
E X P E R I M E N T A L  STUDIES IN  ACUTE RENAL FAILURE 
II.  FINE STRUCTURE CHANGES IN TUBULES ASSOCIATED WITH RENAL FAILURE 

INDUCED BY GLOBIN* 

BY MAX G. MENEFEE, M.D., C. BARBER MUELLER, M.D., TRACY B. 
MILLER,$ PH.D., JOSEPH K. MYERS, M.D., AND ALLEN L. BELL 

(From the Departments of Anatomy, Surgery, and Pharmacology, State University of 
New York, Upstate Medical Center, Syracuse) 

PLATES 117 TO 127 

(Received for publication, February 4, 1964) 

An association between hemolytic disease, acute renal insufficiency, and 
hemoglobin casts in kidney tubules was first recognized by Yorke and Nauss in 
1911 (1). Baker and Dodds (2) reported the first experimental work on obstruc- 
tion of renal tubules by hemoglobin casts and observed that rabbits with 
alkaline urine did not form casts whereas those with acid urine did so. They 
postulated that the renal lesion resulting from transfusion reactions was based 
on the formation of intratubular casts with resulting obstruction. DeGowin, 
Osterhagen, and Andersch (3) also concluded that  the renal lesion of transfusion 
reactions in man was based on tubular obstruction by hemoglobin casts. Dunn, 
Gillespie, and Niven (4) described the histopathology of kidneys from persons 
sustaining crushing injuries and noted that these lesions were characterized by 
tubular casts confined to the lower portions of the nephron. They also observed 
that  a toxic reaction appeared to occur in the cells near the casts of involved 
tubules. Bywaters et al. (5) studied casualties who had sustained crushing 
injuries and found that myoglobin was present in the urine and that pigment 
casts were in the kidney tubules. This observation led Bywaters and Stead (6) 
to study the effect of injected myohemoglobin in normal and acidotic rabbits. 
They obtained no lesions in normal rabbits but found characteristic cast 
formation and oliguria in acidotic animals. 

The similarity of lesions resulting from several different conditions, e.g. massive 
tissue destroying injuries, blackwater fever, transfusion reaction, and injection of 
hemoglobin or related compounds, led Luck~ (7) to propose the term "lower nephron 
nephrosis" as being descriptive of the renal lesion resulting from these several causes. 
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Other authors (4, 8) have applied the name "crush syndrome" to the same lesion, 
with the obvious implication that the etiology is restricted to crushing injuries. Still 
other workers have called the same syndrome by several different names such as: 
shock kidney, acute tubular necrosis, or hemoglobinuric nephrosis (9). 

Some workers have observed that dehydration and acidosis without any other 
manipulation resulted in transient tubular damage, and they therefore proposed that 
antecedent damage was necessary for the production of lower nephron nephrosis 
(10--13). Acidosis as a factor predisposing to cast formation in the dog has been denied 
by Flink (14), who showed that equal damage results from hemoglobin injection 
whether the urine is acid or alkaline. Kidney ischemia has been considered of major 
importance in acute kidney failure by some (15-17) although it has been adequately 
demonstrated by others that acute renal failure can develop without any diminution 
in renal blood flow (18, 19). Meroney and Rubini (20) presented a theory of the de- 
velopment of lower nephron nephrosis based on their clinical studies as well as the 
observations of previous investigators. They consider that the lumens of collecting 
tubules, distal tubules, and ascending loops of Henle are plugged by precipitated pro- 
tein and cell debris and that these plugs are held firmly in place by edema. The result 
of the tubular obstruction is oliguria or anuria. When the edema diminishes and the 
plugs of debris are released, diuresis results. This theory was extended by Parry, 
Schaeffer, and Mueller (21) who demonstrated that in experimental animals the 
tubular casts were much more extensive in animals which had a low rate of urine flow 
than in animals which had a high rate of urine flow induced by an osmotic diuretic, 
and that the mortality and morbidity were reduced in animals with high urine flow. 

