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Abstract An efficient four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles is described

by one-step condensation of an aldehyde, benzil, ammonium acetate and primary aromatic amine

with nanocrystalline magnesium aluminate in ethanol under ultrasonic irradiation. High yields,

short reaction times, mild conditions, simplicity of operation and easy work-up are some advanta-

ges of this protocol.
ª 2012 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

Imidazoles are an important group of five-membered nitrogen

heterocycles that have attracted much attention because of the
participation in the structure of biological active molecules
[1]. Compounds bearing imidazole nucleus are known to show

antiedema and anti-inflammatory [2,3], analgesic [4], anthel-
mintic [5], anti-bacterial [6], antitubercular [7], anti-fungal [8],
antitumor [9] and antiviral activities [10]. In addition, many of

the substituted diaryl imidazoles are known as potential inhib-
itors of the p38 MAP kinase [11]. This versatile applicability
highlights the importance of access to efficient synthetic routes
to well benign highly substituted imidazole derivatives. These

compounds are generally synthesized in a four-component con-
densation of aldehydes, 1,2-diketones, amines, and ammonium
acetate in the presence of various catalysts such as silica gel or

HY zeolite [12], silica gel/NaHSO4 [13], K5CoW12O40Æ3H2O
[14], molecular iodine [15], HCLO4–SiO2 [16], heteropolyacids
[17], InCl3Æ3H2O [18], FeCl3Æ6H2O [19], BF3–SiO2, AlCl3,
MgCl2 [20], alumina [21,22], copper acetate [23], 1,4-diazabicyclo

[2,2,2]octane (DABCO) [24], ionic liquid [25], Zr(acac)4 [26],
PPA–SiO2 [27], nano-TiCl4ÆSiO2 [28], nanocrystalline sulfated
zirconia (SZ) [29], and silica-bonded propylpiperazine

N-sulfamic acid (SBPPSA) [30], under microwave-irradiated,
solvent-free or classical conditions. However, some of these syn-
thetic methods have limitations such as harsh reaction condi-

tions, use of hazardous chemicals with often expensive acid
catalysts, complex working and purification procedures, signif-
icant amounts of waste materials, long reaction times, andmod-

erate yields. Therefore, the development of simple, efficient,
clean, high-yielding, and environmentally friendly approaches
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Scheme 1 Synthesis of tetrasubstituted imidazole derivatives under ultrasound irradiation.
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using new catalysts for the synthesis of highly substituted imida-
zoles is an important task for organic chemists.

Nanocrystalline magnesium aluminate spinel, MgAl2O4

possesses a variety of interesting electrical, magnetic and opti-
cal properties. The compound and its derivatives have so far

attracted a great deal of interest of both researchers and engi-
neers due to their remarkable physical and chemical properties
such as high melting point, high mechanical strength, high

resistance to chemical attack, and low electrical losses [31]. It
can be potentially used as a new laser material, refractory
ceramics, electrical and irradiation resistance materials,
replacement of quartz glass, and as a catalyst or a catalyst sup-

port in petroleum industry [32].
Recently, organic synthesis is employing greener approach,

due to advantages compared with conventional methods in

terms of high selectivity, ease of manipulation, cleaner reaction
profiles and relatively benign conditions. Greener synthesis
technique involves mainly solvent-free reaction, ultrasound

irradiation and solid phase synthesis using a catalyst and
microwave irradiation. Ultrasound irradiation assisted organic
synthesis has become an important method for organic and

medicinal chemists in rapid organic synthesis avoiding by-
product formation [33,34]. Herein we wish to report an effi-
cient, mild and simple method for preparation of tetrasubsti-
tuted imidazole derivatives under ultrasound irradiation

using nanocrystalline magnesium aluminate as an efficient cat-
alyst (Scheme 1).
Experimental

