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Triple-negative breast cancer (TNBC) is one of the most aggressive tumors, with poor prognosis and high metastatic capacity. The
aggressive behavior may involve inflammatory processes characterized by deregulation of molecules related to the immunological
responses in which interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are involved. It is known that calcitriol, the active
vitamin D metabolite, modulates the synthesis of immunological mediators; however, its role in the regulation of IL-1β and TNF-α in
TNBC has been scarcely studied. In the present study, we showed that TNBC cell lines SUM-229PE and HCC1806 expressed vitamin
D, IL-1β, and TNF-α receptors. Moreover, calcitriol, its analogue EB1089, IL-1β, and TNF-α inhibited cell proliferation. In addition,
we showed that synthesis of both IL-1β and TNF-α was stimulated by calcitriol and its analogue. Interestingly, the antiproliferative
activity of calcitriol was significantly abrogated when the cells were treated with anti-IL-1β receptor 1 (IL-1R1) and anti-TNF-α
receptor type 1 (TNFR1) antibodies. Furthermore, the combination of calcitriol with TNF-α resulted in a greater antiproliferative
effect than either agent alone, in the two TNBC cell lines and an estrogen receptor-positive cell line. In summary, this study
demonstrated that calcitriol exerted its antiproliferative effects in part by inducing the synthesis of IL-1β and TNF-α through IL-1R1
and TNFR1, respectively, in TNBC cells, highlighting immunomodulatory and antiproliferative functions of calcitriol in TNBC tumors.

1. Introduction

Triple-negative breast cancer (TNBC), which usually
accounts for 5% to 20% of all types of human breast tumors,
has high metastatic capacity, poor prognosis, and higher
incidence in younger patients [1–3]. It is characterized
by the lack of expression of estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal growth

factor receptor 2 (HER2) [4]. Given the absence of spe-
cific therapeutic molecular targets for this type of tumor,
chemotherapy, radiotherapy, and mastectomy represent
nowadays the mainstay for the treatment of affected indi-
viduals [5]. In recent years, the TNBC has been subclas-
sified into 6 types based on its gene expression profile [6],
with different behaviors among them, including response
to treatment [7].
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The aggressive behavior and poor prognosis of TNBC
have been associated to inflammatory processes character-
ized by deregulation of molecules involved in the immune
response [8]. In particular, interleukin-1β (IL-1β) and tumor
necrosis factor-α (TNF-α) proinflammatory cytokines have
an important role in the interaction between breast cancer
cells and their microenvironment [9].

The cytokine IL-1β is a mediator of immune and inflam-
matory responses and exerts its biological effects by binding
to two different membrane receptors, IL-1β receptor 1 (IL-
1R1) that is a signaling receptor, leading to the activation of
genes, and the IL-1β receptor 2 (IL-1R2) that lacks the intra-
cellular domain and thus is incapable of signal transfer,
which is why it is considered as dominant negative [10, 11].
Controversial functions have been attributed to this cytokine
in breast cancer, including induction of migration and inva-
sion or inhibition of cell proliferation [10, 12, 13].

TNF-α is another proinflammatory mediator with dual
effects in breast cancer. Via its type 1 and type 2 receptors
(TNFR1 and TNFR2), TNF-αmay activate apoptosis, inhibit
tumor growth, or promote tumor invasion, propagation, and
aggressive behavior [14]. Depending on the cellular context,
conditions, and microenvironment, TNFR1 activation may
lead to the induction of apoptosis or necroptosis; however,
the binding of TNF-α to TNFR2 most likely promotes cell
proliferation [15–17].

On the other hand, low levels of calcitriol or its precursor
calcidiol are associated with high risk of breast cancer inci-
dence, progression, and aggressive behavior [18–21]. Calci-
triol, via its nuclear vitamin D receptor (VDR), exerts
antineoplastic properties by regulating several cell functions
including growth, invasion, and cell apoptosis among others
[22–24]. In addition, it has been demonstrated that vitamin
D analogues with lower calcemic effects, such as EB1089,
are also able to inhibit proliferation, stimulate differentiation,
and induce apoptosis in breast cancer cells [25].