Human globin injected into rats to produce the typical renal failure lesion 
was first carried out by Mason et al. (22). The present work was undertaken to 
s tudy further the role of globin in casting light on the etiology of "lower nephron 
nephrosis." Globin is a component of all the compounds previously implicated 
in the production of this syndrome; e.g., hemoglobin, myoglobin, methemo- 
globin. Specific reference has been made by others to an apparent toxic reaction 
by tubule cells associated with development of the lesion (4, 19). Our present 
report confirms that  there is an early, toxic effect on the ceils of the lower 
nephron when globin is present in the tubules in any appreciable concentration. 
We present herewith the fine structure changes occurring in the early, acute 
phase of development of lower nephron nephrosis induced by the intravenous 
administration of globin in the rat. 

Materials and Methods 

Female Sprague-Dawley rats weighing 110 to 160 gm were used in these experiments. Purified 
human globin (23) was injected intravenously in the amount of 0.75 gm per kg of body weight 
into the saphenous vein of rats treated in one of the following five ways. 

1. Dehydrated.--This is our standard model and groups of 6 to 10 of these animals were used 
to accompany each of the other four groups and serve as references. These rats had commer- 
cial rat chow and water available at all times until 24 hours prior to injection at which time 
both food and water were removed and not made available again until 4 hours after injection 
of globin. 
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2. Water Ad Libitum.--Free access to commercial rat chow and water at all times. Fourteen 
of these animals were used. 

3. Water-Loaded.--Water was given by stomach tube to the amount of 5 per cent of body 
weight on the morning of the experiment and again 3 hours later. Forty minutes after the second 
water load, globin was injected. Twenty-one of these animals were used. 

4. Water-Loaded Plus Antidiuretic Hormone.--These were treated as the water-loaded group 
above and in addition 0.2 unit of pitressin was given subcutaneously 1 hour before the second 
water load. Twenty-one of these animals were used. 

5. Dehydrated Plus Mannitol.--These animals were dehydrated as above and were given 
0.8 gin of mannitol per kg of body weight 10 minutes before injecting the globin. Fifteen of these 
animals were used. 

Following the globin injection all animals were placed in metabolic cages and fluid intake 
and output were measured daily until death or the end of the acute phase of the disease at 7 

TABLE I 

Clinical Characteristics of Acute Renal Failure 

Mortality . . . . . . . . . . . . . . . .  
Reversibility . . . . . . . . . . . . . .  
Oliguria . . . . . . . . . . . . . . . . . .  

Low urinary osmolality . . . . .  
Azotemia . . . . . . . . . . . . . . . . . .  

Hyperkalemia . . . . . . . . . . . . . .  

Hyponatremia . . . . . . . . . . . . .  

Acidosis . . . . . . . . . . . . . . . . . . .  

Experimental disease 

20 to 50 per cent 
Reversible 
Short duration (less than 

24 hrs.) 
300 to 500 mOs~/Kg H20 
BUN = 100 to 300 mg 

per cent 
Serum K + = 6 to 10 

mEq/liter 
Not present 

Present 

Human disease 

40 to 60 per cent 
Reversible 
Usually 2 to 5 days 

300 to 500 mOs~/Kg H20 
BUN = 100 to 300 mg per cent 

Serum K + elevated 

If present is secondary to over- 
hydration 

Present 

TABLE II 

Urine Flow at the Time of GloMn Injection Related to Disease Severity after 
Different Pretreatments 

Dehydration 
Nater load plus ADH. 
/Vater ad libitum. 
?Cater load 
~annitol 

Urine flow 

Low 
Low 
Normal 
High 
High 

Disease severity 

+ + +  
+ + +  
+ + +  
+ +  
+ 

Mortality 

2O 
48 
29 
0 
0 

days. Urine and plasma osmolality were measured in a Fiske osmometer and sodium and po- 
tassium were measured in a Coleman flame photometer. 

