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Purpose: High myopia is a severe hereditary ocular disease leading to blindness. LAMA1 (alpha subunit of laminin) is a
promising candidate gene for high myopia present in the MYP2 (myopia 2) region. The purpose of this study was to
determine if high myopia is associated with single nucleotide polymorphism (SNP) variants in LAMA1 in Chinese subjects.
Methods: Ninety-seven Chinese subjects with high myopia and ethnically and sexually matched 103 normal controls
were enrolled. Genomic DNA was prepared from peripheral blood. The 5 SNPs of LAMA1 were analyzed using PCR and
SNaPshot. Allele frequencies were tested for Hardy–Weinberg disequilibrium. The genotype and allele frequencies were
evaluated using the χ2 tests or the Fisher exact tests.
Results: One of the 5 SNPs showed a significant difference between patients and control subjects (rs2089760:
pgenotype=0.005, pallel=0.003). There were no statistically significant differences between patients and control subjects for
the other four SNPs: rs566655, rs11664063, rs607230, and rs3810046.
Conclusions: Our results indicate that the polymorphism of rs2089760, located in the promoter region of LAMA1, may
be associated with high myopia in the Chinese population and should be investigated further.

Myopia is a significant public health problem worldwide,
with the highest prevalence in East Asians. The Handan eye
study [1] showed the prevalence rate of myopia and high
myopia (myopia in excess of 6 diopters [D])in a rural Chinese
adult population was 26.7% and 1.8% separately, and a study
of the Singapore adult Chinese population [2] showed the
prevalence rate of myopia and high myopia was 38.7% and
9.1% separately. High myopia can cause blindness or a severe
loss of visual acuity due to retinal detachment, submacular
hemorrhage, glaucoma or macular degeneration [3], and 30%
to 70% of high myopia display at least some lesions of the
retina and choroids [4]. However, effective treatment
methodology and preventive strategies for high myopia have
not yet been fully established. Therefore, it is important to
identify the etiology of high myopia.

Myopia is a complex disease involving multiple
interacting genetic and environmental factors. Studies of
twins provide the most compelling evidence that myopia is
inherited. Multiple studies note an increased concordance of
refractive error and refractive components (corneal curvature,
lens power, anterior chamber depth) in monozygotic twins
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compared with dizygotic twins [5,6]. Twin studies estimate a
notable heritability value (the proportion of the total
phenotypic variance that is attributed to the genome) of
between 0.5 and 0.96 [7].

In 1998, Young [8] performed a linkage analysis of eight
families with high myopia in two or three successive
generations, containing a total of 82 individuals to obtain the
maximum lod score of 9.59 for the microsatellite marker
D18S481. This region, which mapped at 7.6 cM on the short
arm of chromosome 18 (18p11.31, MYP2 [myopia 2]), was
indicated to be a susceptibility genetic locus for high myopia.
Additionally, the MYP2 locus has been confirmed by two
outside laboratories: an Italian patient population with
autosomal dominant high myopia by Heath and colleagues
[9] and six families of Hong Kong Chinese descent by Lam
and colleagues [10]. All genes that map within the MYP2
critical region are candidate disease genes based on position.
Coding regions, intron-exon boundaries and untranslated
exons of Clusterin-like 1 (CLUL1), elastin microfibril
interfacer 2 (EMILIN2), lipin 2 (LPIN2), myomesin 1
(MYOM1), myosin regulatory light chain 3 (MRCL3), myosin
regulatory light chain 2 (MRLC2), transforming growth β-
induced factor (TGIFβ), large Drosophila homolog associated
protein 1 (DLGAP1), and zinc finger protein 161 homolog
(ZFP161) were sequenced, but mutation analysis did not
identify sequence alterations associated with high myopia
[11]. The direct analysis of sequence within a critical region
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can be the most accurate, precise and efficient approach to
disease gene identification. But susceptibility loci
contributing to high myopia may be difficult to map by classic
linkage analysis because of the limited power to detect genes
of intermediate or small effect using independent pedigrees.
Currently, genetic association studies are regarded as the most
powerful approach to mapping of the genes underlying such
complex traits [12]. And TGIF has been implicated as the
MYP2-causative gene by single nucleotide polymorphism
(SNP) association studies [13], but has not been replicated in
a second Chinese case– control study [14] and a Japanese
case– control study [15].

