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Mitochondrial complex I deficiency is associated with a diverse range of clinical phenotypes
and can arise due to either mitochondrial DNA (mtDNA) or nuclear gene defects. We
investigated two adult patients who exhibited non-syndromic neurological features and
evidence of isolated mitochondrial complex I deficiency in skeletal muscle biopsies. The first
presented with indolent myopathy, progressive since age 17, while the second developed
deafness around age 20 and other relapsing-remitting neurological symptoms since. A
novel, likely de novo, frameshift variant in MT-ND6 (m.14512_14513del) and a novel
maternally-inherited transversion mutation in MT-ND1 were identified, respectively.
Skewed tissue segregation of mutant heteroplasmy level was observed; the mutant
heteroplasmy levels of both variants were greater than 70% in muscle homogenate,
however, in blood the MT-ND6 variant was undetectable while the mutant heteroplasmy
level of the MT-ND1 variant was low (12%). Assessment of complex I assembly by Blue-
Native PAGE demonstrated a decrease in fully assembled complex I in the muscle of both
cases. SDS-PAGE and immunoblotting showed decreased levels of mtDNA-encoded ND1
and several nuclear encoded complex I subunits in both cases, consistent with functional
pathogenic consequences of the identified variants. Pathogenicity of the
m.14512_14513del was further corroborated by single-fiber segregation studies.

Keywords: mitochondrial DNA, muscle biopsy, myopathy, deafness, tissue segregation

INTRODUCTION

Mitochondrial NADH:ubiquinone oxidoreductase (Complex I) is the first and largest (~1 MDa)
complex of the mitochondrial respiratory chain involved in the oxidative phosphorylation
(OXPHOS) pathway and generation of ATP. It comprises 45 structural subunits of which seven
are encoded by mitochondrial DNA (mtDNA), the remaining subunits being encoded by the
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nuclear genome as are the ~20 ancillary proteins required for
assembly and biogenesis (Formosa et al., 2018). As such, genetic
defects in both mitochondrial and nuclear DNA can result in
isolated complex I deficiency.

Complex I deficiency is the most common biochemical defect
associated with mitochondrial disease (Alston et al., 2017).
Identical biochemical defects are associated with phenotypic
heterogeneity, (Kirby et al., 1999; Janssen et al., 2006) ranging
from a tissue specific manifestations such as Leber hereditary
optic neuropathy (LHON), (Man et al., 2002) to devastating,
severe phenotypes including Leigh syndrome, (Distelmaier et al.,
2009) mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes (MELAS) syndrome, multi-system disease,
(Alston et al., 2010) and hypetrophic cardiomyopathy and severe
lactic acidosis (Distelmaier et al., 2009). Pathogenic variants have
been identified in all seven mtDNA-encoded subunits of
complex I; however, there is no clear genotype-phenotype
correlation (Distelmaier et al., 2009; Hoefs et al., 2012). While
incomplete penetrance is frequently observed in the
homoplasmic variants associated with LHON, (Man et al.,
2002) the heteroplasmy levels in other pathogenic variants
such as m.13513G > A and m.13094T > C in MT-ND5, both
reported in Leigh Syndrome and MELAS syndrome, show good
correlation with the severity of disease burden (Ng et al., 2018).
Conversely, some de novo pathogenic variants in the MT-ND
(Mitochondrially-encoded NADH:ubiquinone oxidoreductase
core subunit) genes cause slowly progressive, non-syndromic
presentations such as myopathy and exercise intolerance
(Gorman et al., 2015).

In this report, we present two adult patients with complex I
deficiency manifesting with different clinical pictures, one
developing an insidious-onset myopathy while the other
presents with deafness in her 20s and subsequent neurological
symptoms that follow a relapsing-remitting pattern. Novel
variants in the mtDNA-encoded MT-ND6 and MT-ND1
proteins were identified, respectively, and characterized fully to
demonstrate causality.
MATERIAL AND METHODS

