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A B S T R A C T   

With the widespread use of volatile anesthetic agents in the prolonged sedation for COVID-19 pneumonia and 
ARDS, there is an urgent need to investigate the effects and treatments of lengthy low-concentration inhaled 
anesthetics exposure on cognitive function in adults. Previous studies showed that general anesthetics dose- and 
exposure length-dependently induced neuroinflammatory response and cognitive decline in neonatal and aging 
animals. The anti-diabetes drug metformin has anti-neuroinflammation effects by modulating microglial polar-
ization and inhibiting astrocyte activation. In this study, we demonstrated that the inhalation of 1.3% isoflurane 
(a sub-minimal alveolar concentration, sub-MAC) for 6 h impaired recognition of novel objects from Day 1 to 
Day3 in adult mice. Prolonged sub-MAC isoflurane exposure also triggered typically reactive microglia and A1- 
like astrocytes in the hippocampus of adult mice on Day 3 after anesthesia. In addition, prolonged isoflurane 
inhalation switched microglia into a proinflammatory M1 phenotype characterized by elevated CD68 and iNOS 
as well as decreased arginase-1 and IL-10. Metformin pretreatment before anesthesia enhanced cognitive per-
formance in the novel object test. The positive cellular modifications promoted by metformin pretreatment 
included the inhibition of reactive microglia and A1-like astrocytes and the polarization of microglia into M2 
phenotype in the hippocampus of adult mice. In conclusion, prolonged sub-MAC isoflurane exposure triggered 
significant hippocampal neuroinflammation and cognitive decline in adult mice which can be alleviated by 
metformin pretreatment via inhibiting reactive microglia and A1-like astrocytes and promoting microglia po-
larization toward anti-inflammatory phenotype in the hippocampus.   

1. Introduction 

Increasing experimental and clinical observations suggest that gen-
eral anesthetics exposure, particularly prolonged or repeated exposure 
at the extremes of age, induces long-lasting cognitive decline [1–4]. 
However, the role of lengthy general anesthetics exposure in adults re-
mains largely unknown. With the widespread use of volatile anesthetic 
agents in the prolonged sedation for COVID-19 pneumonia and acute 
respiratory distress syndrome [5], there is an urgent need to investigate 
the effects of lengthy low-concentration inhaled anesthetics exposure on 
cognitive function in adults. Aberrant neuroinflammation was one of the 

primary mechanisms implicated in general anesthetic-induced cognitive 
decline in aging and neonatal rodents [6–9]. Our previous study did find 
long-term 1.3% isoflurane (a sub-minimal alveolar concentration, sub- 
MAC) inhalation induced cognitive deficits in adult mice [10,11]. 
However, whether neuroinflammation is involved in prolonged sub- 
MAC isoflurane-induced cognitive decline in adults remains to be 
elucidated. 

Microglial cells and astrocytes are critical regulators of inflammatory 
responses in the brain. Microglia cells are resident immune cells in the 
brain which monitor and respond to “invaders” to maintain brain ho-
meostasis. The anti-inflammatory state microglia (M2 phenotype) 
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convert to a pro-inflammatory activated state (M1 phenotype) when the 
brain is under varying forms of insult [12]. M1 microglia cells release 
pro-inflammatory cytokines such as complement component 1 sub-
component q, interleukin-1α, tumor necrosis factor-α, and interleukin- 
18 which can induce neurotoxic A1-like astrocyte reactivity and 
further aggravate neuroinflammation [13–15]. While the A1-like as-
trocytes secreted abundant complement 3 (C3) which in turn interacted 
with the microglial C3 receptor to regulate microglial activation and 
phagocytosis [16,17]. Previous evidence has shown that M1 microglia 
cells activation and A1-like astrocyte reactivation played a key role in 
general anesthetic-induced cognitive decline in aging and neonatal ro-
dents [6–8,18,19]. In vitro study also found that prolonged sevoflurane 
exposure enhanced M1 polarization of microglial cell line BV-2 cells and 
inhibited M2 polarization of primary microglia and BV-2 cells [19,20]. 
Preventing microglia polarization into the M1 phenotype and attenu-
ating A1-like astrocyte reactivation may mitigate anesthetics-induced 
neuroinflammation and cognitive decline. 