The clinical characteristics of the experimental disease are compared to the human in Table 
I. A comparison of urine flow and disease severity after globin injection in the five groups 
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of animals is given in Table II. Histological observations by light and electron microscopy 
were made on animals from three groups: dehydrated, water ad libitura, and dehydrated 
plus manitol. Light microscopy revealed that the protective effect of mannitol 
was associated with fewer damaged tubules in that group than in the dehydrated water or 
water ad libitum groups (24). Electron microscopy demonstrated that when the tubules 
were damaged to any degree there was no difference in the type of damage in any of the groups. 
For this reason the observations reported here are based on lesions of the dehydrated animals. 
Tissues were taken at the same time intervals and with the same treatment as described in the 
first paper of this series (23). 

O B S E R V A ~ O N S  

One minute after injecting the globin solution, spherical aggregates of the 
same type as those seen in the glomerulus associated with globin transport are 
seen in the proximal tubules (Fig. 7) in addition to a granular electron-opaque 
material (Figs. 7 and 7 a) and a diffuse electron-opaque material (Figs. 9 and 
9 a) which may represent previously dissolved globin which did not aggregate 
before reaching the position in which it was fixed (Figs. 7, 9, and 10). Within 
5 minutes after injection a granular density is seen in the distal tubule lumens, 
and it is assumed that this is also globin (Fig. 14). The demonstration that the 
lumen contents are globin is made by autoradiography (Figs. 1 and 2). 

The diffuse globin in the proximal tubule fills the lumen uniformly and ex- 
tends between the microvilli. At the base of the microvilli, pinocytotic vesicles 
are seen in various stages of extension into the cytoplasm (Figs. 7, 9, and 10). 
At 10 minutes after injection, larger aggregates are seen deeper in the cyto- 
plasm but the majority are still on the lumen side of the cells (Fig. 8). All of 
this intracellular globin is surrounded by membranes; some membranes are 
closely applied to the aggregates while other aggregates are free within what 
appears to be an extensive membrane-limited system of cytoplasmic channels 
(Figs. 9, 11, and 12). The cytoplasmic membranes surrounding the globin do 
not have any associated granules. There is occasional close relationship between 
the channel system and the Golgi apparatus, but no continuity between them 
has been seen. The globin density is not seen between the proximal tubule cells 
but is seen to extend on the lumen side to the region of the tight junction (Figs. 
9 and 10) in a manner similar to that described for hemoglobin (25, 26). More 
globin appears on the basal side of the proximal tubule cells with the passage 
of time and it is eventually seen in the connective tissue space on the basal side 
of the tubules (Figs. 12 and 13). 

The cells of the thick limb of Henle's loop and distal convoluted tubule (for 
convenience, we shall call these two components the lower nephron) apparently 
take up the globin by pinocytosis (Figs. 15 and 16). The large number of mem- 
brane-bounded vesicles typical of the proximal tubule is not found within the 
cells of the lower nephron, however. Various stages of degeneration of the lower 
nephron cells associated with the presence of more than a minimal amount of 
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intracellular globin are seen in Figs. 19 to 22. In many places a single cell is 
found to have taken up globin and subsequently degenerated in position with 
little apparent damage to the adjacent cells (Fig. 19). With the passage of time, 
more and more of the lower nephron cells become involved in the toxic reaction 
so that as early as 1 ~  hours many entire tubules are devoid of living ceils and 
the confines of the basement membrane are seen to be filled with cell debris 
and globin (Figs. 21 and 22). I t  is still not certain if globin is transported by 
the lower nephron cells in any manner similar to that of the proximal tubule 
cells. Some globin is occasionally observed in the connective tissue space ad- 
jacent to portions of the lower nephrons, but no correlation between time and 
location with respect to the lumen can be made in this segment as it can in the 
proximal tubule. 