Chemical and apparatus

Chemical reagents were purchased from the Merck Chemical
Company in high purity. All materials were of commercial re-

agent grade. Melting points were determined in open capillar-
ies using an Electro thermal MK3 apparatus, Infrared (IR)
spectra were recorded using a Perkin–Elmer FT-IR 550 Spec-

trometer. 1H NMR and 13C NMR spectra were recorded with
a Bruker DRX-400 spectrometer at 400 and 100 MHz respec-
tively. NMR spectra were obtained in DMSO-d6 solutions.
The element analyses (C, H, N) were obtained from a Carlo

ERBA Model EA 1108 analyzer or a Perkin–Elmer 240c ana-
lyzer. Ultrasonication was performed in a EUROSONIC� 4D
ultrasound cleaner with a frequency of 50 kHz and an output

power of 200 W. The reaction occurred at the maximum en-
ergy area in the cleaner, where the surface of reactants in the
reaction vessel was slightly lower than the level of the water

and the temperature of the water bath was controlled at 60 �C.
Preparation of 1,2,4,5-tetrasubstituted imidazoles by use of
nanocrystalline MgAl2O4

Nanocrystalline magnesium aluminate spinel with high surface

area and mesoporous structure was synthesized by a facile
method with the addition of N-Cetyl-N,N,N-trimethylammo-
nium Bromide (CTAB) as surfactant. The crystalline sizes
are determined by XRD between 4 and 12 nm. The pore vol-

ume and pore size were also calculated from the N2 adsorp-
tion/desorption isotherm giving approximately 1.10 cm3 g�1

[35]. Then, for synthesis of tetrasubstituted imidazoles a

50 mL flask was charged with 1,2-diketone (1 mmol), aldehyde
(1 mmol), ammonium acetate (4 mmol), and primary aromatic
amine (4 mmol) in presence of nanocrystalline magnesium alu-

minate (0.05 g) and ethanol (2 mL). The mixture was sonicated
under silent conditions by ultrasound (50 kHz) at 60 �C for the
appropriate time, as shown in Table 3. The temperature of
reaction mixture was controlled by a water batch. After the

completion of the reaction (monitored by TLC), the reaction
was allowed to cool, the solvent was evaporated, then the solid
residue was recrystallized from acetone–water mixture to af-

ford the pure 1,2,4,5-tetrasubstituted imidazole derivatives as
colorless crystals.

1,2,4,5-Tetraphenyl-1H-imidazole (5a)

White powder; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.71; IR (KBr) mmax: 3055 (CAH aromatic), 1599

(C‚C aromatic), 1496 (C‚N) cm�1; UV (CH3OH) kmax:
286 nm; 1H NMR (400 MHz, DMSO-d6): dH 7.16–7.49 (m,
20H, HAAr) ppm; 13C NMR (100 MHz, DMSO-d6): dC
128.70, 128.63, 130.05, 130.85, 131.02, 131.55, 132.53, 132.67,

132.92, 133.87, 134.26, 134.81, 135.41, 136.23, 137.11, 138.40,
139.54 ppm; Anal. Calcd. for C27H20N2: C 87.07, H 5.41, N
7.52. Found: C 87.09, H 5.40, N 6.51%.

2-(4-Methylphenyl)-1,4,5-triphenyl-1H-imidazole (5b)

Yellow needle solid; Rf (petroleum ether:ethylacetate): 7:3 (v/

v) = 0.8; IR (KBr) mmax: 3065 (CAH aromatic), 1590 (C‚C
aromatic), 1491 (C‚N) cm�1; UV (CH3OH) kmax: 274 nm;
1H NMR (400 MHz, DMSO-d6): dH 2.25 (s, 3H, CH3), 7.07

(d, J= 8 Hz, 2H, HAAr), 7.08–7.45 (m, 15H, HAAr), 7.46
(d, J = 8 Hz, 2H, HAAr) ppm; 13C NMR (100 MHz,
DMSO-d6): dC 21.20, 126.83, 126.84, 128.03, 128.61, 128.83,
128.90, 129.13, 129.59, 130.92, 131.54, 131.59, 134.92, 137.19,