Metformin is a widely used first-line antidiabetic drug for type 2 
diabetes. Besides the glucose-lowering effect, growing evidence sug-
gested antidiabetic agents have anti-inflammatory effects [21]. Met-
formin can inhibit microglia cells activation and modulate the 
polarization of microglial cells exerting therapeutic effects for neuro-
inflammatory diseases [22–25]. In vitro studies also suggested that 
metformin directly inhibited the activation of microglia cells and 
decreased the release of pro-inflammatory cytokines [22,24,26]. 
Furthermore, increasing evidence supports the anti-inflammatory ef-
fects of metformin by reducing the astrocyte activity in neurodegener-
ative diseases, normal aging, and diabetes [27–29]. As a target of 
metformin, adenosine-monophosphate-activated protein kinase (AMPK) 
also modulates the activation and polarization of microglia and astro-
cytes [28,30–32]. These results hint that metformin may reduce glial 
activation and exert therapeutic effects for lengthy anesthetic-induced 
cognitive decline. Zhu and our recent studies did confirm that metfor-
min had beneficial for inhalational anesthetic-induced cognitive 
impairment [10,33]. However, whether metformin attenuated the pro-
longed sub-MAC isoflurane-induced cognitive decline in adult mice via 
the modulation of glial activation remains to be investigated. We hy-
pothesis that metformin alleviated lengthy sub-MAC isoflurane exposure 
induced cognitive decline by preventing microglia polarization into the 
M1 phenotype and inhibiting reactive microglia and A1-like astrocytes 
in the hippocampus of adult mice. 

2. Materials and methods 

2.1. Animals and treatment 

Adult male C57BL/6 mice (8 weeks old, Model Animal Research 
Center of Nanjing University) were housed in temperature-controlled 
facilities at 22–25 ◦C under a 12-hour light/dark cycle (lights on be-
tween 08:00 and 20:00), with free access to food and water. The animal 
care and study protocols were approved by the Laboratory Animal Ethics 
Committee of Drum Tower Hospital. After two weeks of acclimatization, 
mice were randomly divided into 4 groups receiving vehicle injection 
(Ctrl), isoflurane anesthesia plus vehicle injection (Anes), metformin 
injection (Met), or metformin pretreatment plus isoflurane anesthesia 
(Met + Anes). Mice in Anes and Met + Anes groups were exposed to 
isoflurane anesthesia in a chamber prefilled with 4% isoflurane (Lunan 
Better Pharmaceutical Co.) in 100% oxygen and then maintained with 
1.3% isoflurane in 100% oxygen flowing at 2.5 L/min for 6 h. The res-
piratory activities of mice were monitored during anesthesia. To prevent 
hypothermia, mice were placed on heating pads to maintain body 
temperature during anesthesia and lasted until recovery. Mice in Met 
and Met + Anes groups were injected intraperitoneally with metformin 
(Sigma-Aldrich, D150959) 50 mg/kg body weight one hour before 
anesthesia. 

2.2. New object recognition test 

The novel object recognition (NOR) test was used to assess the 
learning and memory function of mice and was conducted based on our 
previous protocol [11]. It involved three phases: the adaptive phase (3 
days), the training phase, and the testing phase. During the adaptive 
phase, every mouse was placed in an empty box with a black-walled 
arena and white bottom (26 cm × 26 cm × 40 cm) to be adaptive to 
the environment for 10 min twice a day. One day after the adaptive 
session, two identical objects were placed in the box, and each mouse 
was trained to explore them in the box for 10 min. Two hours later, a 
novel object with different shapes and colors replaced one of the familiar 
objects in the box, and each mouse was permitted to explore it for 
another 10 min. To wipe the odor cues, the objects and box were thor-
oughly cleaned with 75% alcohol after each test. Touching, sniffing, or 
licking the object was identified as the exploratory behaviors. The 
movements of mice were recorded by an overhead camera and the 
exploratory behaviors were estimated by a blinded observer. The 
discrimination index = (novel object exploration time − familiar object 
exploration time)/total exploration time × 100% was used to analyze 
the cognitive level. 