The mechanism of toxic effect on the lower nephron cells has not been as- 
certained as yet, although some pertinent observations may be made. The 
large aggregates of globin appearing in the tubule lumens are not found to be 
taken up by the cells. Pinocytotic uptake of small quantities of globin appears 
to be the means by which entry into the cell is obtained. In the early stages of 
uptake, globin is not found free in the cytoplasm. In cells which are beginning 
to degenerate, there are many small intracytoplasmic globin aggregates without 
surrounding membranes (Figs. 19 and 20). I t  is not obvious if the membranes 
break down first and release globin into the cytoplasm or if the membranes are 
lost as a correlate of the degenerative process. Another impressive but non- 
specific, degenerative reaction by the lower nephron cells is the formation of 
many myelin figures (Figs. 20 and 22). 

Mitochondria are involved in globin uptake to a considerable extent in both 
the proximal and distal portions of the nephron. Autoradiographs following 
injection of tritium-labeled globin frequently show evidence of radioactivity in 
mitochondria (Figs. 4 and 5). Mitochondria in various stages of degeneration 
are seen to contain dense material resembling globin (Figs. 5, 17, and 20), and 
some of the involved mitochondria in more advanced stages of degeneration 
approach the appearance of cytolysomes (27, 28) (Figs. 6 and 18). 

At the time when lumens of the lower nephrons are beginning to be filled 
with protein precipitate and cell debris, the proximal tubules begin to show 
dilatation and in some instances even disruption by tearing of the cell mem- 
branes (Fig. 24). Tearing apart of the proximal tubule cells occurs at some point 
other than the terminal bar and can be distinguished from basal compartment 
swelling resulting from fixation with hypertonic fixative (29). 

Six hours after globin injection, when the proximal tubules are dilating, 
there is very little globin remaining within either the lumen or cells of the proxi- 
mal tubules (Fig. 23). This suggests that, in distinction to the lower nephron, 
any destruction of these proximal tubule cells results from pressure necrosis or 
actual disruption by tearing rather than from the toxic effect of globin. 
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DISCUSSION 

Within 1 minute after intravenous injection of purified human globin into 
rats it has passed the glomerular barrier (23) and appeared within the lumens 
of proximal tubules. The base of the microvilli appears to be the site of uptake 
of globin just as it is for hemoglobin (25). The globin appears in at least three 
forms in the proximal tubule lumens: (a) dense, spherical droplets; (b) fine 
granular; and (c) homogeneous dense material filling all the available space. 
The granular and homogeneous forms of globin are found within small pino- 
cytotic vesicles or channels leading from between the bases of the microvilli, 
but no indication of uptake of the large aggregates has been observed. The small 
vesicles which originate at the base of the brush border appear to pinch off 
and coalesce with others of the same type, thus forming larger vacuoles within 
the tubule cells. After a lapse of time the globin is seen on the basal side of the 
tubule cells. This fact suggests that there is an oriented path of migration from 
the lumen to the basal side, since the reverse sequence is not seen. 

A system of channels leads at least part way through the cell and globin is 
found within the profiles of this system. There are no granules associated with 
the membranes of these channels so it is not part of the ergastoplasm. This 
channel system might best be termed "microlabyrinth" in the sense with which 
that term was used by Dempsey (30). A Golgi body is sometimes seen in close 
relationship to the elements of this microlabyrinth but the significance of the 
relationship was not ascertained in our present study. With the close packing 
of organelles within the proximal tubule cell, many other structures such as 
mitochondria, infolded cell membranes, and ergastoplasm are also in close 
relationship with the channels but are not necessarily functionally or struc- 
turally connected to them. 

After traversing the proximal tubule cells, globin is next seen within the 
tubular basement membranes and in the connective tissue spaces around the 
tubules. Large accumulations of globin are not seen in the peritubular spaces 
and therefore the globin must be carried away, probably by the peritubular 
capillaries. Globin is not extruded between the tubule cells and does not enter 
the space between tubule cells from the lumen so that when it is absorbed the 
only pathway available for it is through the cell. 