138.29, 146.61 ppm; Anal. Calcd. for C28H22N2: C 87.02, H
5.72, N 7.27. Found: C 87.01, H 5.74, N 7.25%.
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2-(4-Methoxyphenyl)-1,4,5-triphenyl-1H-imidazole (5c)

Milky crystal; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.63; IR (KBr) mmax: 3058 (CAH aromatic), 1601
(C‚C aromatic), 1505 (C‚N), 1065 (CAOAAr) cm�1; UV

(CH3OH) kmax: 289 nm; 1H NMR (400 MHz, DMSO-d6): dH
3.24 (s, 3H, CH3), 6.83 (d, J = 7.4 Hz, 2H, HAAr), 7.23–
7.41 (m, 15H, HAAr), 7.47 (d, J = 7.4 Hz, 2H, HAAr) ppm;
13C NMR (100 MHz, DMSO-d6): dC 55.57, 114.07, 123.30,

126.83, 128.60, 128.77, 128.89, 129.12, 129.16, 129.24, 130.12,
131.10, 131.29, 131.59, 135.0, 137.07, 137.27, 146.49,
160.0 ppm; Anal. Calcd. for C28H22N2O: C 87.30, H 5.16, N

7.54. Found: C 87.33, H 5.15, N 7.52%.

2-(3,4-Dimethoxyphenyl)-1,4,5-triphenyl-1H-imidazole (5d)

White powder; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.62; IR (KBr) mmax: 3045 (CAH aromatic), 1617
(C‚C aromatic), 1578 (C‚N), 1154 (CAOAAr) cm�1; UV

(CH3OH) kmax: 293 nm; 1H NMR (400 MHz, DMSO-d6): dH
3.6 (s, 6H, 2CH3), 6.85 (d, J = 8.8 Hz, 2H, HAAr), 7.15–
7.33 (m, 15H, HAAr), 7.48 (d, J = 7.2 Hz, 1H, HAAr) ppm;
13C NMR (100 MHz, DMSO-d6): dC 55.57, 55.60, 115.18,

124.55, 127.18, 128.53, 128.61, 129.09, 129.19, 129.20, 129.36,
130.10, 131.15, 132.30, 132.48, 136.50, 136.55, 136.61, 140.49,
145.29 ppm; Anal. Calcd. for C29H24N2O2: C 80.53, H 5.60,

N 6.48. Found: C 80.52, H 5.59, N 6.47%.

2-(4-Chlorophenyl)-1,4,5-triphenyl-1H-imidazole (5e)

Cream crystal; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.57; IR (KBr) mmax: 3050 (CAH aromatic), 1603
(C‚C aromatic), 1505 (C‚N), 1065 (CACl) cm�1; UV

(CH3OH) kmax: 296 nm; 1H NMR (400 MHz, DMSO-d6): dH
7.15–7.36 (m, 17H, HAAr), 7.47 (d, J = 7.4 Hz, 2H, HAAr)
ppm; 13C NMR (100 MHz, DMSO-d6): dC 127.30, 127.50,
127.70, 128.0, 128.20, 129.31, 129.70, 129.85, 130.10, 131.54,

132.69, 133.60, 133.68, 145.0, 149.72 ppm; Anal. Calcd. for
C27H19ClN2: C 79.70, H 4.71, N 6.88. Found: C 79.72, H
4.70, N 6.87%.

2-(4-Bromophenyl)-1,4,5-triphenyl-1H-imidazole (5f)

White powder; Rf (petroleum ether:ethylacetate): 7:3 (v/

v) = 0.71; IR (KBr) mmax: 3045 (CAH aromatic), 1604
(C‚C aromatic), 1588 (C‚N), 1072 (CABr) cm�1; UV
(CH3OH) kmax: 292 nm; 1H NMR (400 MHz, DMSO-d6): dH
7.15–7.40 (m, 17H, HAAr), 7.50 (d, J = 7.2 Hz, 2H, HAAr)

ppm; 13C NMR (100 MHz, DMSO-d6): dC 128.22, 128.35,
128.49, 129.50, 129.58, 129.67, 132.19, 132.43, 133.50, 135.68,
137.38, 137.58, 139.50, 142.16, 145.92,147.30 ppm; Anal.