2.3. Immunofluorescence 

Mice were deeply anesthetized with isoflurane and perfused intra-
cardially with saline followed by paraformaldehyde fixation. Fixed 
brains were incubated in 30% sucrose in PBS at 4 ◦C for 48 h. Free- 
floating sections of the hippocampus (20 μm) were cut and blocked 
with 5% bovine serum albumin in PBS. The slices were then incubated 
with chicken polyclonal antiserum against GFAP (1:200, NBP-1-05198, 
NOVUS), rat monoclonal antiserum against C3 (1:50, NB200-540, 
NOVUS), rabbit polyclonal antiserum against IBA1 (1:500, 019-19741, 
Wako), or rat monoclonal antiserum against CD68 (1:50, MCA1957, 
BioRad) overnight at 4 ◦C. Secondary antibodies, Alexa Fluor 647 goat 
anti-chicken IgY, Alexa Fluor 594 goat anti- rabbit IgG, and Alexa Fluor 
488 goat anti-rat IgG (Abcam, USA) were used at 1:1000 dilution. The 
slices were mounted in DAPI solution to label nuclei. Images were 
photographed using a Leica Dmi8 microscope with associated LAS-X 
software. The ImageJ (National Institutes of Health, USA) software is 
used to quantitate the fluorescence analysis. 

2.4. Western blotting 

The expression levels of hippocampal CD68, inducible nitric oxide 
synthase (iNOS), interleukin-10 (IL-10), and arginase 1 (Arg1) proteins 
were assayed by western blotting. Hippocampal tissues were washed 
with ice-cold PBS and then lysed in RIPA buffer containing proteinase 
and phosphatase inhibitors (Sigma, USA). The samples were centrifuged 
at 12,000 rpm for 20 min at 4℃. A BSA protein assay was performed to 
determine protein concentration. Thirty microgram proteins were 
loaded per lane and separated by electrophoresis in 8% SDS-PAGE gels 
(KayGen Biotech, Co., Ltd), and were transferred onto polyvinylidene 
difluoride membranes (PVDF; Bio-Rad Laboratories, USA). Blots were 
blocked with 5% nonfat milk at normal temperature for 2 h and then 
were incubated with the following primary antibodies overnight at 4 ◦C: 
anti-CD68 (1:1000, 28058-1-AP, Proteintech), anti-iNOS (1:1000, 
13120S, CST), anti-IL-10 (1:1000, ab9969, Abcam), and anti-Arg 
(1:1000, DF3791, Affinity). Tubulin (1:1000, AT819, Beyotime) was 
used as a loading control. Antibodies were diluted in 5% bovine serum 
albumin (BSA; Gentihold). The membranes were washed three times 
with TBST, incubated for 2 h with HRP-conjugated secondary anti-
bodies. The Immunolabelled proteins were visualized using the chem-
iluminescence kit (ECL; Pierce, Illinois, USA). Band intensities of protein 
were quantified with ImageJ software (National Institutes of Health, 
USA). 
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2.5. Statistical analysis 

All data were expressed as mean ± standard deviation (SD). Statis-
tical analysis was carried out using SPSS 25.0 software (IBM Corpora-
tion, Armonk, NY). Results from cognitive behavioral tests and 
immunofluorescence analysis were analyzed by a one-way ANOVA test, 
followed by Bonferroni multiple comparison test. A two-tailed Student’s 
t test was used to analyze statistical differences between two groups for 
Western blotting results. For all analyses, values of *P < 0.05, or **P <
0.01 were denoted statistically significant. 

3. Results 

3.1. Metformin alleviated lengthy isoflurane exposure induced cognitive 
decline 

Our previous study confirmed that metformin attenuated 
hippocampus-dependent contextual fear memory impairment [10]. 
Hippocampus is also essential for novel object recognition in rodents 
[34]. We further investigated the effects of metformin on novel object 
recognition in mice treated with long-term isoflurane anesthesia. 
Lengthy isoflurane anesthesia significantly decreased the ability of the 
mice to distinguish the novel object from the familiar one. As shown in 
Fig. 1A, the discrimination index of mice in the Anes group was lower 
than those of mice in the Ctrl group on Day 1 (0.09 ± 0.11 vs. 0.42 ±
0.10, P < 0.001) and Day 3 (0.16 ± 0.09 vs. 0.41 ± 0.11, P = 0.001) 
after anesthesia. Pretreatment with metformin (50 mg/kg) reversed the 
discrimination index decline induced by long-term isoflurane anesthesia 
on Day 1 (0.09 ± 0.11 vs. 0.42 ± 0.12, P < 0.001) and Day 3 (0.16 ±
0.09 vs. 0.44 ± 0.12, P < 0.001). However, the discrimination index was 
similar between the Met and Ctrl groups on Day 1 (0.42 ± 0.10 vs. 0.39 
± 0.06, P > 0.05) and Day 3 (0.41 ± 0.11 vs. 0.34 ± 0.10, P > 0.05) after 
anesthesia. In addition, both isoflurane and metformin had no impacts 
on the total amount of objection exploration time (Fig. 1B, all the P >
0.05). These results hinted that pretreatment with metformin could 
alleviate cognitive decline induced by lengthy isoflurane anesthesia in 
adult mice. 