Much of the globin passing the glomerular barrier also traverses the proximal 
tubule lumen without being resorbed, and within 5 minutes after injection 
globin is found in the lumen of the distal tubule. I t  appears that globin has a 
toxic effect on cells of the lower nephron while other cells of the nephron are 
relatively unaffected by it. Fairly large quantities of globin can be taken up 
by the proximal tubule cells without identifiable damage, but whenever a 
lower nephron cell contains more than a small amount of globin it manifests 
obvious degenerative changes (compare Figs. 8, 9, and 12 with Figs. 19 to 22). 
The degenerative changes in the distal tubule do not appear to be specific, 
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e.g. the myelin figures are also found in such conditions as uranium poisoning 
(31), but the combination of degenerating cell components with intermixed 
globin droplets is pathognomic. 

Mitochondria are involved with globin absorption in both proximal and 
distal tubule cells. This fact is demonstrated by autoradiography and by the 
presence of mitochondria which contain unusual accumulations of material 
having density and texture like that of globin. All stages of transition ranging 
from mitochondria with scant globin inclusion to structures which are mor- 
phologically indistinguishable from cytolysomes (27, 28, 32) are found during 
globin absorption in kidney tubules and in cells of other tissues as well (un- 
published data). It appears that cytolysomes may arise directly from mito- 
chondria by the incorporation of foreign protein in addition to the accidental 
inclusion of mitochondria within a region of cytoplasmic degeneration. Pre- 
vious evidence for the participation of mitochondria in protein resorption by 
kidney tubule cells has been obtained by histochemical methods (33-35) and 
by electron microscopy (36, 37) although some investigators have noted a 
failure to find such evidence (25, 38). 

The role of mitochondria in globin metabolism may be accidental in the 
tubule cells. The major portion of intracellular globin in the proximal tubules 
is found within vacuoles and cytoplasmic channels, and it is discharged from 
the cells on the basal side without apparent change. It is possible that a small 
quantity of globin escapes from the enveloping membranes and is taken up 
by the mitochondria for subsequent digestion while that portion which does 
not leave the vacuole is unaffected by the cell. Another possible, but less likely, 
explanation is that some of the globin is taken up by pinocytosis while a smaller 
amount is absorbed directly through the membrane and that it is only the 
globin entering directly by the latter route which is subsequently taken up by 
mitochondria. Mitochondria of the lower nephron become involved with 
globin in the same way and with roughly the same frequency as those of the 
proximal tubule so it would appear that globin exerts its toxic effect on some 
component of the lower nephron cells other than mitochondria. 

Mter sufficient destruction of lower nephron cells has occurred, at about 2 
hours' postinjection, the entire lumen of the most affected tubules becomes 
plugged with cell debris and globin. Dilated proximal tubules are first seen at 
the time of plugging of the distal tubules. These observations are consistent 
with those of others who produced lesions with hemoglobin (3, 10-14, 39, 40). 
Wichstein and Lange (41) induced proteinuria in the rat by two different 
methods and found a direct correlation between the number of distal tubule 
casts and the amount of renal damage. 

Some of the proximal tubules in our experiments are seen to be disrupted by 
the pulling apart of originally adjacent cells and tearing which occurs in the 
part of the cells nearest the lumen. Separation of cells by disruption of des- 
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mosomes is never seen; the tear is always at some other point. We conclude 
that in these cells a critical pressure has been exceeded and that the cells are 
unable to flatten beyond a certain limit because of the cytoplasmic structure 
at the base of the brush border which appears analogous to the terminal web of 
the intestine at the base of the microvilli (42). 