Calcitriol, as an immunomodulatory agent, has shown to
differentially regulate the synthesis of both IL-1β and TNF-α
cytokines in target tissues, including trophoblasts, leukemia
cells, and human gingival fibroblasts [26–30]. In addition,
CB1093, a calcitriol analogue, is known to increase TNF-α-
induced cytotoxicity in ER-positive breast cancer cells [31].
However, little is known on the effects of calcitriol on IL-1β
and TNF-α regulation in TNBC cells.

In addition, evidences from our laboratory and others
have demonstrated that calcitriol enhanced the antiprolifera-
tive activity of antineoplastic agents, such as tyrosine kinase
inhibitors, antiestrogens, radiotherapy, and chemotherapy
[32–36].

The aim of the present study was to investigate the role of
calcitriol on IL-1β and TNF-α gene and protein expression,
including the effects of these cytokines on cell growth and
their participation in the antiproliferative activity of calcitriol
in TNBC cells.

2. Materials and Methods

2.1. Reagents. Cell culture media were purchased from Invi-
trogen (Thermo Fisher Scientific MA, USA). Fetal bovine

serum (FBS) was from Hyclone Laboratories Inc. (Logan,
UT, USA). Calcitriol (1α,25-dihidroxivitamina D3) was pur-
chased from Sigma (St. Louis, MO, USA), seocalcitol
(EB1089) was obtained from Tocris Bioscience (Bristol,
United Kingdom), and IL-1β was purchased form R&D Sys-
tems (Minneapolis, USA). TNF-α was obtained from Pepro-
Tech (USA); TRIzol and the oligonucleotides for real-time
polymerase chain reaction (qPCR) were from Invitrogen.
The TaqMan Master reaction, probes, plates, and reverse
transcription (RT) system were all purchased from Roche
Diagnostics (Mannheim, Germany).

2.2. Cell Culture. The TNBC SUM-229PE (Asterand, San
Francisco, CA) established cell line was cultured in Ham’s
F-12 medium supplemented with 5% heat-inactivated FBS,
10mM HEPES, 1μg/ml hydrocortisone, 5μg/ml insulin,
and 1% antibiotic-antifungal. The TNBC HCC1806 and
ER-positive MCF7 cell lines (ATCC, Manassas, VA, USA)
were cultured in RPMI 1640 medium with glutamine, sup-
plemented with 5% inactivated FBS, 10mM HEPES, 1mM
sodium pyruvate, and 1% antibiotic-antifungal. Cell cultures
were kept in a humidified atmosphere with 5% CO2 at 37

°C.

2.3. Western Blots. Cell protein homogenates (25μg) were
separated by electrophoresis in 12% polyacrylamide gels,
transferred to nitrocellulose membranes, and blocked over-
night with 5% nonfat dry milk. The membranes were washed
and incubated in the presence of the following monoclonal
antibodies: anti-IL-1R1, anti-IL-1R2, anti-TNFR1, anti-
TNFR2, anti-VDR (sc-393998, sc-376247, sc-8436, sc-
393614, and sc-13133, respectively; Santa Cruz Biotechnol-
ogy, CA, USA), and anti-glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH, MAB374, Millipore, Milford, MA,
USA) overnight at 4°C. Membranes were incubated in
the presence of secondary antibody conjugated with horse-
radish peroxidase (sc-2031, Santa Cruz Biotechnology) for
2 hours at room temperature. The immunoblots were visual-
ized by chemiluminescence using ECL Plus (Amersham
Pharmacia, UK).

2.4. Proliferation Assay. Breast cancer cell lines were seeded
in 96-well culture plates at a density of 1000-1200 cells/well
depending on the cell line by triplicate. Then, the cells were
treated in the absence or presence of different concentrations
of calcitriol, EB1089 (0.01-100nM), IL-1β, and TNF-α (0.05-
100 ng/ml) or the combination of calcitriol with TNF-α. In
addition, the cells were incubated in the presence of anti-
IL-1R1 and anti-TNFR1 alone or in combination with calci-
triol or the cytokines during 6 days at 37°C, 95% air, and 5%
CO2 in a humid environment. After incubation, cell prolifer-
ation was determined using the colorimetric XTT Assay Kit
(Roche), according to the manufacturer’s instructions.
Absorbance at 492nm was measured in a microplate reader
(BioTek, Winooski, VT, USA).

