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Abstract

Organic hydroperoxide resistance (Ohr) enzymes are highly efficient Cys-based peroxi-

dases that play central roles in bacterial response to fatty acid hydroperoxides and peroxyni-

trite, two oxidants that are generated during host-pathogen interactions. In the active site of

Ohr proteins, the conserved Arg (Arg19 in Ohr from Xylella fastidiosa) and Glu (Glu51 in

Ohr from Xylella fastidiosa) residues, among other factors, are involved in the extremely

high reactivity of the peroxidatic Cys (Cp) toward hydroperoxides. In the closed state, the

thiolate of Cp is in close proximity to the guanidinium group of Arg19. Ohr enzymes can also

assume an open state, where the loop containing the catalytic Arg is far away from Cp and

Glu51. Here, we aimed to gain insights into the putative structural switches of the Ohr cata-

lytic cycle. First, we describe the crystal structure of Ohr from Xylella fastidiosa (XfOhr) in

the open state that, together with the previously described XfOhr structure in the closed

state, may represent two snapshots along the coordinate of the enzyme-catalyzed reaction.

These two structures were used for the experimental validation of molecular dynamics (MD)

simulations. MD simulations employing distinct protonation states and in silico mutagenesis

indicated that the polar interactions of Arg19 with Glu51 and Cp contributed to the stabiliza-

tion of XfOhr in the closed state. Indeed, Cp oxidation to the disulfide state facilitated the

switching of the Arg19 loop from the closed to the open state. In addition to the Arg19 loop,

other portions of XfOhr displayed high mobility, such as a loop rich in Gly residues. In sum-

mary, we obtained a high correlation between crystallographic data, MD simulations and

biochemical/enzymatic assays. The dynamics of the Ohr enzymes are unique among the

Cys-based peroxidases, in which the active site Arg undergoes structural switches through-

out the catalytic cycle, while Cp remains relatively static.
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Introduction

Oxidants such as fatty acid hydroperoxides are signaling molecules involved in host-pathogen

interactions, and therefore, their levels are strictly controlled by peroxidases and other mecha-

nisms [1–4]. Ohr (Organic hydroperoxide resistance) proteins are Cys-based, dithiol-depen-

dent peroxidases that display unique biochemical and structural properties [5,6]. Ohr enzymes

play central roles in the bacterial response to peroxynitrite and fatty acid hydroperoxides, two

oxidants involved in host–pathogen interactions [1]. These enzymes are found in bacteria and

fungi, and they are absent in their hosts (plants and animals) [7], making them promising tar-

gets for drug discovery. Some examples of pathogenic bacteria that express Ohr proteins are

Pseudomonas aeruginosa, Vibrio cholerae and Xyllela fastidiosa [7]. Xylella fastidiosa is a plant

pathogen with agronomic interest, causing disease in citrus, grapes and olives [8].

Ohr protein was first identified in Xanthomonas campestris pv. phaseoli due to its involve-

ment in the bacterial response to organic hydroperoxides, but it is not involved in the H2O2

response [9]. This unusual organic hydroperoxide resistance phenotype is related to the ability

of Ohr enzymes to reduce organic hydroperoxides with higher efficiency than H2O2 [5,6,10].

Ohr, Prxs (peroxiredoxins) and Gpx (GSH peroxidases) are all Cys-based, thiol-dependent

peroxidases; however, Ohr and Prx/Gpx enzymes belong to distinct families, as their biochem-

ical/enzymatic properties and structures are distinct [6, 11]. Instead, Ohr proteins share struc-

tural and amino acid sequence similarities with OsmC proteins, which were initially related to

the bacterial response to osmotic stress [12]. Later, it was demonstrated that OsmC enzymes

are also endowed with thiol peroxidase activity [13,14]. Therefore, Ohr/OsmC is a family of

Cys-based proteins that also comprise proteins (such as YhfA from Escherichia coli) whose bio-

chemical activity is still unknown [7,12,14].

Proteins belonging to the Ohr/OsmC family display a barrel-like structure formed by a

tightly folded homodimer, in which two six-stranded β-sheets wrap around two central α-heli-

ces [6,11,15]. The two active sites are located at the dimer interface on opposite sides of the

protein, and the reactive Cys, also called the peroxidatic Cys (Cp, Cys61 in Ohr from Xylella
fastidiosa—XfOhr), is located in one of the central α-helices. Cp and two other residues (Arg19

and Glu51 in XfOhr) constitute the catalytic triad. The involvement of catalytic Arg in the abil-

ity of Ohr enzymes to reduce hydroperoxides was directly assessed by site-directed mutagene-

sis in Ohr from Pseudomonas aeruginosa (PaOhr) [6]. The carboxylic group of catalytic Glu

orients the guanidinium group of Arg toward Cp in a configuration that appears to be optimal

for the reduction of organic hydroperoxides [6,11]. Recently, we showed that fatty acid hydro-

peroxides are biological substrates of Ohr enzymes [1], displaying properties expected for

ligands of these enzymes, such as an elongated shape and hydrophobicity. Peroxynitrite is also

one of the biological oxidants of Ohr enzymes, but other features are associated with this catal-

ysis [1]. In spite of all these advances, several aspects related to the extremely high efficiency of

Ohr enzymes to reduce hydroperoxides remains elusive, such as the possible occurrence of

structural movements along the catalytic cycle.

The reaction of hydroperoxides with Cp generates a sulfenic acid (Cp-SOH), which under-

goes condensation with the resolving Cys (Cr, which is Cys125 in XfOhr), generating an intra-

molecular disulfide bond [6,11]. Moreover, the loop that contains the catalytic Arg (herein

named the Arg19 loop) was observed far away from Cp and the catalytic Glu in the crystal

structure of Ohr from Deinococcus radiodurans (DrOhr) [15]. In this case, the two Cys residues

form a disulfide bond [15]. Therefore, we previously hypothesized that Ohr enzymes in the so-

called “closed state” [6,11] would present catalytic Arg in an orientation able to activate Cp for

hydroperoxide reduction, whereas Ohr enzymes in the so-called “open configuration” [15]

would be more prone to recycling by the reducing substrate. We have since shown that the
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reducing substrates of XfOhr are lipoylated proteins [10], in contrast to the Prx/Gpx counter-

parts that are mainly reduced by thioredoxin or GSH [16]. Here, for the first time, we present

crystal structures for the same Ohr protein in the open and closed states, allowing for the vali-

dation of the in silico simulations. Additionally, to better understand the structural changes

during the catalytic cycle, molecular dynamics (MD) simulations were applied to the XfOhr

structure in its closed and open states, in distinct protonation and oxidation states, and after in
silico mutagenesis. The same mutagenesis was also performed in the recombinant Ohr protein

to evaluate its biochemical properties. Among other findings, our results indicate that polar

interactions among the Cp, Arg19 and Glu51 residues are important to stabilize XfOhr in the

closed state, and they are also required to activate the thiolate for hydroperoxide reduction.

The disruption of any of these polar interactions releases some of the constraints on the Arg19

loop movement.

Materials and methods

Crystallization trials, data collection and processing

The procedures concerning XfOhr expression and purification have been previously reported

[5]. XfOhr (10 mg/ml) was treated with 1.2 mM lipoamide at 310 K for 1 h and crystallized

using the hanging-drop vapor diffusion method. The optimal crystallization condition was

obtained using reservoir solution pH 6.0 (0.1 M sodium cacodylate and 0.4 M sodium citrate).