Case Reports
Patient 1
A 27-year-old man was referred to a neurology service with a 10-
year history of exercise intolerance and mild muscle weakness. In
addition, the patient also complained of intermittent drooping of
his eyelids and double vision. There was no history of
myoglobinuria, deafness, optic atrophy, or retinitis pigmentosa.
There was no family history of neuromuscular disorder. Clinical
examination revealed very mild proximal lower limb weakness
with MRC grade 4+/5. The upper limb muscle bulk was reduced,
and subtle scapular winging, and an excessive lumbar lordosis
were apparent. The rest of the neurological examination was
normal. Routine laboratory investigations were normal except
for an elevated serum creatine kinase (CK) (1,212 IU/L). He
underwent electromyography (EMG) study which showed
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polyphasic myopathic units in most muscles sampled. No
myotonia or abnormal decrement was evident. He was found
to have dipstick proteinuria, and a 24-h urine collection
confirmed the presence of microalbuminuria. The following
investigations were either negative or normal: serum lactate
level, anti-acetylcholine receptor and anti-muscle specific
kinase autoantibodies, forearm ischaemic lactate test, serum
alpha-glucosidase levels, cardiac investigations (including
ambulatory electrocardiogram (ECG) and echocardiogram),
renal ultrasound scan, magnetic resonance imaging (MRI) of
the brain, and MRI of the upper and lower limb muscles. He had
a muscle biopsy at the age of 28 years.

Patient 2
This patient presented with painless, sequential visual loss over
four months during pregnancy at the age of 35 years. Her visual
acuity at the nadir was documented to be 6/60 bilaterally with the
presence of relative afferent pupillary defect in one eye. Her
medical history included endometriosis, gestational diabetes and
hearing impairment since her late 20s. Both her mother and
maternal grandmother developed hearing impairment in their
40s. Retrobulbar optic neuritis was initially suspected, however,
her MRI head (including angiography) did not identify any acute
structural changes and the visual evoked potentials (VEP) were
normal. Her vision gradually improved over several months.
Three years later, she developed a gradual-onset, severe
headache. MRI head showed several subcortical T2
hyperintensities. The possibility of raised intracranial pressure
was excluded with normal cerebrospinal fluid (CSF) opening
pressure. CSF constituents were normal, and CSF-restricted
oligoclonal bands were not detected. Her headache settled a
week later. At age 44 years, she presented with left arm weakness.
A CT head scan was normal and the weakness improved
spontaneously a week later. Three months later, she re-
presented with vertigo, poor balance, sensory disturbances on
the left hand, and fatigue. A repeat MRI head showed an increase
in subcortical and periventricular white matter lesions with
sparing of the corpus callosum. However, repeat CSF studies
and VEP remained unremarkable. Her resting serum lactate was
1.2 mmol/L (normal < 2.2 mmol/L). At this point, mitochondrial
disease was considered, and a muscle biopsy was performed. In
the last clinical review at the age of 46, she developed diabetes
mellitus and complained of unsteadiness and fatigue. She had a
mild dysarthric speech and reduced muscle strength in the hip
flexion (MRC grade 4+/5). Her recent cardiac investigations
were normal.

Histochemical and Quadruple
Immunohistochemistry (IHC) Studies of
Diagnostic Muscle Biopsies
Standard histological (modified Gomori trichrome) and
histochemical (individual cytochrome c oxidase (COX),
succinate dehydrogenase (SDH), and sequential COX-SDH)
analyses of skeletal muscle biopsies were performed on fresh-
frozen skeletal muscle sections (10 µm) as previously described (Old
and Johnson, 1989). Quadruple OXPHOS immunofluorescence
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was undertaken on transversely-orientated frozen muscle sections
(10 µm) according to a previously validated protocol to establish
evidence of complex I or complex IV deficiency (Rocha et al., 2015).

Molecular Genetic Analyses
Total DNA was extracted from available tissues including
sketelal muscle, blood, buccal epithelia, and urinary sediments.
In both patients, muscle mtDNA rearrangements were
investigated using several long-range PCR strategies prior to
sequencing of the entire mitochondrial genome as described
elsewhere (Krishnan et al., 2007; Zierz et al., 2019). Analytical
sensitivity for single nucleotide variants present at ≥5%
heteroplasmy is ≥95% (95% confidence intervals).

Assessment of mtDNA Mutation Load by
Quantitative Pyrosequencing
Mutation loads of m.14512_14513del MT-ND6 and m.3761C >
A MT-ND1 variants were determined in homogenate tissue by
quantitative pyrosequencing; quantification of the heteroplasmy
level of each variant was achieved using Pyromark Q24 software
(Grady et al., 2018). For Patient 1 (m.14512_14513del mutation),
we also determined the mutation loads in individual, laser-
microdissected muscle fibers for two groups: COX-positive
reacting fibers and COX-positive, ragged-red fibers showing
marked subsarcolemmal mitochondrial accumulation.

