degree of chromosomal instability

Since CIN is considered a major driver of ITH and shapes
tumor evolution,8,40 we hypothesized that a high degree of
CIN would be observed. Using the genome instability index
(GII, defined as the fraction of the genome altered by
SCNAs, corrected by ploidy), we identified that the majority
of the tumors exhibited low instability (median of 9.5% per
tumor, Figure 2a,b), in contrast to previous findings of lung
adenocarcinoma (~48%).26 Given that WGD events are
associated with the propagation of CIN,10 we next examined
the WGD status of these indolent tumors. As expected, none
of the tumors exhibited WGD (Figure 2a), in contrast
with the information in a previous report (59% for lung

F I G U R E 3 Expression profiles. (a) Volcano plot of differentially expressed genes between tumors and adjacent normal tissues. (b) Gene ontology
(GO) analysis of genes with upregulated (red) and downregulated (blue) expression involved in biological processes. (c, d) Summary of gene set enrichment
analysis (GSEA) and plots of representative data. (e) Clustering heatmap of the estimated immune infiltrates. Each row represents the population of immune
cells. The intratumor heterogeneity of the estimated immune infiltrates and different regions for the same patient are connected with lines. (f) Abundance of
different immune cell types between tumors (red) and adjacent normal tissues (blue). (g) Comparison of pairwise genomic and immune distances between
every two tumor regions from the same patient
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adenocarcinoma and 55% for lung squamous cell carci-
noma).41 We further compared these T4N0M0 NSCLCs
with data from the TRACERx cohort with regard to differ-
ent aspects of genomic instability, including SCNA burden,
LOH, ploidy, and GII. We observed significantly lower
values in different dimensions in these tumors than those in
the TRACERx cohort (p < 0.05, Figure 2c). Furthermore, we
employed GISTIC 2.0 to identify statistically significant recur-
ring SCNAs between our cohort and patients with lymph node
metastasis in the TRACERx cohort (Figure 2d). We identified
37 significant regions in the indolent T4N0M0 tumors,
26 amplifications, and 11 deletions, of which 20 amplifications
and nine deletions were not identified in the TRACERx cohort
(e.g., 8p11.23), suggesting relative specificity for these T4N0M0
tumors (Figure S4A). Similar trends of amplification in
8p11.23 were also shown when adenocarcinomas and squa-
mous cell carcinomas are separate (Figures S4B,C). Of note,
converse CN changes between the two groups were observed
in 8p11.22, which had downregulated expression in T4N0M0
tumors but upregulated expression in the TRACERx cohort.
We further compared gene expression levels between tumors
and adjacent normal tissues encompassing 8p11.22 and
8p11.23 (Figure S5). The results indicated that the expression
patterns of ADAM32, TACC1, and C8orf4 were consistent with
chromosomal region deletions (8p11.22).

Upregulated cell division-related signals
and enriched G2/M checkpoint

In total, 1230 differentially expressed genes (DEGs) were iden-
tified between tumor regions and adjacent tissues, consisting
of 416 upregulated genes and 814 downregulated genes
(Figure 3a). The DEGs were annotated with gene ontology
terms based on biological processes (Figure 3b). Particularly,
genes associated with cell division-related signals, including
signals for cell division, sister chromatid cohesion, mitotic
nuclear division, DNA replication, and chromosome segrega-
tion, were highly expressed in tumor samples (Figure 3b). In
addition, genes associated with DNA repair and base-excision
repair had upregulated expression (Figure 3b). GSEA revealed
enrichment of the G2/M checkpoint and E2F-target signatures
(Figure 3c). Checkpoints occur at entry into mitosis (the
G2/M checkpoint), which provides time for DNA repair
through arrest or delay of cell cycle progression.42,43 Hence,
we speculated that vigorous mitotic activity may be a major
factor contributing to the large tumor volume. In this regard,
the DNA repair ability of these tumors remained at a relatively
high level via the G2/M checkpoint pathway. Enrichment in
the epithelial-to-mesenchymal transition pathway was not
observed in GSEA, which is consistent with the low metastatic
capability of these indolent tumors (Figure 3d).

F I G U R E 4 Tumor immune microenvironment profiling with fluorescent multiplex immunohistochemistry (mIHC). (a) Representative mIHC images of
P12, including adjacent normal tissue (P12-A) and three separate tumor regions (P12-T1, T2, and T3). (b) Quantitative radar plots of the positivity of six
markers in each patient, including Pan-CK, CD8, PD-1, FoxP3, Granz-B, and Ki-67. Adjacent normal tissue (red), T1 (green), T2 (dark blue), and T3 (light
blue). Data were transformed into log(1 + positivity), and the axes represent 0 to 2 from the inner to the outer ring
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Heterogeneity of tumor immune
microenvironment (TIME)

Next, we explored the TIME using expression data and mIHC
profiles. Using ssGSEA, we estimated the RNA-seq-derived
infiltrating immune cell composition of 32 tissue samples
(Figure 3e). Two distinct immune clusters corresponding to
higher and lower levels of immune infiltration, respectively,
were identified in the clustering analysis. Additionally, most of
the tumor samples had a similar level of immune infiltration
(e.g., P12 and P05). The low degree of TIME heterogeneity
was further confirmed by the mIHC profiles (Figure 4a).
Compared with adjacent normal tissue (red), different tumor
regions from same patient showed similar expression pattern
of immune markers (Figure 4b).