2.5. qPCR Analysis. To study the effect of calcitriol and its
analogue EB1089 in the regulation of IL-1β and TNF-α
mRNA, cell lines were cultured in the absence and presence
of different concentrations of these compounds for 24 hours.
After treatment, the cells were harvested and the RNA was
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extracted with TRIzol reagent. For the cDNA synthesis, a
commercial kit was used (Transcriptor First-Strand cDNA
Synthesis, Roche). For gene amplification, a set of specific
probes and oligonucleotides for each gene was used
(Table 1). The results were normalized against the constitu-
tive gene GAPDH. Real-time PCR was carried out using the
LightCycler 480 from Roche according to the following pro-
tocol: activation of Taq DNA polymerase and DNA

denaturation at 95°C for 10 minutes, proceeded by 45 ampli-
fication cycles consisting of 10 s at 95°C, 30 s at 60°C, and 1 s
at 72°C.

2.6. TCGA Data Analyses. A search in the Human Protein
Atlas database (http://www.proteinatlas.org) was performed
with the expression levels by RNAseq of IL-1β and TNF-α
in Fragments Per Kilobase Million (FPKM) for 1075 patients
with breast cancer from The Cancer Genome Atlas (TCGA)
database. The optimal cutoff for IL-1β and TNF-α was eval-
uated with the X-tile and Cutoff Finder software [37, 38] for
overall survival (OS). Survival analysis was evaluated through
the Kaplan-Meier plot and the log-rank test in the SPSS soft-
ware (SPSS Inc., Chicago, IL, USA). A P value < 0.05 was
considered statistically significant.

2.7. Cytokine Measurements. The cell lines were cultured in
the absence and presence of different concentrations of calci-
triol and its analogue during 3 and 72 hours to IL-1β and
TNF-α. The quantification of IL-1β and TNF-α concentra-
tions in culture media was determined in triplicate by
enzyme-linked immunosorbent assay (R&D Systems ELISA
Kits) according to the manufacturer’s protocol. The absor-
bance was quantified at a wavelength of 492 nm in a Multis-
kan MS photometer type 352 (Labsystems, Helsinki,
Finland).

2.8. Statistical Analyses. Data are expressed as the mean ±
standard deviation (SD). Statistical analyses were determined
by one-way ANOVA followed by the Holm-Sidak method,
using a specialized software package (SigmaStat, Jandel Sci-
entific). Differences were considered statically significant at
P < 0 05.

3. Results

3.1. Expression of VDR and Cytokine Receptors in TNBC Cell
Lines. The basal protein expression of the VDR (48 kDa), IL-
1R1 (80 kDa), IL-1R2 (46 kDa), TNFR1 (55 kDa), and
TNFR2 (75 kDa) was studied by Western blots in TNBC cell
lines. MCF7 cells were included as positive controls. As
depicted in Figure 1, all cell lines studied showed the presence
of all receptors tested, suggesting that TNBC cells are able to
respond to calcitriol, IL-1β, and TNF-α. Of note, TNBC cells
had higher IL-1R1 and lower VDR protein expression when
compared to ER-positive cells. Between TNBC cells studied,
SUM-229PE showed lower TNFR2 protein expression than
HCC1806 cells.

Table 1: Probes and oligonucleotides used in qPCR assays.

Gene Sense oligonucleotide Antisense oligonucleotide Fragment generated (bp) Probe number

IL-1β TAC CTG TCC TGC GTG TTG AA
TCT TTG GGT AAT TTT

TGG GAT CT
76 78

TNF-α CAG CCT CTT CTC CTT CCT GA
GCC AGA GGG CTG ATT

AGA GA
123 29

VDR GTG AGA CCT CAC AGA AGA GCA C CAT TGC CTC CAT CCC TGA 72 68

GAPDH AGC CAC ATC GCT CAG ACA C
GCC CAA TAC GAC CAA

ATC C
66 60

IL-1R1

IL-1R2

TNFR1

TNFR2

GAPDH

VDR

SUM HCC MCF7

48

MW
(KDa)