Calcd. for C27H19BrN2: C 71.85, H 4.25, N 6.20. Found: C
71.84, H 4.24, N 6.21%.

2-(4-Flurophenyl)-1,4,5-triphenyl-1H-imidazole (5g)

White crystal; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.55; IR (KBr) mmax: 3050 (CAH aromatic), 1509

(C‚C aromatic), 1095 (C‚N), 1095 (CAF) cm�1; UV
(CH3OH) kmax: 284 nm; 1H NMR (400 MHz, DMSO-d6): dH
7.11–7.30 (m, 15H, HAAr), 7.41 (d, J = 8.0 Hz, 1H, HAAr),
7.46 (d, J= 8.0 Hz, 2H, HAAr), 7.53 (t, J = 8.0 Hz, 1H,
HAAr) ppm; 13C NMR (100 MHz, DMSO-d6): dC 129.82,

129.94, 130.51, 130.55, 130.64, 131.60, 132.75, 132.81, 133.65,
136.61, 136.82, 138.50, 140.50, 143.13, 144.90,148.02 ppm;
Anal. Calcd for C27H19FN2: C 83.06, H 4.9, N 7.17. Found:

C 83.5, H 4.93, N 7018%.

2-(1,4,5-Triphenyl-1H-imidazol-2-yl)phenyl (5h)

White powder; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.91; IR (KBr) mmax: 3448 (OH), 3061(CAH aromatic),
1590 (C‚C aromatic), 1485 (C‚N), 1254 (ArAO) cm�1;

UV (CH3OH) kmax: 320 nm; 1H NMR (400 MHz, DMSO-
d6): dH 6.54 (t, J = 8.0 1H, HAAr), 6.65 (d, 1H, HAAr),
6.93 (d, 1H, HAAr), 7.16–7.43 (m, 16H, HAAr), 12.57 (s,
1H, OH) ppm; 13C NMR (100 MHz, DMSO-d6): dC 110.30,

112.51, 114.61, 116.48, 118.92, 121.35, 122.90, 124.35, 125.47,
127.74, 128.65, 130.24, 135.61, 137.66, 146.82, 160.72 ppm;
Anal. Calcd for C27H20N2O: C 83.48, H 5.19, N, 7.21. Found:

C 83.46, H 5.20, N 7.22%.

2-(3,5-Dimethoxyphenyl)-1,4,5-triphenyl-1H-imidazole (5i)

White powder; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.62; IR (KBr) mmax: 3057 (CAH aromatic), 1597
(C‚C aromatic), 1494 (C‚N), 1157 (CAOAAr) cm�1; UV
(CH3OH) kmax: 293 nm; 1H NMR (400 MHz, DMSO-d6): dH
3.55 (s, 6H, 2CH3), 6.43 (s, 1H, HAAr), 6.55 (d, 2H, HAAr),
7.15–7.57 (m, 15H, HAAr) ppm; 13C NMR (100 MHz,
DMSO-d6): dC 56.67, 56.73, 114.15, 122.29, 125.38, 126.43,

128.65, 129.0, 129.53, 130.21, 130.65, 130.81, 132.30, 132.63,
133.80, 135.0, 135.35, 135.51, 138.49, 142.16 ppm; Anal. Calcd
for C29H24N2O2: C 80.51, H 5.61, N 6.45. Found: C 80.53, H

5.59, N 6.48%.