The XfOhr crystal, cryoprotected by the mother liquor solution supplemented with 20% glyc-

erol, was cooled to 100 K in a nitrogen gas stream, and X-ray diffraction data were collected at

protein crystallography beam line D03B-MX1 at the Brazilian Synchrotron Light Laboratory,

LNLS. The data set was processed using the programs MOSFLM [17] and SCALA [18,19]

from the CCP4i package [20].

Structure determination, model building and refinement

The Matthews coefficient (2.18) revealed three Ohr chains per asymmetric unit, and the

monomer structure of the XfOhr (1ZB8) was used as a search model in molecular replacement

protocols using the program Phaser [21]. The model was constructed by consecutive cycles of

manual modelling, using the program Coot [22], and refinement using Refmac [23]. The ste-

reochemical parameters of the final model were evaluated using the programs PROCHECK

[24] and WHATCHECK [25]. Cα superposition was performed using Coot [22], and molecu-

lar graphical representations were generated using PyMOL [26].

Site-directed mutagenesis

The pET15b/XfOhr plasmid was used as a template to generate the individual Ohr mutants

carrying mutations of Arg19 to Ala (R19A) and Glu51 to Ala (E51A). The mutagenesis proto-

cols were performed according to the manufacturer’s instructions (Quick Change II Kit; Stra-

tagene) with the following primers: XfOhrR19A_F (5’ CAACTGGTGGCGCCGATGGCAGC
3’), XfOhrR19A_R (5’ GCTGCCATCGGCGCCACCAGTTG 3’), XfOhrE51A_F (5’ GGT
ACCAATCCAGCGCAACTGTTTG 3’) XfOhrE51A_R (5’ CAAACAGTTGCGCTGGATTGGT
ACC 3’). The reaction products were treated with Dpn I to remove the parental methylated

plasmids, and the E. coli XL1-Blue strain was used as the host and transformed by electropora-

tion. Single colonies were selected and their plasmids were extracted and sequenced with the

BigDye Terminator v3.1 Cycle Sequencing Kit using an automatic sequencer, the ABI 3730

DNA Analyzer (Thermo Scientific), to confirm the codon substitutions. The plasmids harbor-

ing the mutations were transformed into the E. coli BL21 (DE3) strain by electroporation. The
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procedures concerning XfOhr mutants expression and purification were the same as for the

wild-type.

Lipoamide-lipoamide dehydrogenase peroxidase-coupled assay

The lipoyl peroxidase activity levels of wild-type XfOhr and its mutants (R19A and E51A)

were determined as previously described [10]. The reactions were followed by the decay of

absorbance at 340 nm (e = 6,290 M−1�cm−1) due to NADH oxidation.

pKa determination by monobromobimane alkylation assay

Wild-type XfOhr and its mutants (R19A and E51A) were reduced with 100 mM DTT (dithio-

threitol) for 2 hours at room temperature. The DTT excess was then removed by gel filtration

(PD-10 desalting column—GE), and the Ohr proteins (10 μM) were incubated with monobro-

mobimane (2 μM) in buffers (50 mM) at different pH values (3.0 to 7.0) for 20 minutes at

room temperature. The rates of alkylation by monobromobimane were determined by extrap-

olation of the maximum inclination of the curves [27]. Subsequently, the pKa values were

determined by the Henderson-Hasselbach equation in GraphPad1Prism4.

Circular dichroism

All measurements were carried out in Tris buffer (10 mM) pH 7.4, and wild-type XfOhr and

its mutants (R19A and E51A) were used at 15 μM. CD spectra were recorded from 180 to 320

nm using a JASCO spectropolarimeter, model J720 at the Central Analı́tica of IQUSP, SP.

Morph conformations

Morph conformations were generated using UCSF Chimera [28]. For this purpose, we applied

the corkscrew interpolation method with 40 interpolation steps and used two crystal structures

of XfOhr in its closed (1ZB8) and open states (4XX2) to generate the first set of morph confor-

mations. Subsequently, the first, the average and the last snapshots of the XfOhr-SS trajectory

(see below) were used to generate the second set of morph conformations.

MD simulations

The XfOhr structure in the closed conformation (PDB entry 1ZB8, 2.4 Å resolution) was sub-

jected to MD simulation studies in two conditions: (1) in the reduced form (Cp as thiolate,

Cys61) with 12 crystal water molecules, having B-factors < 25 Å2 and (2) with an artificial

intramolecular disulfide between Cp and Cys125, which was built with SYBYL [29]. After the

disulfide bond formation, the neighboring residues had their geometry optimized using Tripos

force field and the Powell method [30,31]. The XfOhr trajectories in the reduced and oxidized

forms were named XfOhr-S- and XfOhr-SS, respectively. Furthermore, an XfOhr trajectory

with Cp as a protonated thiol (named XfOhr-SH) was similarly built and subjected to MD sim-

ulation. To evaluate the roles of the Arg19 and Glu51 residues in the conformational change of

XfOhr, the R19A and E51A XfOhr mutants were built in silico using SYBYL-X [32]. The wild-

type residues were replaced by alanine, and their neighboring residues were minimized, as

described above.

Finally, the open conformation of XfOhr described here (PDB entry 4XX2) was also used as

a starting point for MD simulation, having, however, its Cp reduced to thiolate by breaking the

disulfide bond and deprotonated using SYBYL-X [32]. Subsequently, the geometry of the Cp

neighboring residues was optimized as described for XfOhr-SS, and the minimized structure
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was named Open-S-. Arginine and lysine were protonated, whereas aspartic and glutamic

acids were deprotonated. Histidine was protonated at its ε-nitrogen atoms.

All MD simulations were performed using GROMACS 4.6.3 [33,34] and G54a7 force field

[35]. Force field parameters for cysteine as thiolate were taken from those available for Cys

without adding a hydrogen atom to the Sγ atom. Partial charges for Sγ and Cβ atoms were

assigned as -0.7 and -0.3, respectively, which correspond to the mean values calculated using

the Gasteiger Marsili, Hückel, Pullman, MMFF94, Gasteiger Hückel methods available in

SYBYL-X [32]. The starting structure was initially minimized in vacuum, using the steepest

descent method and the conjugated gradient algorithm (2000 steps each). The minimized

structure was placed in a 100 Å cubic box, solvated with simple point-charge (SPC) water [36]

and neutralized by adding sodium ions. Periodic boundary conditions were applied, and all

covalent bonds containing hydrogen were fixed at equilibrium lengths using the LINCS algo-

rithm [37]. The particle-mesh Ewald method [38,39] was used and a 9 Å cutoff value was

applied for van der Waals interactions. The system energy was further minimized using the

steepest descent method and the conjugate gradient method (2000 steps each). Subsequently, a

position restraint dynamics simulation was performed for 2.5 ps at 200 K, keeping rigid all

protein atom positions. The whole system was heated from 100 K to 300 K over 37 ps, followed

by a period of 100 ps of equilibration. The temperature and pressure were kept at 300 K and 1

atm, respectively, by the V-rescale [40] and Berendsen [41] approaches. Subsequently, MD

simulations were carried out for 50/150 ns at 300 K. A 2 fs integration time step was used, and

configurations were collected every 2 ps.