Our observations support the concept of intratubular obstruction and con- 
comitant toxic cellular damage as the primary etiology of acute lower nephron 
nephrosis. Meroney and Rubini (20) presented a detailed theory of acute 
kidney failure in tubular necrosis which involved the concept of plugging of 
tubules with debris and accompanying tissue edema. If all of the tubules are 
plugged, according to this theory, anuria results; if some of the tubules are 
plugged but some are still patent, oliguria results. The theory further states 
that when the edema decreases, and the plugs of debris come out, diuresis re- 
sults. Conn, Wilds, and Helwig (18) have demonstrated that anuria can occur 
without any decrease in perfusion flow of blood in the kidney. This fact is ex- 
plainable on the basis of nephron plugging without having to invoke a concept 
of shunting of blood to bypass the glomerulus. Goldberg (19) has added evi- 
dence to the concept of nephron plugging in an elegant experiment using he- 
molyzed erythrocytes and determinations of blood flow with krypton plus 
measurements of various clearance factors. He observed an acute decrease in 
urine flow, creatinine clearance, and hippuran clearance, but no decrease in 
renal blood flow. Tubular casts were formed as the lesion developed. His con- 
clusions were, "The changes appear to be secondary to intratubular obstruction 
and concomitant toxic tubular damage." Our observations on the course of 
events in the animals given globin are in complete agreement with those of 
Goldberg. I t  is of interest that we arrived at the concept of toxic reaction of the 
lower nephron cells on the basis of their fine structure cytopathology inde- 
pendently of the physiological and biochemical basis upon which Goldberg 
based his conclusions. 

Our concept of the development of acute renal failure associated with con- 
ditions which release products containing globin, i.e. hemoglobin, myoglobin, 
methemoglobin, and globin itself, is as follows: Globin and any associated 
compound is transported through the glomerular wall (23) and is carried 
through the lumen of the nephron by the moving stream of glomerular fluid. 
Some of the material is resorbed by the proximal tubule but much is not, and 
the proximal tubule cells are not adversely affected by the resorption process. 
In the lower portions of the nephron, material is also taken up by the tubule 
cells. If the animal has been deprived of water, relatively more globin-associated 
material is taken up than in the normal animal, and some moderate amount of 
globin is toxic to the cells of the lower segments of the nephron. The resulting 
debris from dying and disintegrating tubule cells plus the globin in the lumen 
combine to form plugs in the collecting tubules, distal tubules, and ascending 
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loops of Henle. These plugs then effectively stop urine flow in the affected 
nephrons and create back pressure which causes the proximal tubules to undergo 
dilatation, pressure necrosis, or disruption. The animal will become oliguric 
when sufficient nephrons are plugged or anuric if still more are plugged. Further 
support is added to this concept by the observation that fewer nephrons are 
plugged or damaged in animals which have a high urine flow rate and thus 
have reduced transit time and possibly a lower concentration of toxic material 
in the urine (43). Either of these conditions results in a decreased uptake by the 
tubule cells and thus the amount of toxic material in any lower nephron cell 
would be more likely to remain below the threshold required to produce damage. 

The protective effect of the high urine flow rate is independent of its cause, 
whether by water loading or solute diuresis. Conversely, more damage is caused 
in those animals with an original low rate of urine flow, and this is also inde- 
pendent of the cause. Equal damage is produced in water-loaded animals 
which have received antidiuretic hormone and animals which are dehydrated 
because of restricted intake (44). The differences that do occur are in the 
number of involved nephrons rather than in a different degree of damage to 
any one nephron. 

SUMMARy 

When purified human globin is injected intravenously into rats it produces 
acute renal failure characterized by tubular casts and oliguria. The globin is 
identifiable within vesicles and channels in the cytoplasm of the proximal 
tubules, through which it passes from lumen to basal side with no apparent 
serious effect on the cells. When a very minimal amount of globin is taken up 
by cells of the distal limb of Henle's loop or distal tubules (lower nephron), a 
markedly deleterious effect is apparent and the cells die within a short time. 
The mixture of cell debris and precipitated globin forms plugs within the con- 
fines of the basement membranes of the former distal limbs and distal tubules. 
After a number of lower nephrons are plugged a disruption of proximal tubules 
is found, which apparently results from the effect of back pressure in the ob- 
structed nephrons. 