80

46

55

75

36

Figure 1: Expression pattern of VD, IL-1β, and TNF-α receptors in
TNBC established cell lines. Cell lysates from untreated SUM-
229PE (SUM), HCC1806 (HCC), or MCF7 were separated by
SDS-PAGE. Thereafter, proteins were transferred to nitrocellulose
membranes and incubated in the presence of specific antibodies.
GAPDH was used as loading control. A representative image of a
Western blot from two independent experiments is shown. VDR:
vitamin D receptor; IL-1R: IL-1β receptor; TNFR: TNF-α receptor.
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3.2. Effects of Calcitriol and Cytokines on Cell Proliferation.
The effects of different concentrations of cytokines and
VDR agonists on breast cancer cell proliferation were evalu-
ated using the XTT method. The results showed that the sen-
sitivity of the cells to the compounds varied among the cell
lines. As shown in Figure 2, calcitriol and its analogue
EB1089 significantly inhibited the proliferation of SUM-
229PE and MCF7 cells. Regarding cytokines, IL-1β signif-
icantly diminished the growth of SUM-229PE cells. In
contrast, TNF-α did have inhibitory effects in the prolifer-
ation of all the three cell lines tested. Neither EB1089 nor
IL-β had any effect on HCC1806 cell growth, while calci-
triol significantly inhibited cell proliferation only at
100nM.

Considering IL-1β and TNF-α effects in the proliferation
of breast cancer cell lines, we decided to investigate the

relation between the cytokine mRNA levels and survival of
breast cancer patients using TCGA data retrieved from the
Human Protein Atlas database. The results demonstrated
that patients with high mRNA expression levels of IL-1β
had a better prognosis than those with low levels. Patients
with high IL-1β had a median overall survival (OS) of 18.0
years vs. 9.4 years for the rest (P = 0 007). Those cases with
high TNF-α presented a median OS of 10.8 vs. 9.4 years
(P = 0 249) though not statistically significant, there was a
trend towards better prognosis. The optimal cutoff points
were 0.62 and 0.96 FPKM for IL-1β and TNF-α, respectively
(Figure 3).

3.3. Calcitriol Induced IL-1β and TNF-α Gene Expression and
Secretion in TNBC Cells. There is substantial evidence that
calcitriol regulates the production of IL-1β and TNF-α in
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Figure 2: Calcitriol, EB1089, IL-1β, and TNF-α effect on breast cancer cell proliferation. SUM-229PE (■), HCC1806 (●), andMCF7 (▲) cells
were cultured in the absence (0) or presence of different concentrations of calcitriol (a), EB1089 (b), IL-1β (c), or TNF-α (d) during 6 days.
Then, cell proliferation was evaluated by the XTT method. The results represent the average of 3 experiments, each in triplicate ± SD. ∗P
< 0 05 vs. control. Nontreated cells were considered as 100% of cell proliferation. Ethanol was used as vehicle of calcitriol and EB1089 and
phosphate-buffered saline solution (PBS) for cytokines.
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different tissues [26–28, 30]. Therefore, we decided to evaluate
the effects of calcitriol and its analogue on the production of
these cytokines in breast cancer cells. Figure 4 shows that both
calcitriol and EB1089 stimulated IL-1β and TNF-α gene expres-
sion in SUM-229PE cells. IL-1βmRNA expression levels signif-
icantly increased at a concentration of 100nM of calcitriol and
at all concentrations of EB1089 used (Figure 4(a)). A significant
increase of TNF-α gene expression was observed at a concentra-
tion of 100nM of calcitriol and at 10nM in the case of EB1089
(Figure 4(b)). Regarding HCC1809 cells, calcitriol treatment
significantly increased TNF-α mRNA levels only at 100nM
(Supplementary Figure S1b), while EB1089 induced IL-1β
gene expression in MCF7 at all concentrations tested
(Supplementary Figure S1c). Neither calcitriol nor its analogue
significantly modified IL-1β gene expression in HCC1809
(Supplementary Figure S1a) or TNF-α in MCF7 cells
(Supplementary Figures S1a and S1d, respectively).