VMD [42] was used to align all trajectories to their corresponding starting structures. The

root-mean-square deviation (RMSD) values of all backbone atoms with respect to the initial

conformation were calculated by VMD [42], and their average values were used to determine

the overall backbone dynamics. The snapshot closest to the average structures was used as a

representative of each simulation. The root-mean-square fluctuation (RMSF) of all protein res-

idues with respect to their average position was calculated with VMD [42] and used to analyze

protein residue flexibility. The conformational change of XfOhr in the simulation was followed

by measuring the distance between the Arg19-Cα and Cp-Cα/Glu51-Cα atoms throughout the

simulation time using VMD [42]. For the residues Arg19, Glu51 and Cp, the stability of the

hydrogen bond interactions was measured by hydrogen bond (Hbond) occupancy throughout

the entire trajectory using the default parameters of the VMD hydrogen bond tool (donor-

acceptor distance and angle values of 3.0 Å and 20˚, respectively). The stability of the salt-

bridge interactions between these residues was measured considering the distance between all

N–O/S pairs throughout the simulation using VMD [42]. These distances were analyzed by

Tukey box-plots generated by R [43], and only residues having at least one N–O/S pair whose

median distance value was lower than 4 Å [44, 45] were considered to be stable. PyMOL [26]

and VMD [42] were used for visualization of both the trajectories and the representative struc-

tures. MD simulation movies were generated using UCSF Chimera [28].

Results

Crystal structure of XfOhr as a disulfide in its open form

Ohr proteins contain a distinct α/β fold, and there are currently only six structures deposited

in the Protein Data Bank. Therefore, it is relevant to make new Ohr crystal structures available

for comparative studies. Two of these structures are of XfOhr, and both are in the closed state

[11]. A new structure of XfOhr in the open state is described here.

XfOhr was crystallized by the hanging drop vapor diffusion method, and the corresponding

crystal belongs to space group C2 (Table 1). A complete data set was collected up to 2.15 Å
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resolution. The molecular replacement solution contained three monomers in the asymmetric

unit. As expected from the previous characterizations [6,11], the overall structure of XfOhr in

the disulfide state is an elliptically shaped homodimer. The superposition of the two XfOhr

structures (PDB entries 4XX2 and 1ZB8/1ZB9) resulted in an RMSD = 1.21 Å. The XfOhr

open-state structure was obtained in the oxidized state (disulfide bond) despite the presence

of a reducing agent (dihydrolipoamide) in the solution. It is possible that the growth of the

crystal started after the oxidation of dihydrolipoamide. Nevertheless, the same phenomenon

occurred with DrOhr, but in this case, DTT instead of dihydrolipoamide was used as the

reducing agent [15]. It is well documented that the efficacy of thiols as reductants decreases

over time [46].

In the XfOhr open-state structure, the two fully conserved Cys residues are linked by a

disulfide bond (Cys61-S-S-Cys125, S1 Fig), and the Arg19 loop is displaced far away from Cp

(Cys61) in an open configuration (Fig 1A), in contrast to the reported XfOhr closed-state

structure (Fig 1B) [11]. Other differences between the two XfOhr states are: (i) the α-helix that

contains Cp is slightly bent in the open form and (ii) a Gly-rich loop containing residues 35 to

Table 1. Data collection and refinement statistics parameters for the XfOhr open-state.

Parameter XfOhr open state

I. Data Collection

• Space group C2

• Unit-cell dimensions (Å) a = 87.81; b = 83.69;

c = 60.76

• Unit-cell angles (˚) α = γ = 90 and β = 93.67

• Resolution limits (Å) 43.81–2.15

• Total no. reflections 229678

• No. unique reflections 25723

• Completeness (%) 99.9 (99.9)

• Multiplicity 3.1 (3.0)

• R sym (%) 0.088 (0.349)

• < I/σ(I)> 13.9 (3.0)

II. Refinement statistics

• Reflections 23868

• Working 22647

• Test 1221

Non-hydrogen atoms 3394

No. of water molecules 435

Rfactor 0.176

Rfree 0.223

RMDS values

Bonds 0.001

Angles 1.539

• Average B-factor

Main chain 20.24

Side chains and water molecules 22.44

• Ramachandran analysis (%)

Favored regions 91.9

Additionally allowed regions 8.1

• PDB code 4XX2

https://doi.org/10.1371/journal.pone.0196918.t001
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46 (Fig 1B), which is referred herein as the Gly-rich loop. In spite of these differences, the over-

all fold of XfOhr is quite similar to that of other Ohr structures (Fig 1C).

The main chains of the Arg19 loops of the XfOhr open state and of DrOhr overlapped well

(Fig 1C). In the case of DrOhr, it was not possible to assign electronic densities to the side

chains of the Arg19 loop [15], whereas the corresponding assignment for XfOhr was possible

(S1 Fig), probably due to crystal contacts (S2 Fig). Possibly, the Arg19 side chain position

observed in the XfOhr open structure may differ from the biological structure. Nevertheless,

the XfOhr open state structure shares several structural features with DrOhr.

Fig 1. Comparison of different crystal structures of Ohr. (A) XfOhr open-state crystal structure in its oxidized form (Arg19 loop

exposed to the solvent). (B) Superposition of the XfOhr open (green) and closed (blue marine) structures. The red arrow shows a shift

between the open and closed conformations of the alpha helix containing Cp (moves approximately 2.1 Å), and the black arrow shows the

superposition of the loop containing residues 33 to 48 (Gly-rich loop). (C) Superposed structures of XfOhr closed (blue marine); XfOhr

open (green); PaOhr closed (pink) and DrOhr open (gray). (D) Active site of the XfOhr open (blue marine) and closed (green) states

superimposed onto PaOhr closed (pink) and DrOhr open (gray) states. All backbone atoms are shown in cartoon representation, and the

active site Arg (Arg19 in XfOhr), Glu (Glu51 in XfOhr), Cp (Cys61 in XfOhr) and Cr (Cys125 in XfOhr) residues are shown in stick

representation. PDB entries: XfOhr closed (1ZB8); XfOhr open (4XX2); PaOhr closed (1N2F) and DrOhr open (1USP) states.

https://doi.org/10.1371/journal.pone.0196918.g001
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In the other structure, XfOhr is in the closed state and Arg19 makes polar interactions with

Glu51 and with Cp (Fig 1D). The opening of the loop would probably then be facilitated by the

loss of some of the polar interactions that occurred when Cp was oxidized to Cys-SOH, subse-

quently forming an intramolecular disulfide bond with the Cr (Fig 1A).

To gain insights into the conformational changes between the open and closed states, we

made a morph conformations movie using 1ZB8 (open) and 4XX2 (closed) as the reference

XfOhr crystal structures (see Fig 2A and S1 Video). This morph conformations movie sug-

gested a concerted movement involving the Arg19 and Gly-rich loops. While the Arg19 loop

moved far away from the XfOhr active site, the Gly-rich loop occupied this space, which is

near the active site.

Fig 2. Morph conformations superimposed to the closed and open states of XfOhr. (A) Morph conformations generated using the two crystal structures of XfOhr in

its closed (1ZB8) and open states (4XX2). The XfOhr crystal structure in its closed and open states is shown in white and blue, respectively. Gray, beige and orange

structures correspond to some of the morph conformations generated by Chimera. (B) Morph conformations generated using the first, the average and the last

snapshots of the XfOhr-SS trajectory. The XfOhr first and last snapshots are shown in white and blue, respectively. Gray, beige and orange structures correspond to

some of the morph conformations generated by Chimera. This figure was divided in two, which represents two views in distinct orientations of the same movements.