3.2. Metformin prevented long-term isoflurane exposure induced 
microglia activation in the hippocampus 

Immunofluorescence staining was used to examine the changes of 
hippocampal microglia among groups. Consistent with behavior 
changes, the microglial cells displayed ameboid shapes with larger soma 
in the CA1, CA3, and dentate gyrus (DG) of the hippocampus (Fig. 2A-C). 
The expression level of ionised calcium-binding adaptor molecule-1 

(IBA1) was also remarkably upregulated after isoflurane exposure 
(CA1: 2.55 ± 0.09% vs. 8.65 ± 2.14%, P = 0.002; CA3: 2.09 ± 0.40% vs. 
9.93 ± 0.90%, P < 0.001; DG: 2.34 ± 0.30% vs. 9.24 ± 2.19%, P =
0.001) (Fig. 2A-D). Moreover, double immunofluorescence staining 
showed that the ratio of CD68 positive area in microglia also increased 
significantly after isoflurane anesthesia (CA1: 31.21 ± 0.79% vs. 43.76 
± 6.12%, P = 0.019; CA3: 24.13 ± 2.62% vs. 35.09 ± 4.81%, P < 0.014; 
DG: 33.38 ± 3.61% vs. 41.46 ± 0.41%, P = 0.022) (Fig. 2A-C, E). 
Metformin treatment prevented the morphological changes of hippo-
campal microglia induced by isoflurane (Fig. 2A-C). The expression level 
of IBA1 (CA1: 8.65 ± 2.14% vs. 3.53 ± 1.39%, P = 0.007; CA3: 9.93 ±
0.90% vs. 3.38 ± 1.06%, P < 0.001; DG: 9.24 ± 2.19% vs. 3.87 ± 1.03%, 
P = 0.004) (Fig. 2A-D) and the proportion of CD68 positive area in 
microglia (CA1: 43.76 ± 6.12% vs. 25.82 ± 2.98%, P = 0.002; CA3: 
35.09 ± 4.81% vs. 22.51 ± 2.76%, P < 0.006; DG: 41.46 ± 0.41% vs. 
33.03 ± 3.25%, P = 0.017) (Fig. 2A-C, E) also decreased when pre-
treatment with metformin. However, metformin alone had no effects on 
the morphological changes of hippocampal microglia and the expression 
levels of IBA1 and CD68 (Fig. 2). These data indicate that hippocampal 
microglia cells were activated by long-term isoflurane inhalation in 
mice, and prevented by metformin administration. 

3.3. Metformin promoted microglia cells polarization from M1 phenotype 
to the M2 phenotype in the hippocampus after long-term isoflurane 
anesthesia 

In vivo and in vitro studies had found that sevoflurane anesthesia 
induced microglial M1 activation and prevented microglial M2 polari-
zation which contributed to cognitive decline in mice [8,19,20]. Consist 
with sevoflurane, western blotting analysis showed that the M1 markers 
(iNOS and CD68) of microglial cells were remarkably increased on Day 3 
after long-term isoflurane anesthesia in the hippocampus of adult mice 
(iNOS: 1.00 ± 0.28 vs. 2.65 ± 0.30, P = 0.002; CD68: 1.00 ± 0.19 vs. 
2.66 ± 0.42, P = 0.003) (Fig. 3A, D). These increases were prevented by 
pretreatment with metformin (iNOS: 1.00 ± 0.27 vs. 0.34 ± 0.10, P =
0.016; CD68: 1.00 ± 0.16 vs. 0.42 ± 0.24, P = 0.025) (Fig. 3B, E). In 
contrast, the expression of hippocampal microglial M2 markers (Arg-1 
and IL-10) was downregulated on Day 3 after long-term isoflurane 
anesthesia (Arg-1: 1.00 ± 0.11 vs. 0.64 ± 0.14, P = 0.025; IL-10: 1.00 ±
0.17 vs. 0.41 ± 0.15, P = 0.01) (Fig. 3A, D), and these downregulations 
were attenuated by the administration of metformin (Arg-1: 1.00 ± 0.35 
vs. 3.72 ± 0.60, P = 0.002; IL-10: 1.00 ± 0.05 vs. 1.74 ± 0.39, P = 0.03) 
(Fig. 3B, E). While metformin alone had no effects on the expression 
levels of microglial M1 and M2 markers (Fig. 3C, F, all the P > 0.05). 
These results indicated that pretreatment with metformin promoted 
microglia cells polarization from M1 phenotype to the M2 phenotype in 