We further compared the abundance of different
immune cell types between tumors and adjacent normal tis-
sues. A significantly higher abundance of infiltrating Treg
and B cells and a lower abundance of mast cells and den-
dritic cells were observed in the tumor area (p < 0.01,
Figure 3f). Further comparison using other methods
(TIMER, CIBORSORT, MCPcounter, and others) confirmed
the higher abundance of B cells infiltrating the tumor tissue,
predominantly comprising naïve and memory B cell pheno-
types (Figure S6).

We also observed a significant correlation between the
two pairwise distance measures (Figure 3g, p < 0.0001),
supporting an interplay between immune and cancer
genomic landscapes and highlighting the distinct immune
microenvironments in tumor regions distant in genomic
space, in agreement with the results of the TRACERx
study.15

DISCUSSION

Growing evidence suggests that a subset of lung tumors,
including oligometastatic tumors, s-pM1a NSCLCs, and pul-
monary nodules with ground glass features may exhibit low
metastatic behavior in certain contexts. Owing to the diver-
sity in clinical contexts, establishing a standardized defini-
tion for indolent lung cancer has been challenging. In this
study, we enrolled eight patients with primary tumors
exceeding 7 cm in diameter but without regional lymph
nodes or distant organ metastasis (T4N0M0). Overall, our
multiomics integration analysis demonstrated that landscape
of genomic and immune microenvironment heterogeneity
of this subset of tumors. Moreover, we highlighted the fea-
tures of high ITH, low CIN and similar pattern of immune
infiltration.

Studies such as the PCAWG project have contributed to
the growing evidence supporting the role of CIN during
tumor invasion and metastasis. A large pan-cancer analysis
on CIN by Watkins et al. revealed that most recurrent
arm-level SCNA events were enriched in metastatic samples,
which contributed to the metastatic potential of the tumor.10

For example, two loss regions (17p13.3–q11.2 and 19p13.3)

were significantly enriched in lung adenocarcinoma metastases,
which may have been associated with their metastatic poten-
tial.10 This evidence was supported by another largescale whole-
genome study which profiled data from 2520 metastatic tumors.
Based on a comparison with primary tumors in the PCAWG
project, the authors concluded that there were no fundamental
genomic differences between metastatic tumors and primary
tumors in terms of the mutational landscape or genes driving
advanced tumorigenesis. However, several CIN-related genomic
features were enriched in metastatic tumors. WGD affected
56% of all metastatic cancers, and an average of 23% of the
autosomal DNA exhibited LOH. Furthermore, up to 80% of
tumor-suppressor genes were inactivated biallelically. These
findings support the relationship between CIN and the meta-
static ability of tumors. Similar findings were noted in our
study: the degree of CIN in T4N0M0 tumors was significantly
lower than that in the TRACERx data, including WGD, ploidy,
LOH, and GII.

Notably, an extremely high degree of ITH was observed
in these T4N0M0 NSCLCs, with 35.2% of SNV/indels and
91.1% of SCNAs were identified as subclonal events. This
could be partly due to the low proportion of tumor cells in
the tumor bed of these large tumors as calculated by
ABSOLUTE and ESTIMATE. Furthermore, the mIHC
staining confirmed the relatively low positive rate of Pan-
CK (Figure S7). This bias may also interfere with small
sample size or the clone structure algorithm that we used.
Moreover, CIN is presently thought of as a major driver of
ITH,7 but it exhibits the opposite trend between CIN and
ITH in these T4N0M0 tumors. The reason for this paradox
is unclear. Nevertheless, we can speculate that the meta-
static or invasive capability of these T4N0M0 tumors is
not related to their high degree of ITH but rather the
low CIN.

Intratumoral heterogeneity of TIME in lung cancer has
been explored in previous studies. The ITH of programmed
death-ligand 1 (PD-L1) expression level has been observed
in previous studies.44–46 Jia et al. also used multiomics analy-
sis for different tumor regions in 15 NSCLC patients and
showed the heterogeneous features of immune niches within
NSCLC tumors, so called “immunologically hot area” and
“immunologically cold area.”33 In our study, we observed a
similar pattern of immune infiltration of these T4N0M0
tumors. However, the effect of TIME heterogeneity on the
efficacy of immune checkpoint inhibitor requires further
exploration.

There were two patients relapsed until December 2021.
We further compared the ITH, CIN and TIME features
between patients who relapsed and who did not. Despite
limitation in sample size, no significant differences were
seen on ITH and CIN features, including subclonal ratio of
SNVs/indels, SCNAs burden, LOH, ploidy and GII. How-
ever, the CD4+ and CD8+ T cells appear to be more preva-
lent in the tumor area from patients who did not relapse
(Figures S8A–C). Moreover, there were not significantly
different when we compared the adenocarcinoma and
squamous cell carcinoma (Figure S8D).
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Our study had two major limitations. First, the sample
size was small; as neoadjuvant therapy is one of the optimal
options for stage IIIA NSCLCs, sample collection for
untreated T4N0M0 NSCLCs is made more difficult. Second,
a valid control group was missing in our study. Although a
comparison with the TRACERx cohort was performed in
our analysis, the potential presence of confounding factors
cannot be ruled out.

In conclusion, we investigated the ITH, CIN and TIME
of a specific cohort of NSCLCs in this study. The low degree
of CIN may be related to the low metastatic capability of
T4N0M0 lung tumors. Further studies are required to
expand upon and verify our results.
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