BN–PAGE and Western Blot Analysis of
Patient Muscle
Blue-Native Polyacrylamide Gel Electrophoresis (BN–PAGE)
was performed using mitochondrial proteins isolated from
skeletal muscle samples (25 mg of tissue) as described
previously (Thompson et al., 2016) using antibodies against
COXI (abcam ab14705), SDHA (abcam ab14715), VDAC1
(abcam ab14734), UQCRC2 (abcam ab14745), NDUFB8
(abcam ab110242), and ATP5A (abcam ab14748); all primary
antibodies were used at a dilution of 1 in 1,000. Total protein
extraction from human muscle for sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and western
blotting was carried out as described (Olahova et al., 2015a)
using the following commercially available antibodies: NDUFB8
(abcam ab110242), NDUFV1 (Proteintech 11238-1-AP),
NDUFS3 (abcam ab110246), SDHA (abcam ab14715),
UQCRC2 (abcam ab14745), COXI (abcam ab14705), ATP5A
(abcam ab14748), and VDAC1 (abcam ab14734), which served
as a loading control. The antibody against ND1 was a kind gift
from Dr Anne Lombès.
RESULTS

Histochemical and Quadruple
Immunohistochemistry (IHC) Studies of
Muscle Biopsy
In Patient 1, the oxidative enzyme reactions (SDH and COX)
revealed numerous fibers with increased activity at the fiber
periphery, confirmed by modified Gomori trichrome staining,
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which showed subsarcolemmal accumulations typical of
“ragged-red” changes affecting >30% of all fibers (Figure 1A).
Quadruple OXPHOS IHC assay detected >75% of fibers showing
a complete loss of NDUFB8 immunoreactivity, again associated
with preserved COX-I immunoreactivity (Figure 1B). Many of
these fibers showed high porin levels, reflecting enhanced
mitochondrial numbers fibers showing subsarcolemmal
mitochondrial accumulation. A histopathological assessment of
the muscle biopsy from Patient 2 failed to detect significant
mitochondrial changes; a single COX-deficient fiber was noted
following sequential COX-SDH histochemistry, likely as a result
of somatic mtDNA mutation (Figure 1D). However, the IHC
mitochondrial respiratory chain profile shows a loss of NDUFB8
immunoreactivity, associated with preserved COX-I
immunoreactivity, for >60% of all fibers and consistent with
isolated complex I deficiency (Figure 1E).

Identification of Novel Pathogenic MT-ND6
and MT-ND1 Mutations
Long-range PCR assays were used to exclude mtDNA
rearrangements in the muscle from both patients, prompting the
sequencing of the entire mitochondrial genome which identified
candidatepathogenicvariants in genes encodingstructural subunits
of mitochondrial complex I.We determined the mtDNA sequence
in muscle from both patients identifying novel, candidate
pathogenic MTND mutations. Patient 1 was shown to harbor a
novel m.14512_14513del, p.(Met54Serfs*7) variant, also predicting
the premature truncation of the relevant complex I protein subunit
(ND6). Quantitative pyrosequencing showed that the
m.14512_14513del variant was present at high levels of
heteroplasmy in skeletal muscle (76%); at low levels (10%) in a
urinary sediment-derived DNA sample but undetectable in blood
and buccal epithelial-derived DNA samples. Concurrent studies in
his mother’s blood, urine and buccal epithelial DNA samples failed
to detect the m.14512_14513del variant, strongly implicating a de
novomutation event.

Patient 2 harbored a novel m.3761C > A transversion
(predicting p.(Ser152*) and the premature truncation of the
ND1 protein) which was present at high levels of heteroplasmy
in skeletal muscle (80%), and lower levels in other tissues
including urinary sediment (46%), buccal epithelia (35%),
and blood (12%). Testing of the samples from the patients
clinically-unaffected mother confirmed maternal transmission
of the m.3761C > A variant, with lower levels of mtDNA
heteroplasmy detected in urinary sediments (38%) and
blood (5%).

Neither the m.14512_14513del nor m.3761C > A variants
were reported within online databases of mtDNA variation, nor
did we detect these within our own in-house database of >1,950
human mtDNA sequences. Using quantitative pyrosequencing,
we detected significantly higher levels of the m.14512_14513del
variant in COX-positive ragged-red fibers [90.9 ± 0.74% (n = 21)]
than in COX-positive non-ragged-red fibers [31.7 ± 9.6% (n =
17)] (p < 0.0001, two-tailed Student’s t test), confirming
segregation of the m.14512_14513del genotype with a
histopathological abnormality in Patient 1 (Figure 1C).
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Novel MTND Gene Mutations are
Associated With Impaired Complex I
Assembly and Loss of Immunoreactive
Complex I Subunits
To assess the ability of complex I to assemble in the inner
mitochondrial membrane, a one-dimensional BN-PAGE was
performed with muscle samples isolated from both patients
and two age-matched healthy controls. A band representing
fully assembled complex I (980 kDa) was detectable in both
controls, but Patient 2 showed very weak signal and no signal was
detected in Patient 1 (Figure 2A). However, the assembly of all
other OXPHOS complexes were unchanged between patients
and controls, confirming an isolated complex I defect in skeletal
muscle from both patients. SDS-PAGE and immunoblotting was
performed in skeletal muscle samples from each patient and
showed a decrease in the steady-state protein levels of all
complex I subunits tested (ND1, NDUFV1, NDUFS3, and
Frontiers in Genetics | www.frontiersin.org 4
NDUFB8) (Figure 2B), whereas subunits of complexes II-V
(SDHA, UQCRC2, COXI, and ATP5A, respectively) were
unchanged between patients and controls.
DISCUSSION