The red arrows indicate the major movements observed from the closed to the open state, namely, the Arg19 loop moves away from the active site, the Gly-loop moves

into the active site and the shift of the alpha helix containing Cp.

https://doi.org/10.1371/journal.pone.0196918.g002
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Molecular dynamics of XfOhr: From closed to open states

To evaluate the role of polar interactions in the structural movements of the Arg19 loop, MD

simulations were performed after “in silico” reconstruction of the disulfide bond between its

Cp and Cr in the XfOhr closed state structure. With this disulfide bond, no polar interactions

between Cp and Arg19 can occur, and therefore, some of the constraints on the dynamics of

the Arg19 loop were relieved (S3 Fig). As a control, the XfOhr closed state in the reduced form

(Cys61 as thiolate) was also subjected to MD simulation. Both of these simulations were per-

formed for 150 ns. These two XfOhr simulations in the oxidized and reduced forms of the

closed state structure are referred to herein as XfOhr-SS and XfOhr-S-, respectively. The

XfOhr-S- trajectory displayed an average RMSD = 2.14 ± 0.31 Å, indicating that its overall fold

was stable [47] throughout the entire simulation (Table 2). In contrast, the average RMSD

value for XfOhr-SS was 3.24 ± 0.50 Å, which was consistent with some conformational changes

taking place. Notably, the RMSD values of the XfOhr-SS structure increased rapidly in the first

30 ns, reaching values up to 4 Å (S4 Fig).

Next, we calculated the per-residue Cα RMSF to measure more localized fluctuations along

the simulations. For the Arg19 residue, the values were approximately 1.0 and 1.8 Å during the

XfOhr-S- and XfOhr-SS trajectories, respectively (Fig 3A). The higher values observed for the

XfOhr-SS trajectory than those of the XfOhr-S- trajectory indicated that the Arg19 loop under-

went conformational movements in the first case (Fig 3A–3C). Notably, the X-ray diffraction

data (B-factors) also indicated that the Arg19 loop displayed a higher mobility in the open

state than in the closed state (Fig 3D). Although the correlation of the intensities between the

MD simulations and the X-ray data is not perfect, the overall profile of peaks and valleys dis-

played high correspondence (Fig 3A and 3D).

The Arg19 loop was not the region that presented the highest RMSF values. Instead, the res-

idues from positions 33 to 48 (KLSVPQGLGGPGGSGT) in both simulations displayed the high-

est RMSF values, which is consistent with the fact that this loop (the Gly-rich loop) is mainly

composed of short side chain residues (Fig 3A–3C). Residues 71 to 82 and 88 to 98 also dis-

played a higher mobility than the Arg19 loop (Fig 3A–3C). Moreover, the high flexibility of

these three regions was also experimentally observed (c.f., B-factors of Fig 3D).

For further analysis of the dynamics of these loops along the XFOhr-SS trajectory, we made

a morph conformations movie using the starting, the average and final conformation observed

during this trajectory (Fig 2B and 2C and S2 Video). From this analysis, we again observed a

concerned movement between Arg19 and the Gly-rich loops. According to the previous results

(Fig 3), the Gly-rich loop movement was more pronounced than the Arg19 loop movement.

Due to its importance for catalysis, the movement of the Arg19 loop was further analyzed

by measuring the distances of the Arg19-Cα atom to the Cp-Cα and Glu51-Cα atoms through-

out the simulations (Fig 4). For comparison, the average distance of Arg19-Cα to Glu51-Cα
was 10 Å in the closed-state crystal structure and 18 Å in the open-state crystal structure. Like-

wise, the average distance between Arg19-Cα and Cp-Cα was 6 Å and 15 Å in the crystals

structures in the closed and open states, respectively. The XfOhr-S- trajectory appears to be

more stable in a conformation more similar to the closed-state crystal structure of XfOhr,

whereas the XfOhr-SS trajectory displayed more freedom with intermediate distances between

Table 2. Average backbone RMSD (Å) and standard deviation values with respect to the corresponding starting structures calculated for each simulation.

Backbone atoms of Simulation

XfOhr–S- XfOhr-SS XfOhr-SH E51A R19A Open-S-

All protein 2.14 ± 0.31 3.24 ± 0.50 2.37 ± 0.43 3.07 ± 0.54 2.81 ± 0.44 3.12 ± 0.37

https://doi.org/10.1371/journal.pone.0196918.t002
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Fig 3. Localized fluctuations for XfOhr in the reduced and oxidized states. (A) Plot of Cα RMSD per-residue average values (Å) of both chains

for XfOhr-S- (black) and XfOhr-SS (red) trajectories; standard deviations are shown as vertical lines. (B) XfOhr-S- representative structure. (C)

XfOhr-SS representative structure. In (B) and (C), the protein backbone atoms and the Arg19, Glu51, Cys61 and Cys125 residue side chains are

shown in cartoon and in stick representations, respectively. All protein atoms are colored by their corresponding Cα RMSF values, ranging from 0.5

Å (blue) to 6.7 Å (red), as indicated by the right side bars. The snapshot closest to the average structure of each simulation was used as its

representative structure. (D) Plot of normalized per-residue B-factors for the 1ZB8 (black) and 4XX2 (red) structures. Per-residue B-factors were

calculated by averaging all Cα atom B-factors for both structures, separately. These total averages were normalized, where 0 and 100% correspond to

the smallest and the largest averages, respectively. The vertical lines depict the corresponding standard deviations. The Cα atom B-factors for 1ZB8

and 4XX2 were determined using two monomers of each homodimer.

https://doi.org/10.1371/journal.pone.0196918.g003
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the two crystal structures (Fig 4). These findings further suggested that the Arg19 loop was less

constrained in the XfOhr-SS state, being able to move away from the active site. In contrast,

the Arg19 loop kept its position close to Cp throughout the entire XfOhr-S- simulation.

The polar interactions among Cp—Arg19—Glu51 residues were further investigated by

analyzing the distances involving atoms of the side chains (Fig 5A and 5B). As expected, the

Arg19—Glu51 and Arg19—Cys61 salt-bridge interactions were stable in the XfOhr-S- trajec-

tory (median values<4 Å for nearly all N–O/S pairs, c.f., Material and Methods). Likewise, the

Arg19—Glu51 and Arg19—Cys61 hydrogen bond (Hbond) interactions were observed

throughout the XfOhr-S- trajectory, with occupancy values equal to 65 and 37%, respectively

(Fig 5C). In contrast, these interactions were unstable or even absent during the XfOhr-SS tra-

jectory (median values> 4 Å for all N–O/S pairs and hydrogen bond occupancy values = 0%,

Fig 4. Distance values between Arg19-Cα and Glu51-Cα atoms (A and B) and between Arg19-Cα and Cp-Cα atoms (C and D) for the XfOhr-S-

(black) and XfOhr-SS (red) trajectories (150 ns each). Distance value distributions are shown as Tukey box-plots for Arg19—Glu51 (A) and Arg19—

Cp (C) distances. In the Tukey box-plots (A and C), boxes indicate the interquartile distances, black lines show the median values, whiskers extend the

box to 1.5 times the interquartile distance and circles represent outliers (values higher/lower than the whiskers). The box size shows the spread of the

distance values, i.e., small boxes indicate less spread in the distance values. XfOhr-S- (black) Arg19—Glu51 and Arg19—Cp median distance values are

equal to 11 and 6 Å, respectively. XfOhr-SS (red) Arg19—Glu51 and Arg19—Cp median distance values are equal to 14 and 9 Å, respectively. The

distance values are also shown as a function of simulation time for Arg19—Glu51 (B) and Arg19—Cp (D) distances. The average distance values

between Arg19—Glu51 and Arg19—Cp Cα atoms obtained for the closed state (PDB entry = 1ZB8) and the open state (PDB entry = 4XX2) are shown

as gray dashed lines at 10/6 and 18/15 Å, respectively.