Fig. 1. Metformin alleviated lengthy isoflurane exposure induced cognitive decline. The discrimination index (A) and total object exploration time (B) by adult 
mice treated with 6 h 100% oxygen inhalation (Ctrl), 6 h 1.3% isoflurane inhalation (Anes), metformin (Met, 50 mg/kg) before oxygen inhalation, or metformin 
before isoflurane inhalation (Met + Anes) (n = 7 to 8). Data are expressed as mean ± SD and analyzed with one-way ANOVA test followed by Bonferroni multiple 
comparison test. 
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the hippocampus after long-term isoflurane anesthesia. 

3.4. Metformin inhibited A1-like astrocyte activation in the hippocampus 
of adult mice after long-term isoflurane inhalation. 

We examined the morphology changes of astrocytes by glial fibrillary 
acidic protein (GFAP) staining in the hippocampus. Reactive hypertro-
phic astrocytes with a pronounced overlap of thickened processes were 
increased throughout the hippocampus on day 3 after anesthesia 
(Fig. 4A-C). Quantified results revealed that the GFAP positive area in 
the hippocampus of isoflurane-anesthetized mice was also upregulated, 
in comparison to mice in the Ctrl group (CA1: 3.84 ± 0.57% vs. 15.68 ±
0.76%, P < 0.001; CA3: 3.20 ± 0.81% vs. 6.27 ± 1.15%, P = 0.012; DG: 

2.54 ± 0.91% vs. 10.82 ± 0.68%, P < 0.001) (Fig. 4D). Similar to 
microglia, the treatment with metformin decreased the size of astrocytes 
and partially restored their morphological changes (Fig. 4A-C). GFAP 
positive area in the Met + Anes group occupied a reduced area of the 
hippocampus compared with mice in the Anes group (CA1: 15.68 ±
0.76% vs. 4.41 ± 0.67%, P < 0.001; CA3: 6.27 ± 1.15% vs. 1.99 ±
0.82%, P = 0.001; DG: 10.82 ± 0.68% vs. 2.82 ± 0.07%, P < 0.001) 
(Fig. 4D). Moreover, metformin pretreatment also partially reversed the 
upregulation of the C3 (A1 reactive astrocytes marker) positive area in 
the astrocytes induced by isoflurane (CA1: 53.96 ± 9.61% vs. 15.30 ±
4.29%, P < 0.001; CA3: 50.75 ± 4.46% vs. 8.17 ± 2.67%, P < 0.001; 
DG: 52.67 ± 11.88% vs. 18.85 ± 8.15%, P = 0.006) (Fig. 4E). However, 
metformin alone had no effects on the morphologic changes and the 

Fig. 2. Metformin prevented long-term isoflurane exposure induced microglia activation in the hippocampus. (A, B and C) Representative immunofluo-
rescent images of the IBA1 positive microglia (red) expressing CD68 (green) in the hippocampal CA1 (A), CA3 (B), and DG (C) regions of adult mice receiving vehicle 
(Ctrl), isoflurane (Anes), metformin (Met) or metformin and isoflurane (Met + Anes). Scale bar = 50 μm. (D, E) The quantification of the percentage of IBA1 positive 
area in the total area of the image (D) and CD68 positive area in IBA1 + microglia (E) in each hippocampal region, (n = 3 mice per group). Data are expressed as 
mean ± SD and analyzed with one-way ANOVA test followed by Bonferroni multiple comparison test. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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expression levels of GFAP and C3 (Fig. 4, all the P > 0.05). 