Mitochondrial disease presentations that do not exhibit classical
syndromic clinical phenotypes can be difficult to diagnose. Both
patients described in this report have undergone multiple
investigations over several years, with the eventual diagnosis
being underpinned by clear evidence of mitochondrial complex I
deficiency in a diagnostic muscle biopsy.

A heteroplasmic m.14512_14513del MT-ND6 variant was
identified in Patient 1 who presented with exercise intolerance,
mild myopathy, and hyperCKaemia. This novel mtDNA variant
has likely arisen de novo as it is not detectable in several mitotic
tissues of his clinically-unaffected mother although we
FIGURE 1 | Muscle biopsy findings in two patients with isolated complex I deficiency. (A) Histopathological analysis of skeletal muscle sections from Patient 1
showing modified Gomori trichrome staining (i), cytochrome c oxidase (COX) histochemistry (ii), succinate dehydrogenase (SDH) histochemistry (iii), and sequential
COX-SDH histochemistry (iv), highlighting the presence of COX-positive ragged-red fibers (RRF) showing mitochondrial accumulation. Scale bars = 100 µm.
(B) Respiratory chain profile following quadruple oxidative phosphorylation immunofluorescence analysis of cryosectioned muscle from Patient 1, confirming the
presence of numerous fibers lacking complex I (NDUFB8) protein. Each dot represents the measurement from an individual muscle fiber, color coded according to
its mitochondrial mass (blue-low, normal-beige, high-orange, very high-red). Gray dashed lines indicate SD limits for the classification of fibers. Lines next to x- and y-
axes represent the levels (SDs from the average of control fibers after normalization to porin/VDAC1 levels; _z = Z-score, see Methods section of Rocha et al. (2015)
for full description of statistics (Rocha et al., 2015) of NDUFB8 and COX1, respectively (beige = normal (>−3), light beige = intermediate positive (−3 to −4.5), light
purple = intermediate negative (−4.5 to −6), purple = deficient (<−6). Bold dotted lines indicate the mean expression level observed in respiratory normal fibers.
(C) Single fiber PCR analysis shows significant segregation of higher m.14512_14513del, p.(Met54Serfs*7) MTND6 mutation load within COX-positive RRF than
COX-positive fibers not showing obvious subsarcolemmal mitochondrial accumulation. (D) Histopathological analysis of skeletal muscle sections from Patient 2
showing modified Gomori trichrome staining (i), COX histochemistry (ii), SDH histochemistry (iii), and sequential COX-SDH histochemistry (iv). COX-SDH
histochemistry identified a single, COX-deficient fiber which is likely the result of somatic (age-related) mtDNA mutation. (E) Respiratory chain profile following
quadruple oxidative phosphorylation immunofluorescence analysis of cryosectioned muscle from Patient 2, again confirming the presence of fibers lacking complex I
(NDUFB8) protein.
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demonstrate skewed tissue segregation of this variant in the
patient. A novel, m.3761C > A; p.(Ser152*) MT-ND1 variant is
the likely cause of Patient 2’s personal and maternal history of
deafness and her relapsing-remitting neurological presentations.
Both mtDNA variants clearly result in the isolated complex I
deficiency, as identified with the IHC findings of decreased
expression of complex I subunit (NDUFB8), BN-PAGE
showing perturbed assembly of the complex I holoenzyme and
immunobloting showing a decrease in the steady-state protein of
complex I subunits. Moreover, the pathogenicity of the
m.14512_14513del variant is further supported by the single-
fiber segregation analysis confirming higher levels of the variant
are present in ragged-red fibers.