4-(1,4,5-Triphenyl-1H-imidazol-2-yl)phenol (5j)

White powder; Rf (petroleum ether:ethylacetate): 7:3 (v/
v) = 0.90; IR (KBr) mmax: 3452 (OH), 3057 (‚CH aromatic),
1604 (C‚C aromatic), 1578 (C‚N), 1230 (ArAO) cm�1;
UV (CH3OH) kmax: 330 nm; 1H NMR (DMSO-d6,

400 MHz): dH 6.87–6.91 (d, J= 8 Hz, 2H), 7.15–7.49 (m,
15H), 7.61–7.65 (d, J= 8.2 Hz) ppm; 13C NMR (DMSO-d6,
100 MHz): dC 115.3, 119.8, 125.3, 126.0, 126.7, 127.9, 128.2,

128.5, 128.6, 1293.3, 131.6, 131.8, 135.3, 137.3, 146.6,
159.3 ppm; Anal. Calcd. for C27H20N2O: C 83.48, H 5.19, N
7.21. Found: C 83.44, H 5.11, N 7.09%.

Results and discussion

Since tetrasubstituted imidazoles have become increasingly

useful and important in the pharmaceutical fields, the develop-
ment of clean, high-yielding, and environmentally friendly syn-
thetic approaches are still desirable and much in demand.

Many recent papers are illustrating the use of nanocatalyst
in organic reactions [36,37]. Thus, nanocatalysts are potential
catalysts due probably to their high catalytic activities, low
costs and ease of handling. MgAl2O4 is an important acid

catalyst which efficiently catalyzes the preparation of 1,2,4,5-



Scheme 2 Postulated mechanism for imidazoles synthesis.

Table 1 Comparison of the classical- and ultrasound irradi-

ation methods for the synthesis of compound 5c using

nanocrystalline MgAl2O4 as a catalystc.

Entry MgAl2O4 (mol%) Yield (%)a Yield (%)b

1 0 15 10

2 0.007 20 15

3 0.014 37 28

4 0.020 56 40

5 0.028 78 65

6 0.035 95 90

7 0.042 88 79

a Ultrasound irradiation.
b Reflux conditions.
c Conditions: temperature: 60 �C, time: 15 min.
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tetrasubstituted imidazoles. It seems that the existence of

MgAl2O4 as an acidic catalyst can accelerate this cycloconden-
sation reaction by increasing the reactivity of benzaldehyde
derivatives and benzil. Magnesium aluminate spinel used as

catalyst, shows a relatively large surface area, small crystalline
size and special active sites, which can be controlled by its
preparation method. The high activity of magnesium alumi-
nate nanoparticles is not only because of their high effective

surface. In other words, the high impact of these nanoparticles
is due to the high concentration of areas with low coordination
and structural deficiencies in their surface. When the particle

size decreases to nanoscale, defect is made in coordination of
constituent atoms. Most atoms have a partial capacity and re-
main on the levels. Therefore, the crystal magnesium alumi-

nate nanoparticles act as a mild lewis acid in the synthesis of
tetrasubstituted imidazoles.

A proposed mechanism for the reaction is outlined in

Scheme 2. Based on this mechanism, it is highly probable that
the carbonyl groups of benzil and aldehydes have to be acti-
vated which occurs when the carbonyl oxygen is coordinated
by MgAl2O4. Therefore, it may be proposed that the MgAl2O4

catalyst facilitates the formation of diamine intermediate [A]
by increasing the electrophilicity of the carbonyl group of
the aldehyde. Then nucleophilic attack of the nitrogen of

ammonia obtained from NH4OAc on the activated carbonyl
group, resulted in formation of diamine intermediate [A],
and it followed by the nucleophilic attack of the in situ gener-

ated diamine [A] to carbonyl of benzil, giving the intermediate
[B]. Their subsequent intramolecular interaction leads to cycli-
zations and eventually to the formation of intermediate [C],
which dehydrates to the tetrasubstituted imidazoles.