The identification of the MYP2 gene will not only
provide insight into the molecular basis of high myopia, but
will also identify pathways that are involved in eye growth
and development. In addition, this information may implicate
other genes as possible myopia disease gene candidates.
Among all the MYP2 genes, laminin α chain (LAMA1) is a
biologically relevant candidate gene, since laminin is a
component of a structural glycoprotein found in the ocular
scleral wall. Laminin is present in the eye as a constituent of
the elastic system in the trabecular meshwork [16] and zonular
(oxytalan) fibers of the lens [17]. It has also been identified in
the astrocytic and vascular endothelial-cell basement
membranes of the laminar-beam margins of the rodent lamina
cribosa [18]. Marshall [19] has localized laminin to the
oxytalan and elaunin microfibrils of human sclera by
immunoelectron microscopy. These microfibrils comprise
two of the three components of the elastic-fiber system that
make elastic tissue more stretchable than collagen [20,21].
Marshall suggests that laminin may bind these microfibrils to
collagen fibrils, since laminin has been shown to have binding
sites for several extracellular matrix components, including
collagen [22]. LAMA1 gene was reported to be located at the
short arm of chromosome 18 [23], approximately 1,648 kb
centromeric of the ZFP161 gene in the MYP2 region,

LAMA1 attracts our attention as a promising candidate gene
for high myopia. Recently, we found the mRNA level of
LAMA1 was lower in high myopic scleral tissue than in non-
myopic scleral tissue through testing the transcriptional level
(mRNA level) of LAMA1 in scleral tissue [24].

Here, to further investigate the correlation between
LAMA1 and high myopia, we conducted a case-control study
to analyze the SNPs of LAMA1 for association with high
myopia.

METHODS
Subjects: A total of 97 patients were enrolled: 39 males, 58
females; mean age of 40.4±12.3 years; refractive error: −6.00
D or more negative and ocular axial lengths: more than 26 mm
for both eyes. One hundred-three unrelated control subjects
were enrolled: 43males, 60 females; mean age of 45.8±13.5
years; refractive errors: −1.00 D to 1.00D and ocular axial
lengths: 22 mm to 24 mm for both eyes. Auto refraction (auto
keratometer, ARK 700A; Topcon, Tokyo, Japan) was
performed on both eyes of each patient by experienced
optometrists who were trained and certified in the study
protocols. Corneal curvature (average of K1 and K2), anterior
chamber depth (ACD)and axial length measurements were
presented in Table 1. Comprehensive ophthalmic
examinations were performed, and blood samples were
collected from all patients. None of the participants had a
history of ocular disease or ocular insult that may affect an
individual’s refraction, such as retinopathy of prematurity or
neonatal ocular problems or a genetic disease or connective
tissue disorder associated with myopia, such as Stickler or
Marfan syndrome. Clinical examination included visual
acuity, refractive error, slit lamp examination, ocular
movements, intraocular pressure, and fundus examination.
Patients with organic eye disease; a history or evidence of
intraocular surgery; and/or a history of cataract, glaucoma,
retinal disorders, or laser treatment were excluded.

TABLE 1. REFRACTION STATUS AND OCULAR BIOMETRIC MEASURES OF PARTICIPANTS.