https://doi.org/10.1371/journal.pone.0196918.g004
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Fig 5. Salt-bridge and Hbond interactions of Arg19 with Cp and with Glu51 during XfOhr-S- (black), XfOhr-SS (red), XfOhr-SH (beige) and E51A XfOhr-S-

(light blue) simulations. Distance value distributions are shown as a Tukey box-plots (A,B,D,E), in which boxes indicate the interquartile distances, black lines show the

median values, whiskers extend the box to 1.5 times the interquartile distance and circles represent outliers (values higher/lower than the whiskers). The box size shows

the spread of the distance values, i.e., small boxes indicate less spread in the distance values. The red dashed lines show the 4 Å cutoff value used as the criterion to define

stable salt-bridge interactions [45]. The occupancy values for the Hbond interactions throughout the simulations are presented as bar plots (C,F). (A) Distances between

the gamma sulfur atom (SG) of Cp and the nitrogen (NE, NH1, NH2) atoms of the Arg19 guanidinium group for XfOhr-S- (black) and XfOhr-SS (red) simulations. (B)

Distances between the oxygen atoms of Glu51 (OE1, OE2) and nitrogen (NE, NH1, NH2) atoms of the Arg19 guanidinium group for XfOhr-S- (black) and XfOhr-SS

(red) simulations (150 ns each). (C) Occupancy values of Hbond interactions between Arg19—Glu51 and Arg19—Cp during the XfOhr-S- (black) and XfOhr-SS (red)

simulations (150 ns each). (D) Arg19 –Glu51 salt-bridge interaction distance values measured during the XfOhr-SH simulation (50 ns), considering all N–O pairs

described in B. (E) Arg19 –Cp salt-bridge interaction distance values measured during the E51A XfOhr-S- simulation (50 ns), considering all N–S pairs described in A.

(E) Occupancy values of Hbond interactions between Arg19—Glu51/Ala51 and Arg19—Cp during the XfOhr-SH (beige) and E51A XfOhr-S- (light blue) simulations
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Fig 5C). Indeed, the corresponding median values of the Arg19—Glu51 and Arg19—Cys61

distances for XfOhr-SS trajectories were high, reaching values of approximately 10 Å (Fig 5A

and 5B).

The snapshot closest to the average structure throughout each MD simulation was used to

represent the entire XfOhr-SS and XfOhr-S- trajectories (Fig 6). No significant difference in

the overall structure was observed between the two average structures (Fig 6A, with RMSD =

1.93 Å). Despite these similarities, their Arg19 loops adopted two different conformations. In

the XfOhr-S- representative structure, the Arg19 loop adopted a closed orientation in both

chains, which were very similar to the closed crystal structure (Fig 6B and S3 Video). Further-

more, Arg19 kept stable hydrogen bond and salt-bridge interactions with Glu51 and Cp (both

identified as stable during the entire XfOhr-S- simulation). In contrast, the Arg19 loop of the

XfOhr-SS representative structure underwent a conformational change, moving away from

the active site, which was similar to the conformation observed in the open crystal structure

(Fig 6C and S4 Video). Both chains adopted this open state; however, their Arg19 loop orienta-

tions were somewhat different (S5 Fig). Another difference observed between the XfOhr-SS

and XfOhr-S- representative structures is the Glu51 side chain orientation. In the XfOhr-S-

representative structure, the Glu51 side chain is oriented toward the guanidinium group of

Arg19, establishing polar contacts (Fig 6B). On the other hand, in the XfOhr-SS representative

structure, the Glu51 side chain is oriented toward the Gly-rich loop (Fig 7C). From a visual

inspection of the Glu51 side chain movement along the XfOhr-SS trajectory, we observed that

Glu51 initially formed polar contacts with Arg19. However, as Arg19 moved away from the

XfOhr active site, the Arg19—Glu51 interactions were lost. As a result, the Glu51 side chain

was less constrained, being able to establish hydrogen bond interactions with other residues,

in particular with those of the Gly-rich loop. Probably, these changes observed in the Glu51

conformations are part of the concerted movement between the Arg19 and Gly-rich loop

described previously (S2 and S4 Videos).

Next, we investigated whether the polar interactions between the Arg19 and Cp residues

could restrict the movement of the corresponding loop. Therefore, another MD simulation

(50 ns) was performed, again with XfOhr in the closed state, but now having both thiols artifi-

cially protonated. This simulation is referred to herein as XfOhr-SH. Since the Arg19 loop

movement started immediately after the initial 30 ns in the XfOhr-SS trajectory (S4 Fig), we

assumed that 50 ns of simulation would be enough to observe similar movement in the XfOhr-

SH trajectory. Indeed, the Arg19 loop of both chains moved away from the active site, leaving

the Arg19 side chain highly exposed to the solvent (Figs 5D, 5F, 5I and 7 and S5 Video). Fur-

thermore, the Arg19 –Glu51 salt-bridges and hydrogen bond interactions were unstable dur-

ing the XfOhr-SH trajectory (Fig 5D and 5F, respectively). Moreover, the distances between

Arg19-Cα and Glu51-Cα were comparable with those observed for the XfOhr-SS simulation,

with values up to 19 Å (S6 Fig). These findings further support the notion that the salt-bridge

interaction between Arg19 and the negatively charged Cp (Cys61-S-) plays a relevant role in

stabilizing the Arg19 loop near the active site. Thus, our simulations indicated that the Arg19

loop movement is constrained by polar interactions between Cp-S- and Arg19. Considering

the overall XfOhr-SH simulation, the average RMSD values were in between those observed

for the XfOhr-S- and XfOhr -SS trajectories (Table 2).

(50 ns each). Distance values (yellow dashed lines) measured for the representative structures: (F) XfOhr-S- (green, values = 2.2–3.7 Å), (G) XfOhr-SS (blue marine,

values = 11.9 and 13.1 Å), (H) XfOhr-SH (cyan = 8.0–9.0 Å) and (I) E51A XfOhr-S- (orange, value = 19.0 Å). Each representative structure corresponds to the MD

simulation snapshot closest to the average structure calculated for its trajectory (50 or 150 ns). The protein backbone atoms are show in cartoon representation, and the

33–48 loop was removed for clarity. Arg19, Glu51, Cp and Cr side chain atoms are shown in stick representation, including their polar hydrogen atoms.

https://doi.org/10.1371/journal.pone.0196918.g005

Structural dynamics of Ohr

PLOS ONE | https://doi.org/10.1371/journal.pone.0196918 May 21, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0196918.g005
https://doi.org/10.1371/journal.pone.0196918


Subsequently, we addressed whether Glu51 could also contribute to the stabilization of the

XfOhr structure in the closed state. Thus, the E51A XfOhr-S- mutant was artificially built and

subjected to MD simulations (50 ns). Again, the Arg19 loop moved away from the active site

(Figs 5E, 5F, 5J and 7 and S6 Video). In this case, the movement occurred in an even shorter

interval than those observed for the XfOhr-SS and XfOhr-SH trajectories. The highest

Arg19-Cα to Ala51-Cα distance observed during the E51A XfOhr-S- trajectory was 27 Å (S7

Fig). Furthermore, the Arg19 –Cp salt-bridge and hydrogen bond interactions were also unsta-

ble during this trajectory (Fig 5E and 5F). Therefore, Glu51 is also crucial for stabilizing the

Arg19 loop close to the active site, in this case independently of the Cp oxidative state.

Finally, we artificially built a R19A substitution in the XfOhr-S- structure in the closed state.

According to our hypothesis, the mutated “Ala19” loop would move away from the active site.