Effects of the catalyst under ultrasound irradiation

In an initial study, for examination of the catalytic activity of

different catalysts such as AlCl3, SbCl3 and nanocrystalline
MgAl2O4 in condensation reaction, benzaldehyde first reacted
with aniline, benzil and ammonium acetate in ethanol (2 mL)
for 15 min under ultrasound irradiation in the presence of each

catalysts (0.035 mol%) separately. In this study, we found that
nanocrystalline MgAl2O4 was the most effective catalyst in
terms of yield of the tetraarylimidazole (90%) while other cat-

alysts formed the product with the yields of 20–43%. In the ab-
sence of catalyst, the yield of the product was found to be very
low. Therefore, we decided to use nanocrystalline MgAl2O4

with a high specific surface area as a catalyst with higher activ-

ity and better controlled selectivity. Herein, we report facile
multi-component synthesis of 1,2,4,5-tetrasubstituted imidz-
oles by using nanocrystalline MgAl2O4 as a novel and efficient

catalyst under ultrasound irradiation. To show the effect of
ultrasound irradiation in these reactions, the synthesis of 2-
(4-methoxyphenyl)-1,4,5-triphenylimidazole investigated as a

model reaction in the presence of various amounts of nano-
crystalline MgAl2O4 under ultrasound irradiation and reflux
conditions (Table 1).

In all cases, the results show that the reaction times are
shorter and the yields of the products are higher under sonica-
tion. The best results were obtained using 0.035 mol% of the
catalyst under both conditions.



Table 2 The synthesis of 5c under ultrasound irradiation at different reaction conditions.

Entry Temperature (�C) Frequency (kHz) Time (min) Yield (%)

1 25 25 15 73

2 37 25 15 75

3 45 25 15 76

4 56 25 15 81

5 60 25 15 83

6 60 50 15 98

7 65 50 15 89

Table 3 Sonochemical synthesis of tetraarylimidazoles catalyzed by 0.035 mol% nanocrystalline MgAl2O4 at 60 �C a.

Entry Ar Time (min) Product Yield (%) M.p. (�C)

1 C6H5 15 5a 91 216–218 [8]

2 p-Me C6H4 17 5b 95 186–188 [8]

3 p-MeO C6H4 18 5c 93 253–254 [8]

4 3,4-(OMe)2 C6H3 20 5d 90 178–180

5 p-Cl C6H4 12 5e 96 152–154 [8]

6 p-Br C6H4 12 5f 94 165–168

7 2-F C6H4 15 5g 93 165–168

8 2-OH C6H4 18 5h 90 253–255 [8]

9 3,5-(OMe)2 C6H3 14 5i 97 163–165

10 p-OH C6H4 25 5j 89 282–285 [20]

a Conditions: 1 mmol benzil 1,1 mmol aldehyde 2, 4 mmol amine 3, 4 mmol ammonium acetate 4.
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Effects of reaction temperature and frequency under ultrasonic
irradiation

Subsequent efforts were focused on optimizing conditions for
formation of 1,2,4,5-tetrasubstituted imidazoles by using dif-

ferent temperatures and frequencies of ultrasonic irradiation
to determine their effects on the above model reaction (Ta-
ble 2). The maximum yield was obtained when the reaction

was carried out under irradiation of 50 kHz at 60 �C for
15 min (Table 2, entry 6). Lower yield (89%) was observed
when higher temperature than 60 �C was used.

High efficiency synthesis by ultrasound irradiation

After optimizing conditions, the generality of this method was

examined by the reaction of several aldehydes, benzil, ammo-
nium acetate and primary aromatic amine with nanocrystalline
magnesium aluminate in ethanol under ultrasonic irradiation.
Interestingly, a variety of aldehydes participated well in this

reaction (Table 3). Aldehydes bearing either electron-with-
drawing or electron donating groups perform equally well in
the reaction and imidazoles are obtained in high yields. Short

reaction time, easy work up and high yields are several benefits
of this method.
Conclusion

In summary, we described an efficient and convenient route to
synthesize tetrasubstituted imidazoles. Nanocrystalline MgA-

l2O4 have been used as an new catalytic system for the promo-
tion of the synthesis of 1,2,4,5-tetrasubstituted imidazole
derivatives in the presence of solvent under ultrasonic irradia-

tion. Good yields and easy availability of starting materials are
valuable, noteworthy advantages of this method, which allows
a privileged access to previously unattainable products. The

improvement of the yield reveals the method reported as an
attractive approach for the synthesis of many similar
compounds.
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