Characteristics Patients Control
 Right eye Left eye Right eye Left eye

K1 (mm) (Mean) 7.83 7.82 7.75 7.74
Std. 0.36 0.33 0.24 0.23

K2 (mm) (Mean) 7.59 7.60 7.57 7.60
Std. 0.35 0.32 0.24 0.24

ACD (mm) (Mean) 3.51 3.52 3.11 3.12
Std. 0.44 0.45 0.45 0.46

Axial length (mm) (Mean) 29.79 29.69 23.19 23.24
Std. 2.97 2.91 0.59 0.62

spherical equivalent (D) (Mean) −13.81 −13.07 −0.47 −0.13
Std 6.10 5.63 0.54 −0.69

        ACD: anterior chamber depth ; K: keratometry value (K1 the power in the meridian with greatest curvature and K2 the power
        in the meridian perpendicular to it).
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This study was approved by the ethics committee of
Dalian Medical University, Dalian, China, and informed
consent was obtained from all patients. The study was
performed according to the tenets of the Declaration of
Helsinki for research involving human subjects.
DNA extraction: Total genomic DNA was extracted from 10
to 15 ml of venous blood from all participants, after informed
consent was obtained. DNA was purified from lymphocyte
pellets according to standard procedures using a kit (Puregene
kit; Gentra Systems, Minneapolis, MN).
SNP selection: We used the NCBI dbSNP database to extract
the available information of the SNPs in LAMA1. SNPs were
selected using criteria such as population-frequency
validation, multiple submitters and high-profile submitters.
The most important criteria was selecting those likely to alter
LAMA1 transcription or translation. So we focused on the
SNPs located in exons or 5′-flanking or UTR regions. A total
of 5 SNPs used in this study were: rs2089760 in the 5′-flanking
region, rs566655 in exon 14, rs11664063 in exon 39,
rs607230 in exon 42, and rs3810046 in the 3′-flanking region.

Analysis of LAMA1 polymorphisms: Single nucleotide
polymorphisms (SNPs) were determined by multiplex
SNaPshot technology (according to previously described
methods [25-27], using an ABI fluorescence-based assay
allelic discrimination method (Applied Biosystems, Bedford,
MA).The primers for polymerase chain reaction (PCR)
amplification (shown in Table 2) and SNaPshot extension

reactions (shown in Table 2) were both designed to be aligned
with the NCBI sequence databases using Primer3 software.
The extension primer was designed to anneal immediately
adjacent to the nucleotide at the mutation site, either on the
sense or antisense DNA strand. PCR was performed in a total
volume of 10 μl containing 1× HotStarTaq buffer 1 μl, 3.0 mM
Mg2+, 0.3 mM each of dATP, dCTP, dTTP, and dGTP, 1 U
HotStarTaq polymerase (Qiagen, Chatsworth, CA), 1 μl
genomic DNA, and 1 μl of each primer. The samples were put
through 30 to 40 cycles of denaturation at 95 °C, annealing at
specific primer temperatures, elongation at 72 °C, and a final
extension at 72 °C. The PCR product was purified by 1 U SAP
and 1 U Exonuclease I. The product was then processed
according to the ABI SNaPshot protocol. Extension was
performed in a total volume of 10 μl containing 5 μl SNaPshot
Multiplex Kit (ABI), 2 μl PCR product,1 μl mixed extension
primer and 2 μl H2O. The samples were put through 28 cycles
of denaturation at 96 °C, annealing at 50 °C, elongation at
60 °C, and a final extension at 72 °C. The extension product
was purified by 1 U SAP (shrimp alkaline phosphatase). SNP
analysis was performed using an ABI3130 genetic analyzer.
Genotypes were determined automatically using
Genemapper4.0 software (Applied Biosystems).
Statistical analysis: We evaluated the allele frequencies of
sequence alterations in patients and controls using the χ2 tests
or the Fisher exact tests. All detected SNPs were assessed for
Hardy–Weinberg disequilibrium using the χ2 test. Statistical
analyses were performed on computer using the SPSS

TABLE 2. LAMA1 SEQUENCE VARIANTS AND PCR AND EXTENSION PRIMERS.