The maternal inheritance of the m.3761C > A in MT-ND1
variant and the observed decrease in ND1 protein levels in skeletal
muscle samples from Patient 2 strongly indicate pathogenicity of
this variant. Skeletal muscle from Patient 1, harboring the
m.14512_14513del variant in MT-ND6, also had decreased ND1
protein levels as well as decreased levels of several nuclear encoded
complex I subunits (NDUFV1, NDUFS3, and NDUFB8). This is
consistent with decreased ND6 levels leading to a complex I
assembly defect and subsequent degradation of many complex I
subunits and is similar to what is seen in Patient 2 due to the loss of
ND1. ND6 could not be directly assessed by immunoblotting due to
the lack of availability of an antibody to ND6. In both patients,
NDUFV1 is the least affected subunit. This is likely due to NDUFV1
being part of the N module of complex I which is assembled
separately to the Q/ND1 and ND2 modules that ND1 and ND6 are
part of respectively (Mimaki et al., 2012; Formosa et al., 2018).

Progressive exercise intolerance and myopathy identified in
Patient 1 are infrequent clinical findings associated with
pathogenic MT-ND variants (Musumeci et al., 2000; Gorman
et al., 2015). The putative link between the mitochondrial
Frontiers in Genetics | www.frontiersin.org 5
complex I defect and glomerular dysfunction is highly
conceivable given no other cause has been identified, and renal
involvement is increasingly recognized as part of the multisystem
manifestation in mitochondrial diseases (O’Toole, 2014).

A retrospective review of the history of bilateral visual
impairment in Patient 2 raised the suspicion of LHON. However,
the details of initial retinal examination were not available and it is
not known whether characteristic acute findings of LHON such as
disc hyperemia, oedema of the peripapillary retinal nerve fiber layer
andretinal telangiectasia were evident . The relapsing-remitting
nature of subsequent neurological presentations mimicked
multiple sclerosis but the radiological, VEP and CSF findings
were not supportive of the diagnosis. While there are some
uncertainties on establishing the causal link between visual
disturbance, white matter changes and the novel MT-ND1
variant, the presence of sensorineural hearing loss, the
development of diabetes mellitus, myopathy and maternal history
of deafness are typical findings in primary mtDNA disease.

Next generation sequencing (NGS) technology has been
increasingly integrated in the diagnostic pathway of a wide range
of genetic disorders including mitochondrial disease (Thompson et
al., 2019). One of the proposed advantages is that NGS could
mitigate the need and the risk of invasive, diagnostic muscle
biopsies, especially in the paediatric population. However, primary
mtDNA mutations account for two-third of the diagnosis of adult
cases, (Gorman et al., 2015) and the skewed segregation of some
mtDNA mutations between non-invasive tissues (e.g., blood) and
post-mitotic tissues (e.g., muscle) could pose a significant challenge
on the interpretation of any variant of unknown significance
detected at low heteroplasmy levels in blood-derived DNA.
Moreover, the expression of some mtDNA mutations is tissue
specific and testing the blood-derived DNA alone could yield a
false negative finding, such as in Patient 1 and other reported cases
FIGURE 2 | Assessing OXPHOS complex assembly and protein levels in patient muscle. (A) BN-PAGE of muscle samples from two age-matched controls (C1 and
C2) and Patients (P1 and P2). Antibodies used were anti-NDUFB8 for complex I (CI), anti-SDHA for complex II (CII), anti-UQCRC2 for complex III (CIII), anti-COX1 for
complex IV (CIV), and anti-ATP5A for complex V (CV). Complex II was used as a loading control. Blots are representative of two technical repeats. (B) SDS-PAGE
and immunoblotting analysis of muscle samples from two age-matched controls (C1 and C2) and Patients (P1 and P2). Antibodies against ND1, NDUFV1, NDUFS3,
NDUFB8 were used as markers of complex I; SDHA for complex II; UQCRC2 for complex III; COXI for complex IV; ATP5A for complex V and VDAC1 as a
mitochondrial mass marker. Blots are representative of two independent experiments.
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(Andreu et al., 1999; Musumeci et al., 2000). Given these diagnostic
caveats listed above, muscle biopsy would retain its crucial role in
establishing the diagnosis of primary mtDNA disease, (Hardy et al.,
2016; Zierz et al., 2019) especially in cases without apparent
maternal history and de novo variants.

In conclusion, isolated complex I deficiency is associated with
an increasingly diverse phenotypic expression of mitochondrial
disease. We highlight two novel mutations causing isolated
complex I deficiency and diverse clinical features. Our findings
also serve to highlight the importance of diagnostic muscle
biopsy in proving the pathogenicity of novel mtDNA variants,
particularly in cases with non-syndromic presentations.
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