We suggest that any amount in excess of a low threshold of globin, either 
alone or combined with heme or related material, has a toxic effect on lower 
nephron cells. Once initiated, the toxic effect is not reversible and the resulting 
plug of debris and precipitate will occlude the lumen. If a sufficient number of 
nephrons are made non-functional the animal becomes anuric; otherwise it is 
oliguric. A high rate of urine flow will protect against the excess absorption of 
material and thus against acute renal failure. 
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EXPLANATION OF PLATES 

PLATE t 17 

FIG. 1. Proximal tubules of rat injected 2 hours before fixation with radioactive 
globin. Stained with hematoxylin and chromatrope. Emulsion exposed for 81 days. 
The radioactivity is scattered throughout the proximal tubule cells. Oil immersion. 
X 1000. 

FIG. 2. Light micrograph of distal tubules and ascending loop of Henle. Treatment 
as in Fig. 1. The lumens are filled with precipitated globin whose radioactivity results 
in many exposed silver grains. X 600. 
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PLATE 118 

FIGS. 3 to 6. Electron microscopic autoradiographs of rat kidney fixed 2 hours after 
injection of radioactive globin. 

FIG. 3. Portion of a proximal tubule showing globin completely filling a membrane- 
bounded vesicle, l and partially filling an irregular vesicle, 2. × 23,000. 

FIG. 4. Aggregate of globin filling the lumen of a distal tubule with considerable 
radicactivity in evidence. A few globin droplets are in the cytoplasm, and a mitochon- 
drion (arrow) has a grain associated with it. X 3000. 

FIG. 5. Mitochondrion manifesting radioactivity in a proximal tubule. × 23,000. 
FIG. 6. Several aggregates of globin showing radioactivity in the proximal tubule. 

× 14,000. 
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PLATE 119 

FIG. 7. Portion of proximal tubule and lumen 5 minutes after injecting globin intra- 
venously. A large dense globin aggregate (g) and a less dense granular density are 
present in the lumen and the density extends between the microvilli and into exten- 
sions leading into the cytoplasm. The difference in appearance between globin droplets 
and lipid is illustrated in Fig. 12. × 16,000. 

FIo. 7 a. Autoradiograph showing granular precipitate in the lumen similar to that 
of Fig. 7. An exposed photographic grain is seen near the granular material within an 
expansion at the base of the brush border. X 11,000. 

FIG. 8. Proximal tubule 10 minutes after globin injection. The globin contained 
within cytoplasmic vesicles is mostly on the lumen side of the cells. The basement 
membrane is on the right. X 8000. 
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PLATE 120 

FIG. 9. Proximal tubule 10 minutes after globin injection. An aggregate of globin is 
seen within a closely applied membrane at g. To the left of that aggregate is another 
membrane-bounded vesicle with a relatively small amount of globin. Also present are 
other profiles of vesicles located at the base of the microvilli. X 12,000. 

FIO. 9 a. Autoradiograph of an area showing diffuse density between microvilli and 
at their base similar to that of Fig. 9. Two photographic grains are seen over the 
brush border suggesting that the diffuse density is actually globin. X 12,000. 

FIG. 10. Base of microvilli in the region of the tight junction (arrow) between two 
proximal tubule cells on the lumen side. The density within the lumen between the 
microvilli is seen to extend to their base and into dilatations in two places. I t  is also 
seen to extend as far as the region of the seal but  no further between cells. × 54,000. 
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PLA~E 121 

FIG. 11. Proximal tubule 30 minutes after globin injection. Globin is seen within 
what appears to be sections of a system of channels. At 1 the membrane is closely 
applied to the globin and at 2 the globin aggregate is within a section of irregular out- 
line and does not fill the enclosed space. The membranes enclosing globin do not have 
associated granules although other granular membranes are present within the cell (e). 
The Golgi apparatus (G) is seen in close relation to a part of the membrane system 
within which globin is enclosed. X 14,000. 