4. Discussion 

The brain of neonatal and aging animals is more vulnerable and 
easier to induce long-lasting neuroinflammation and cognitive decline 
[4]. Hence, though clinical evidence suggested that cognitive dysfunc-
tion is prevalent in all ages after major surgery [35], most studies about 
general anesthetic-induced cognitive decline have been conducted in 
aged or neonatal rodents [6–8,18,19]. Only a fraction of studies has been 
carried out in adult rodents to investigate the role of short-term general 
anesthetic exposure on neuroinflammation and cognitive performance 
[9,36–38]. Besides the studies from our research group, sparse studies 
have been conducted to explore the effects of lengthy inhaled anes-
thetics exposure on cognitive performance [39]. However, with the 
pandemic of COVID-19 and the shortage of intravenous sedative drugs, 
inhaled anesthetics have been widely used for prolonged sedation of 
ventilated critically ill adult patients [5]. There is an urgent need to 
explore the effects and treatments of long-term inhaled anesthetics 
sedation on cognitive function in adults. The study demonstrated that 6 
h sub-MAC isoflurane inhalation caused a significant hippocampal- 
dependent cognitive decline in adult mice. Consistent with cognitive 
impairment, typically activated microglia and astrocytes as well as 
upregulated microglial M1 markers (CD68 and iNOS) and A1-like 
astrocyte marker C3 were presented in the hippocampus of adult mice 
on Day3 after anesthesia. Whereas the markers of M2 microglia were 
decreased after isoflurane exposure. Metformin pretreatment leads to 
better cognitive performance in isoflurane-anesthetized adult mice. The 
positive cellular modifications facilitated by metformin pretreatment 
included shifting microglial polarization toward the M2 phenotype and 
reducing M1 phenotype microglia as well as A1-like astrocyte activation 
in the hippocampus. The promotion of activated microglia polarization 
toward the M2 phenotype and inhibition of overactivated M1 microglia 
are effective treatment strategies for neuroinflammation-related cogni-
tive decline. Such as curcumin [40] and resveratrol [41] which had 
potencies to promote microglial polarization from the M1 to the M2 
phenotype were proved to have therapeutic effects on cognitive 

impairment induced by neuroinflammation [42,43]. In addition, pre-
treatment of curcumin and resveratrol also prevented inhalational 
anesthetic-induced cognitive decline by attenuating neuroinflammation 
in mice [8,44]. 

Recently, Lai et al. found that 6 h isoflurane anesthesia had no impact 
on neuroinflammatory response and cognitive performance in young 
adult mice [39]. However, they used a high concentration of isoflurane 
(2%) which is unsuitable for prolonged sedation. In addition, a previous 
study suggested lower concentration isoflurane inhalation is more likely 
to induce a cognitive decline in adult mice [45]. Hence, we chose a sub- 
MAC concentration (1.3%) in our present study (the MAC of adult mice 
is 1.46% [46]). Furthermore, Wang and his colleagues found that 2 h 
exposure of 1.5% isoflurane caused hippocampal inflammation and 
cognitive decline in aged mice but not in young adult mice [9]. These 
results hinted that sub-MAC isoflurane inhalation induced neuro-
inflammation and cognitive decline also in a dose- and exposure length- 
dependent manner in adult mice. In clinical, the duration of isoflurane 
sedation for COVID-19 pneumonia and acute respiratory distress syn-
drome patients was more than 100 h [47–49]. The length of use in mice 
might not exactly mimic the time used in humans in consideration of 
their length of life respectively. In this study, 6 h of isoflurane exposure 
was used based on previous research in a cognitive impairment mouse 
model induced by lengthy isoflurane inhalation [7,50,51]. Our previous 
study also has proved that 6 h isoflurane exposure could induce a sig-
nificant cognitive decline in adult mice [10,11,52]. In addition, different 
to 2 h isoflurane exposure which can’t elicit the activation of BV-2 cells 
or primary microglial cells [9], 6 h isoflurane or sevoflurane treatment 
can directly increase the expression level and transcription activity of 
nuclear factor kappa-B as well as the production of pro-inflammatory 
cytokines in H4 human neuroglioma cells, mouse primary microglia, 
and BV2 cells [7,51,53]. All in all, prolonged sub-MAC isoflurane 
inhalation can induce remarkable neuroinflammation and cognitive 
decline by promoting microglia and astrocyte activation in adults and 
should be fully considered for the use of inhaled anesthetics in pro-
longed sedation. 