The median distance values for Ala19-Cα - Glu51-Cα and Ala19- Cα - Cp- Cα distance values

were equal to 16 and 12 Å, respectively (S8 Fig and S7 Video). Interestingly, these values were

slightly shorter than those obtained for the E51A XfOhr-S- mutant. The more restricted behav-

ior of the R19A mutant could be related to the aliphatic side chain that confers hydrophobic

properties to the Ala residue. As a consequence, polar interactions between the Ala19 side

chain and solvent water molecules are not favorable, destabilizing the open-state conformation

(S9 Fig).

Fig 6. XfOhr-S- and XfOhr-SS representative structures from MD simulations. (A) Comparison between the

overall representative structures of XfOhr-S- (green) and XfOhr-SS (blue marine). (B) Active site of the XfOhr-S-

representative structure (green) superposed to the XfOhr crystal structure (light gray) in its closed state (PDB entry

1ZB8). (C) Active site of the XfOhr-SS representative structure (blue marine) superimposed to the XfOhr crystal

structure (dark gray) in its oxidized form and open state (PDB entry 4XX2, described in this paper). Each

representative structure corresponds to the MD simulation snapshot closest to the average structure calculated

throughout the entire trajectory (150 ns). The protein backbone atoms are shown in cartoon representation, and the

side chains atoms of Arg19, Glu51, Cp and Cr are shown in the stick representation.

https://doi.org/10.1371/journal.pone.0196918.g006
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Molecular dynamics of XfOhr: From the open to closed states

Since our MD simulations indicated that upon Cp oxidation, XfOhr could move from the closed

to the open state, we decided to verify whether the opposite process could occur, i.e., if the reduc-

tion of the Cys61-Cys125 bond would lead to the reverse movement (from the open to the closed

state). In this case, the XfOhr open state was used as a starting point for MD simulation (150 ns),

being named the Open XfOhr-S- trajectory. Thus, the disulfide bond was artificially reduced, con-

sidering Cp (Cys61) and Cr (Cys125) as a thiolate (RS-) and a thiol (RSH), respectively.

Unexpectedly, the Arg19 loop did not undergo major movements but remained in its open

state throughout the entire trajectory (S8 Video). Indeed, the observed distances of the Open

XfOhr-S- structure were similar to those measured in the XfOhr open-state crystal structure

(S10 Fig). One hypothesis for this is that the crystal packing contacts in the crystal structure of

the XfOhr open state (4XX2) artificially kept the Arg19 loop orientation more exposed to the

solvent than in its native condition. Therefore, the starting structure used for the Open XfOhr-

S- trajectory would have the Arg19 loop orientation more distant from the active site than the

biological one, preventing the closure of the Arg19 loop. Alternatively, entropic factors related

to the dehydration of the Arg19 loop may have also prevented XfOhr from assuming the closed

state. Indeed, the Ohr active site is surrounded by hydrophobic residues [11]. Furthermore,

the Gly-rich loop (comprising residues 33–48) might have impaired the closure of the Arg19

Fig 7. Representative structures of XfOhr-SH, XfOhr mutants from MD simulations. (A) Overall representative structure of the XfOhr-SH

(cyan), E51A-XfOhr (orange) and R19A-XfOhr (purple) simulations. (B) Active sites of representative structure of the XfOhr-SH (cyan),

E51A-XfOhr (orange) and R19A-XfOhr (purple) simulations. Each representative structure corresponds to the MD simulation snapshot closest to

the average structure calculated for its trajectory (50 ns). The protein backbone atoms are show in cartoon representation and Arg19/Ala19, Glu51/

A1a51, Cp and Cr side chain atoms are shown in stick representation.

https://doi.org/10.1371/journal.pone.0196918.g007
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loop. Our MD simulations are consistent with this possibility, as the Gly-rich loop appears to

prevent the movement of the Arg19 loop back to the active site by steric hindrance effects (S8

Video), at least during the simulation time employed (150 ns). Further studies are required to

understand the possible roles of the Gly-rich loop in catalysis.

Biochemical analysis of XfOhr mutants (R19A and E51A)

It is well accepted that the presence of Arg and Glu in the active site of Ohr in close proximity

to Cp is an important factors for the high reactivity of this peroxidase toward hydroperoxides

[1,6,11]. Furthermore, our MD simulation data presented here indicate that Glu51 and Cp are

required to stabilize the Arg19 loop in the closed state. Therefore, two mutations (R19A and

E51A) were generated by site-directed mutagenesis into the XfOhr recombinant protein to

experimentally validate these in silico findings. As expected, compared with the wild-type pro-

tein, XfOhr R19A and XfOhr E51A presented only residual dihydrolipoamide-dependent per-

oxidase activity (Fig 8A). Moreover, these mutations resulted in significant changes in the pKa

of the catalytic Cys thiolate 8.09 (± 0.11) for R19A and 7.20 (± 0.11) for E51A) compared that

observed in the wild-type protein (5.92 ± 0.11; Fig 8B to 8D). Previously, we also observed that

wild-type XfOhr displays an acidic pKa [48]. Here, we show for the first time that mutation of

the catalytic Glu impairs the enzymatic activity of Ohr. Previously, the relevance of the cata-

lytic Arg was analyzed by mutation in PaOhr [6]. Therefore, these results are consistent with

the proposed roles of Arg19 and Glu51 in catalysis, as well as with our MD simulations.

Indeed, the thiolate pKa values for the R19A and E51A mutants are more similar to that of free

cysteine [49] than the pKa values corresponding to the wild-type protein. Circular dichroism

spectra of the wild-type and mutant proteins in the reduced and oxidized states were very simi-

lar, excluding the hypothesis that the R19A and E51A mutations might provoke major prob-

lems to the overall structure of XfOhr (S11 Fig).

Discussion

A working hypothesis for the catalytic mechanism of Ohr enzymes is presented in Fig 9. Most

likely, the catalytic cycle of Ohr enzymes is more complex, and additional steps occur between

the closed (Fig 9i) and open (Fig 9iv) states.

There are six crystal structures of Ohr enzymes deposited in the RSCB Protein Data Bank,

and all of them are either in the open or in the closed state that corresponds either to snapshot

(i) or (iv) in Fig 9, respectively. The closed state appears to be an optimal conformation for

hydroperoxide reduction, as the catalytic Arg (Arg19 in XfOhr) is near to Cp, which probably

results in increased Cp nucleophilicity and ROOH electrophilicity. Indeed, in peroxiredoxins

(another type of Cys-based peroxidase), a catalytic Arg plays a similar role [50]. In the open

state, the entrance of the active site is wider [10], which might better accommodate lipoylated

proteins that are the reducing agent of XfOhr [15]. Prior to this work, no information on inter-

mediate states was available.

Initially, the opening of the Arg19 loop was investigated by MD simulations. The overall

fold was stable throughout the XfOhr-SS simulation, but the Arg19 loop underwent an open-

ing movement, among other conformational changes. In contrast, the Arg19 loop was stabi-

lized in the closed form when Cp was reduced and unprotonated (Figs 4–6 and S3 Video),

which is consistent with a pKa for the thiolate group of Cp equivalent to 5.92 (Fig 9B). In con-

trast, when the thiol group of Cp was oxidized or protonated (Figs 4–8 and S6 Fig), Arg19 dis-

played greater freedom, moving away from the active site (Figs 6 and 7, S4 and S5 Videos).

Therefore, according to our hypothesis, the stability of the Arg19 loop depends on the oxida-

tive state of Cp.
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However, other factors also contribute to the stability of the Arg19 loop in the closed state,

and a major one is the polar interaction of Arg19 with Glu51. Indeed, the mutation of Glu51

to Ala resulted in increased mobility of the Arg19 loop (Figs 5 and 7; S7 Fig and S6 Video),

even when Cp was in the thiolate form. Therefore, the disruption of either the Arg19—Cp or

the Arg19—Glu51 polar interaction facilitated the opening of the Arg19 loop.