RefSNP
    ID

SNP Property Base Pair
Change

Amino acid
Change

PCR primer

rs2089760 5′-flanking G>A / F: TGCATCCTTTTAAAACGGCCAAA     
R:TTTCCTCTCACTTGTGTGAATCTATTTGA

rs566655 non-synon (exon 14) A>C p.Asn674Thr F:CGTGACCAGCTGATGACTGTCC
    R:CAATACATACCTGTAAAGAGCCATTTTTGC 
rs11664063 non-synon exon 39) G>A p.Ala1876Thr F:GTCTGCCAAAATCAGGCACCAC
    R:TTCCCACAAAGGCGTGTTCCTA
rs607230 non-synon exon 42) A>G p.Lys2002Glu F:CCAGGCAAACCAATGAATCACTC
    R:CCTTTGCAAGTAAAAATTTTGCCAATC
rs3810046 3′-flanking A>C / F:TCCAATTTCTACAACAGACAAGCAATG

    
R:TGCAAAATGCGCTGTTAGGTGA

Extension primer
rs2089760 SR TTTTGTGTGAATCTATTTGACAACTCTATCAATT

rs566655 SF TTTTTTTTTTTTTTTTTTTTTTGACACATCTTTTGATCAGAGCCA

rs11664063 SF CAGAGCTGAGGACCATGCC

rs607230 SR AGAAGAAAGTCCTTTCCACTTACCTT

rs3810046 SF TTTTTTTTTTTTTTTTTTTTTTCAGACAAGCAATGTTCATTGATTAATT

            Rs:public reference SNP number from the dbSNP database; p: protein; non-synon: Non-Synonymous.
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software (version 13.0; SPSS Science, Chicago, IL).The
statistical between-group differences were examined using
the respective allele models of dominant and recessive. A
p<0.05 was considered statistically significant. The more
powerful false discovery rate (FDR) [28], instead of the
conventional Bonferroni procedure, was used to control for
multiple hypothesis testing. Odds ratios (ORs) were
calculated from genotype and allelic frequencies with a 95%
confidence interval (CI).

RESULTS
We screened 5 SNPs within LAMA1 for all the cases and
controls (Figure 1). No deviations from Hardy–Weinberg
equilibrium were observed (Table 3).The genotype
distributions and allele frequencies of the five polymorphisms
were shown in Table 3. Comparison of the genotypes between
individuals with high myopia and the control group revealed
no significant difference for four of five polymorphisms,
including rs566655, rs11664063, rs607230, and rs3810046.
However, one polymorphism in the 5′-flanking region
(rs2089760) showed significant difference between the
patients and the controls (Genotype: p=0.005; Allele: p=0.003
and OR: 1.378). After FDR correction, they were still
significant (Genotype: p=0.033; Allele: p=0.03).

In relation to the two types of alleles that are present at
each SNP (allele 1 and allele 2), statistical between-group
differences were examined using their respective allele
models of dominant and recessive (shown in Table 4). For

Allele1 recessive model (that allele 1 is present on both of the
two homologous chromosomes, ie, in this model the disease
does not occur unless homozygous for allele 1, this is implied
to be also a dominant model for allele 2) only rs2089760
showed significant difference between the patients and the
controls (p=0.002, after FDR correction p=0.04). For Allele1
dominant model (that allele 1 is present on either of the two
homologous chromosomes, in this model the onset of disease
occurs even when heterozygous for allele 1, this is implied to
be also a recessive model for allele 2) no significant difference
for the five SNPs.