FIG. 12. Base of proximal tubule 30 minutes after globin injection. Globin within a 
closely applied membrane is seen at 1 and within an irregular membrane at 2. The 
difference between the appearance of lipid (F) and globin in these preparations is 
apparent. The lipid is generally electron-opaque and tends to compress in cutting, 
whereas the globin is homogeneous, less electron-opaque, and does not compress as 
easily. X 9000. 
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PLATE 122 

FIG. 13. Proximal tubules 30 minutes after globin injection. Globiu is contained 
within the cells (g) and may be contrasted to lipid (F) in the same cell. Some globin 
is also seen within the tubular basement membranes (arrows). A capillary is in the 
]ower center of the micrograph and it seems unlikely that the globin in the basement 
membrane at the left would have come from that capillary because of the intervening 
nucleus and fibroblast process. The globin does not accumulate in the extracellular 
areas. X 13,000. 
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PLATE 123 

FIG. 14. Distal tubule 5 minutes after injecting globin. The lumen is filled with pre- 
cipitate, presumably globin. × 5000. 

FI~. 15. Lumen side of distal tubule 10 minutes after injection of globin. The lumen 
is filled with globin. Even the small number of pinocytotic vesicles containing globin 
in this micrograph is unusual for the distal tubule. × 34,000. 
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PLATE 124 

FIO. 16. Distal tubule 25 minutes after globin injection. A few pinocytotic vesicles 
are present on the lumen side (arrows) and an occasional globin aggregate is seen 
within the cytoplasm. A lamellar body probably derived from a mitochondrion, is at 
L. X 22,000. 

Fio. 17. Mitochondrion of a distal tubule cell 25 minutes after globin injection. I t  
has taken up a considerable amount of globin. At one p,~fint (arrow) globin is seen 
between the outer and inner membranes. × 40,000. 

FIo. 18. Distal tubule 1 hour after globin injection. Both normal and pathological 
mitochondria are present. Globin aggregates are seen both within and without mito- 
chondria. × 22,000. 
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PLATE 125 

FIC. 19. Thick loop of Henle 3 hours after globin injection. One cell has taken up a 
considerable quantity of globin and is degenerating. Large globin aggregates are in the 
lumen (g) but the intracellular globin is all in small clumps. The other cells of the 
tubule do not appear to be affected. X 8000. 

FIG. 20. Distal tubule 3 hours after globin injection. Aggregated globin (g) is in the 
tubule lumen. Just outside the lumen is a layer of cells which are degenerating with 
many myelin figures, small clumps of globin, and degenerating mitochondria. Next to 
the basement membrane is a layer of cells without any contained globin and apparently 
intact. The mitochondria (m) of the basal cells are much smaller and denser than those 
of the degenerating layer of cells. × 6000. 
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PLATE 126 

Fro. 21. Distal tubule 1~  hours after globin injection. The intact basement mem- 
brane encloses a mass of degenerating cells and globin, although some remnant of cell 
structure is still present. X 6000, 

FIG. 22. Distal tubule 6 hours after globin injection. The basement membrane (ar- 
row) is still intact in many places but  has begun to break up in others. The former 
tubule is now a mass of cell debris and globin. X 9000, 
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FIG. 23. Proximal tubule 3 hours after globin injection. No globin remains in the 
lumen and very little is within the cells. × 6000. 

FIG. 24. Proximal tubule 3 hours after globin injection. The cells are pulling apart 
and tearing. The points of attachment at the seal or at desmosomes do not pull apart 
but rather the cell tears somewhere near these. At other places the interdigitations 
are seen to simply slide apart. This is presumably because of increased intraluminal 
pressure caused by blockage in the lower nephron which would increase pressure in the 
proximal tubule. × 4000. 
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