We also performed MD simulations starting from the structure with the Arg19 loop in the

open form in an attempt to investigate the closing of this loop. Contrary to our expectations,

the Arg19 loop did not return to the closed state in any of the conditions and intervals analyzed

(S10 Fig and S8 Video). Possibly, the removal of water molecules solvated to the Arg19 loop is

required prior to the approximation of this region toward Cp. One hypothesis is that the

Fig 8. Comparative analyses of wild-type XfOhr and two mutants (R19A and E51A). (A) Lipoamide-lipoamide

dehydrogenase peroxidase-coupled assay of wild-type XfOhr, R19A and E51A. The peroxidase activities were monitored by

the oxidation of NADH at 340 nm in the presence of XfOhr (0.05 μM), lipoamide dehydrogenase from X. fastidiosa (XfLpD,

0.5 μM), and lipoamide (50 μM) in sodium phosphate buffer (20 mM, pH 7.4) and DTPA (0.1 mM). Cys61 (Cp) pKa

determination of wild-type XfOhr and two mutants (R19A and E51A) by the monobromobimane method; plots of

fluorescence as a function of pH for wild-type XfOhr (B), R19A XfOhr (C) and E51A XfOhr (D). The red points show the

mean values of at least two independent experiments. The error bars indicate the SEM. All pKa values were determined using

the Henderson-Hasselbach equation of GraphPad1Prism4.

https://doi.org/10.1371/journal.pone.0196918.g008
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reducing agent (lipoylated proteins) might assist the closing process of the Arg19 loop.

Another possibility is that this movement would require much longer simulation time (> 150

ns) or would be better observed using a different in silico technique, such as Normal Mode

analysis [51]. Investigations in these directions are underway.

This is the first report that describes a biochemical feature associated with the Gly-rich loop

(comprising residues from position 35 to 48) that was part of the XfOhr, which exhibited the

greatest flexibility (Fig 3A). Hydrophobicity is another feature of the Gly-rich loop that is

highly conserved among Ohr family members [7,12,14]. Remarkably, some of these residues

interact with polyethylene glycol by hydrophobic interactions [11]. Indeed, docking studies [1]

have indicated that the hydrophobic interactions are major factors for lipid hydroperoxide

binding within the XfOhr active site. Interestingly, the position of the catalytic Arg consider-

ably differs between Ohr and OsmC proteins that comprise two of the major sub-families in

the Ohr/OsmC superfamily [14]. The catalytic Arg is in the Gly-rich loop in OsmC proteins.

Therefore, our studies open new perspectives in the understanding of enzyme-substrate inter-

actions in proteins belonging to the Ohr/OsmC superfamily, which may foster investigations

aiming to identify inhibitors of these enzymes.

Furthermore, this study contributes information to help distinguish Ohr from other Cys-

based peroxidases, such as Prx. Indeed, we have previously reported that Ohr and Prx display

distinct biochemical and structural properties [1]. For instance, Ohr and Prx are not homolo-

gous proteins, as they do not share amino acid sequence or structural similarities [7,12,52]. For

Fig 9. Proposed model for fatty acid hydroperoxide reduction by Ohr. (i) In the reduced form of Ohr (Cp-S-, Cys61

of XfOhr), the thiolate anion (Sγ of Cp) makes an Hbond with the guanidinium group of the conserved Arg (Arg19 of

XfOhr), which also makes a salt-bridge with the conserved Glu (Glu51 of XfOhr). (ii) The lipid hydroperoxide (LHP) is

placed over the hydrophobic moiety of the Arg side chain, being also stabilized by other hydrophobic interactions. (iii)

After peroxide reduction, Cp is oxidized to sulfenic acid (SOH), which is then attacked by the sulfhydryl group of the

resolving Cys (Cys125 of XfOhr), forming an intra-molecular disulfide. Our working hypothesis is that this

condensation reaction releases constraints for Arg19 loop movements. (iv) The last step involves the reduction of the

disulfide by a lipoylated protein and a rearrangement of the loop to the close state (taken from [11]). Steps (ii) and (iii)

are hypothetical, as substrate and product (respectively) were inserted based on the co-crystallization of PEG with

XfOhr [11].

https://doi.org/10.1371/journal.pone.0196918.g009
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most Prx enzymes, the reductant is Trx, whereas for Ohr, the reductants are probably lipoy-

lated proteins [10]. In this report, we present other features that distinguish Ohr from Prx

enzymes. For instance, it is well known that Prx enzymes switch back and forth between the

so-called fully folded and locally unfolded states when catalytic Cys residues undergo large

movements to allow disulfide formation, as these two residues are far apart in the reduced

state [53]. In contrast, the catalytic Arg remains relatively static throughout the catalytic cycle

of Prx. In the case of XfOhr, the two catalytic Cys residues remain relatively static throughout

the catalytic cycle, whereas the catalytic Arg19 undergoes movement between the closed and

open states. Therefore, distinct mechanisms were selected throughout evolution that allowed

for the development of two different systems, operating with extraordinary efficiency in hydro-

peroxide reduction and attaining rates in the 107−108 M-1 s-1 range [1,53,54].

Finally, it is important to emphasize that the high correspondence between the crystallographic

and simulation data and the biochemical characterizations indicate the robustness of our analysis.

Understanding catalytic cycle dynamics might be relevant for the development of Ohr inhibitors.

Since Ohr enzymes are present in pathogenic bacteria and fungi [7] but are absent in their hosts,

such as plants and animals, these enzymes might be promising targets for drug design.

Accession codes

The crystal structure in this paper has been deposited in the Protein Data Bank as 4XX2.
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33. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: A high-throughput

and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013; 29: 845–854. https://

doi.org/10.1093/bioinformatics/btt055 PMID: 23407358

34. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular

dynamics implementation. Comput Phys Commun. 1995; 91: 43–56. https://doi.org/10.1016/0010-

4655(95)00042-E

35. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, et al. Definition and testing of

the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011; 40: 843–856. https://doi.org/

10.1007/s00249-011-0700-9 PMID: 21533652

36. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. Interaction Models for Water in Relation

to Protein Hydration. In: Pullman B, editor. Intermolecular Forces. Dordrecht: Springer Netherlands;

1981. pp. 331–342. https://doi.org/10.1007/978-94-015-7658-1_21

Structural dynamics of Ohr

PLOS ONE | https://doi.org/10.1371/journal.pone.0196918 May 21, 2018 22 / 23

https://doi.org/10.1107/S0907444904005013
https://doi.org/10.1107/S0907444904005013
http://www.ncbi.nlm.nih.gov/pubmed/15103136
https://doi.org/10.1074/jbc.M312983200
http://www.ncbi.nlm.nih.gov/pubmed/15054099
https://doi.org/10.3109/10715762.2015.1046858
http://www.ncbi.nlm.nih.gov/pubmed/26291534
https://doi.org/10.1107/S0021889888007903
https://doi.org/10.1107/S0021889888007903
https://doi.org/10.1107/S0108767394005726
https://doi.org/10.1107/S0907444910045749
http://www.ncbi.nlm.nih.gov/pubmed/21460441
https://doi.org/10.1107/S0907444909052925
http://www.ncbi.nlm.nih.gov/pubmed/20124702
https://doi.org/10.1107/S0907444910007493
https://doi.org/10.1107/S0907444910007493
http://www.ncbi.nlm.nih.gov/pubmed/20383002
https://doi.org/10.1107/S0907444996012255
https://doi.org/10.1107/S0907444996012255
http://www.ncbi.nlm.nih.gov/pubmed/15299926
https://doi.org/10.1107/S0021889892009944
https://doi.org/10.1107/S0021889892009944
https://doi.org/10.1038/381272a0
http://www.ncbi.nlm.nih.gov/pubmed/8692262
https://doi.org/10.1016/j.ab.2012.12.017
http://www.ncbi.nlm.nih.gov/pubmed/23296042
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1002/jcc.540100804
https://doi.org/10.1007/BF01593790
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/bioinformatics/btt055
http://www.ncbi.nlm.nih.gov/pubmed/23407358
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1007/s00249-011-0700-9
https://doi.org/10.1007/s00249-011-0700-9
http://www.ncbi.nlm.nih.gov/pubmed/21533652
https://doi.org/10.1007/978-94-015-7658-1_21
https://doi.org/10.1371/journal.pone.0196918


37. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simu-

lations. J Comput Chem. 1997; 18: 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)

18:12<1463::AID-JCC4>3.0.CO;2-H

38. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald

method. J Chem Phys. 1995; 103: 8577–8593. https://doi.org/10.1063/1.470117

39. Lange OF, Van Der Spoel D, De Groot BL. Scrutinizing molecular mechanics force fields on the submi-

crosecond timescale with NMR Data. Biophys J. Biophysical Society; 2010; 99: 647–655. https://doi.

org/10.1016/j.bpj.2010.04.062 PMID: 20643085

40. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;

126: 14101. https://doi.org/10.1063/1.2408420 PMID: 17212484

41. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola a, Haak JR. Molecular dynamics with cou-

pling to an external bath. J Chem Phys. 1984; 81: 3684–3690. https://doi.org/10.1063/1.448118

42. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996; 14: 33–38.

https://doi.org/10.1016/0263-7855(96)00018-5 PMID: 8744570

43. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria;

2015. Available: https://www.r-project.org/

44. Piccirillo E, Merget B, Sotriffer CA, Do Amaral AT. Conformational flexibility of DENV NS2B/NS3pro:

From the inhibitor effect to the serotype influence. J Comput Aided Mol Des. Springer International Pub-

lishing; 2016; 30: 251–270. https://doi.org/10.1007/s10822-016-9901-8 PMID: 26923377

45. Barlow DJ, Thornton JM. Ion-pairs in proteins. J Mol Biol. 1983; 168: 867–885. https://doi.org/10.1016/

S0022-2836(83)80079-5 PMID: 6887253

46. Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal structures of reduced, oxidized, and mutated

human thioredoxins: evidence for a regulatory homodimer. Structure. 1996; 4: 735–751. https://doi.org/

10.1016/S0969-2126(96)00079-2 PMID: 8805557

47. Sippel M, Sotriffer CA. Molecular dynamics simulations of the HIV-1 integrase dimerization interface:

Guidelines for the design of a novel class of integrase inhibitors. J Chem Inf Model. 2010; 50: 604–614.

https://doi.org/10.1021/ci900403s PMID: 20230013

48. Meireles D de A, Alegria TGP, Alves SV, Arantes CRR, Netto LES. A 14.7 kDa Protein from Francisella

tularensis subsp. novicida (Named FTN_1133), Involved in the Response to Oxidative Stress Induced

by Organic Peroxides, Is Not Endowed with Thiol-Dependent Peroxidase Activity. Abu Kwaik Y, editor.

PLoS One. 2014; 9: e99492. https://doi.org/10.1371/journal.pone.0099492 PMID: 24959833

49. Benesch RE, Benesch R. The Acid Strength of the -SH Group in Cysteine and Related Compounds. J

Am Chem Soc. 1955; 77: 5877–5881. https://doi.org/10.1021/ja01627a030

50. Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conforma-

tional dexterity of peroxiredoxins. Antioxid Redox Signal. 2011; 15: 795–815. https://doi.org/10.1089/

ars.2010.3624 PMID: 20969484

51. Costa MGS, Batista PR, Bisch PM, Perahia D. Exploring Free Energy Landscapes of Large Conforma-

tional Changes: Molecular Dynamics with Excited Normal Modes. J Chem Theory Comput. 2015; 11:

2755–2767. https://doi.org/10.1021/acs.jctc.5b00003 PMID: 26575568

52. Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. Analysis of the peroxiredoxin family:

Using active-site structure and sequence information for global classification and residue analysis. Pro-

teins Struct Funct Bioinforma. 2011; 79: 947–964. https://doi.org/10.1002/prot.22936 PMID: 21287625

53. Nelson KJ, Perkins A, Van Swearingen AED, Hartman S, Brereton AE, Parsonage D, et al. Experimen-

tally Dissecting the Origins of Peroxiredoxin Catalysis. Antioxid Redox Signal. 2017; ars.2016.6922.

https://doi.org/10.1089/ars.2016.6922 PMID: 28375740

54. Tairum CA Jr, Santos MC, Breyer C., Geyer R, Ferrer-Suetta G, Nieves C, et al. Catalytic Thr or Ser

residue modulates structural switches in 2-Cys peroxiredoxin by distinct mechanisms. Sci Reports.

2016; 6: 1–12. https://doi.org/10.1038/srep33133 PMID: 27629822

Structural dynamics of Ohr

PLOS ONE | https://doi.org/10.1371/journal.pone.0196918 May 21, 2018 23 / 23

https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1063/1.470117
https://doi.org/10.1016/j.bpj.2010.04.062
https://doi.org/10.1016/j.bpj.2010.04.062
http://www.ncbi.nlm.nih.gov/pubmed/20643085
https://doi.org/10.1063/1.2408420
http://www.ncbi.nlm.nih.gov/pubmed/17212484
https://doi.org/10.1063/1.448118
https://doi.org/10.1016/0263-7855(96)00018-5
http://www.ncbi.nlm.nih.gov/pubmed/8744570
https://www.r-project.org/
https://doi.org/10.1007/s10822-016-9901-8
http://www.ncbi.nlm.nih.gov/pubmed/26923377
https://doi.org/10.1016/S0022-2836(83)80079-5
https://doi.org/10.1016/S0022-2836(83)80079-5
http://www.ncbi.nlm.nih.gov/pubmed/6887253
https://doi.org/10.1016/S0969-2126(96)00079-2
https://doi.org/10.1016/S0969-2126(96)00079-2
http://www.ncbi.nlm.nih.gov/pubmed/8805557
https://doi.org/10.1021/ci900403s
http://www.ncbi.nlm.nih.gov/pubmed/20230013
https://doi.org/10.1371/journal.pone.0099492
http://www.ncbi.nlm.nih.gov/pubmed/24959833
https://doi.org/10.1021/ja01627a030
https://doi.org/10.1089/ars.2010.3624
https://doi.org/10.1089/ars.2010.3624
http://www.ncbi.nlm.nih.gov/pubmed/20969484
https://doi.org/10.1021/acs.jctc.5b00003
http://www.ncbi.nlm.nih.gov/pubmed/26575568
https://doi.org/10.1002/prot.22936
http://www.ncbi.nlm.nih.gov/pubmed/21287625
https://doi.org/10.1089/ars.2016.6922
http://www.ncbi.nlm.nih.gov/pubmed/28375740
https://doi.org/10.1038/srep33133
http://www.ncbi.nlm.nih.gov/pubmed/27629822
https://doi.org/10.1371/journal.pone.0196918