DISCUSSION
The sclera, the tough outer coat of the eye, is a typical
connective tissue that provides the structural framework for
the eye. The sclera comprises extracellular matrix (ECM) and
matrix secreting fibroblasts. It is arranged in layers (lamellae)
that may play an important role in controlling the size of the
eye. The extracellular matrix of the sclera has been shown to
contain collagen fibrils in close association with
proteoglycans and glycoproteins [29]. Alterations in any of
these extracellular matrix components are likely to lead to
changes in eye shape. Studies have shown that the scleral
extracellular matrix undergoes significant changes during
growth and aging [30] and is dramatically altered during the
development of myopia [31,32]. Many of the pathological
changes seen in highly myopic human eyes are a consequence
of gross scleral thinning, particularly at the posterior pole of

Figure 1. Multiplex SNaPshot analysis of 5 SNPs of LAMA1. Arrow: a heterozygote for the rs2089760 polymorphism.
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the eye [33]. It is presumed that a blurred image or light
projected onto the retina induces secretion of some substance
from cells, which evokes transfer of the signal to the sclera,
thus leading to sclera remodeling. Laminin is a glycoprotein
of 900 kDa with multiple domain structures. Its three
component chains, α, β, and γ are bonded to each other with
the α chain being in the central region and they form a
cruciform structure [34]. Laminin is a component of an
extracellular matrix protein that binds microfibrils to collagen
fibrils, so LAMA1 is a biologically relevant MYP2 candidate
gene. And LAMA1 maps to the18p11.31 region, its genome
size is 175,928 bp composed of 62 exons, and the mRNA size
of LAMA1 is 9,530 bp encoding 3,075 amino acids [35,36].

While Sayaka Sasaki’s research in 2007 [37] found no
statistically appreciable differences through analysising 13
SNPs of LAMA1 through association study. But, we found
their controls including cases with moderate myopia
(refractive error weaker than −4.0 D), we thought it may
influence the consequence. While our entry criteria was strict:
patients with <−6.00 diopters for both eyes and ocular axial
lengths of >26 mm for both eyes, controls with refractive
errors of >-1.00 and <1.00 diopters for both eyes and ocular
axial lengths of >22 mm and <24 mm for both eyes.
Furthermore, we selected the cases with the normal corneal
curvature [38,39] and ACD [40] to entry our study, which can
exclude those non-axial length high myopia. And 13 SNPs in
the study of Sayaka Sasaki [37] did not include 4 of 5 SNPs
in our study, except rs11664063. For rs11664063, we found
the genotype and the allele frequencies of patients in our study
were similar with theirs (Sayaka Sasaki [37] study: (allele
frequencies) G 86.2%/A13.8%; (genotype frequencies) GG
74.3%/AG 23.9%/AA1.8%). But the genotype frequencies of
controls were much more different (our study: AA 2.9%/AG
32%/GG 65%; Sayaka Sasaki [37] study: AA 3.1%/AG 22%/
GG 74.9%), we think the discrepancy maybe due to the
different selection criteria for control subjects in our study.
Thus, population differences between the two studies may
have contributed to the difference in the result.

In their study [37], they selected the13 SNPs ensuring
their wide distribution over the regions ranging from exon 1
to 62, but actually the 13 SNPs didn’t reflect the relations
between high myopia and all polymorphisms in LAMA1.
Thus, they suggested more detailed SNPs analysis in
LAMA1 may be necessary for the complete screen of the entire
LAMA1 gene. While, we selected our 5 SNPs based on in-
depth study of the functions of LAMA1 SNPs and focused on
those likely to alter LAMA1 gene transcription or translation.
We used the AliBaba2.1 software to predict the putative
regulatory elements in the LAMA1 promoter region. The result
showed a 2,000 bp promoter region contains several putative
transcription factor binding sites, such as Oct-1 (octamer-1),
Sp-1 (specificity protein 1), NF-1 (nulear factor 1), C/EBPalp
(CCAAT/enhancer binding protein alpha), NF-kappaB
(Nuclear Factor-KappaB), AP-2alpha (transcription factor

activator protein alpha), c-Jun, and AP-1 (activator protein 1).
And rs2089760 just locates at a C/EBPalp element binding
site   (at   −1,142  bp   upstream   from  the  transcription
initiation) which indicates this polymorphism may influence
transcriptional efficiency.   

In conclusion, our results indicate that the polymorphism
of rs2089760, located in the promoter region of LAMA1, may
be associated with high myopia in Chinese population and
should be investigated further.
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