Our previous study found that synaptic plasticity impairment and tau 
hyperphosphorylation were the main mechanisms for length sub-MAC 

Fig. 3. Metformin promoted microglia cells polarization from M1 phenotype to the M2 phenotype in the hippocampus of adult mice after lengthy iso-
flurane exposure. Representative western blots (above panels) and densitometric analysis (below panels, n = 3 mice per group) showing the effects of lengthy 
isoflurane inhalation (A, D), metformin pretreatment plus isoflurane inhalation (B, E), and metformin treatment (C, F) on expression levels of M1 microglia markers 
(CD68, iNOS) and M2 microglia markers (IL-10, Arg-1) in the hippocampus of adult mice. Tubulin was used as an internal control. Data are expressed as mean ± SD 
and compared by two-tailed Student’s t test. 
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exposure induced cognitive decline in adult mice [10]. The imbalanced 
M1/M2 activation of microglia and several reactive A1-like astrocytes 
play an important role in inhibiting synaptic plasticity and triggering 
neurodegeneration [54–57]. Therefore, we examined the activation and 
polarization of microglia and astrocyte in the hippocampus of adult mice 
after isoflurane inhalation. Consistent with sevoflurane exposure in 
neonatal and aging rodents [8,19], prolonged sub-MAC isoflurane 
inhalation induced microglial M1 activation and inhibited microglial 
M2 polarization. Meanwhile, typically activated A1-like astrocytes 
surged in the hippocampus of adult mice after lengthy sub-MAC iso-
flurane exposure. As mentioned above, metformin exerts anti- 
inflammation effects by modulating the activation and polarization of 
microglia and astrocyte in neuroinflammatory diseases. Our results 

shown that metformin pretreatment shifted microglial polarization to-
ward the M2 phenotype and reduced M1 phenotype microglia as well as 
A1-like astrocyte activation in the hippocampus of prolonged sub-MAC 
isoflurane-anesthetized adult mice. In line with the alleviation of neu-
roinflammation, we have in a recent study showed that metformin also 
mitigated the inhibition of synaptic plasticity and tau hyper-
phosphorylation induced by lengthy sub-MAC isoflurane exposure [10]. 
These results suggested that promoted microglia polarization into M2 
phenotype and inhibited the activation of M1 microglia and A1-like 
neurotoxic astrocyte may be one of the mechanisms for metformin 
alleviated lengthy sub-MAC isoflurane-induced synaptic plasticity 
impairment and tau hyperphosphorylation. 

The present study shows remarkable activated hippocampal M1 

Fig. 4. Metformin inhibited A1-like astrocyte activation in the hippocampus of adult mice after long-term isoflurane inhalation. (A, B and C) Representative 
immunofluorescent images of the GFAP positive astrocyte (red) expressing C3 (green) in the hippocampal CA1 (A), CA3 (B), and DG (C) regions of adult mice 
receiving vehicle (Ctrl), isoflurane (Anes), metformin (Met) or metformin and isoflurane (Met + Anes). Scale bar = 50 μm. (D, E) The quantification of the percentage 
of GFAP positive area in the total area of the image (D) and C3 positive area in GFAP + astrocyte (E) in each hippocampal region, (n = 3 mice per group). Data are 
expressed as mean ± SD and analyzed with one-way ANOVA test followed by Bonferroni multiple comparison test. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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microglia and A1-like astrocytes contributing to lengthy sub-MAC iso-
flurane exposure-induced cognitive decline. The shortage is that we 
merely investigated the effects of prolonged sub-MAC isoflurane inha-
lation in healthy adult mice, but not seriously infected adults who 
required lengthy isoflurane sedation. However, in vitro studies had 
found that the exposure of primary microglia or BV2 cells to 0.4%-2% 
isoflurane for 6 h caused notable proinflammatory responses [7,51,53]. 
In addition, even 2 h isoflurane exposure can promote the release of 
proinflammatory cytokines in lipopolysaccharide-activated BV-2 cells or 
primary microglial cells [9]. These results suggested lengthy isoflurane 
exposure can directly activate microglia and aggravate the pro- 
inflammatory reactivity of activated microglia. Even so, the role of 
prolonged inhaled anesthetics sedation on neuroinflammation and 
cognitive performance in seriously infected adults deserved further 
study. 

5. Conclusions 

Prolonged sub-MAC isoflurane exposure triggered significant hip-
pocampal neuroinflammation and cognitive decline in adult mice which 
can be alleviated by metformin pretreatment via inhibiting reactive M1 
microglia and A1-like astrocytes and promoting microglia polarization 
toward M2 phenotype in the hippocampus. 
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