Cytokine’s secretion was also studied. As shown in
Table 2, calcitriol at concentrations of 10 and 100 nM signif-
icantly increased TNF-α and IL-1β secretion, respectively,
whereas IL-1β and TNF-α levels were significantly aug-
mented by EB1089 at all concentrations examined in SUM-
229PE cells. Regarding HCC1806 cells, the secretion of IL-
1β was significantly increased only with EB1089 (1-
100nM). Neither calcitriol nor EB1089 modified IL-1β or
TNF-α levels in MCF7 cells. These results demonstrated that
calcitriol and its analogue have the capacity to modulate IL-
1β and TNF-α response in vitro preferably in SUM-229PE
cells; therefore, we chose this cell line to investigate the next
objective of this study.

3.4. The Antiproliferative Effects of Calcitriol Were Reversed
by Blocking IL-1R1 and TNFR1. In order to determine if cal-
citriol antiproliferative effects could be mediated through
endogenous IL-1β and TNF-α synthesis, we performed pro-
liferation assays in the presence of exogenous calcitriol, IL-
1β, and TNF-α, with or without antibodies against IL-1β,
TNF-α, or anti-cytokine receptor antibodies. As expected,
calcitriol, IL-1β, and TNF-α caused a significant decrease in
cell growth. Interestingly, the inhibitory effect of these com-
pounds was significantly reversed when cells were treated
with the combinations of calcitriol or IL-1β in the presence
of anti-IL-1R1 (Figure 5(a)) and the combinations of calci-
triol or TNF-α with anti-TNFR1 (Figure 5(b)). The anti-IL-
1β, anti-IL-1R2, anti-TNF-α, and anti-TNFR2 had no effect
on cell proliferation (data not shown). The presence of anti-
bodies alone did not modify cell proliferation (Figure 5). Our
results indicated that calcitriol decreased cell proliferation by
inducing the synthesis of the proinflammatory cytokines IL-
1β and TNF-α.

3.5. The Combination of Calcitriol with TNF-α Decreased Cell
Proliferation in a Greater Extent than Each Compound Alone.
It has been demonstrated that calcitriol and its analogues
improve the antiproliferative response of therapeutic agents
and potentiate TNF-α-induced cytotoxicity on breast cancer
cells [31, 33, 39]. Moreover, considering that both calcitriol
and TNF-α inhibited cell proliferation in the three estab-
lished breast cancer cell lines used in this study, we decided
to evaluate the combination of both compounds on cell
growth. Figure 5 shows the results obtained when calcitriol
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Figure 3: IL-1β and TNF-α expression in breast cancer patients. Kaplan-Meier plots showing the overall survival analysis of breast cancer
patients according to IL-1β (a) and TNF-α (b) expression levels from TCGA databases.
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was combined with TNF-α. The simultaneous treatment fur-
ther inhibited cell growth compared to the compounds alone
(Figures 6(a)–6(c)).

Also, the combinatory effect of calcitriol with IL-1β in
cell proliferation was evaluated; however, there were no sig-
nificant changes between treatments alone and in combina-
tion (data not shown).

4. Discussion

TNBC represents a challenge for the development of thera-
peutic strategies due to the degree of cell dedifferentiation
and the dysregulation of molecules involved in the control
of proliferation, apoptosis, migration, invasion, and immune
response [4]. Vitamin D deficiency has been associated with
an increased risk of developing breast cancer [18, 40]. In fact,
low levels of calcitriol or its precursor calcidiol have been sig-
nificantly associated with TNBC in African-American
women, including several autoimmune and chronic

inflammatory disorders [18, 41, 42]. In addition to its well-
known antitumor and antiproliferative functions, calcitriol
exerts immunomodulatory effects that result in the preven-
tion of an exacerbated immune response and induction of
innate immunity [23]. In regard to IL-1β and TNF-α regula-
tion by calcitriol, it has been demonstrated that this hormone
enhanced muramyl dipeptide-induced TNF-α production in
monocyte-derived dendritic cells from Crohn’s disease
patients [43]. Moreover, both calcitriol and its precursor, cal-
cidiol, induced IL-1β secretion in monocytic cells [44]. Dif-
ferent effects of calcitriol upon TNF-α and IL-1β have also
been reported in the human placenta [26, 29, 30]. However,
the regulation of IL-1β and TNF-α by calcitriol in TNBC
has not been studied. In the present work, we demonstrated
for the first time that TNBC cells expressed IL-1β and
TNF-α receptors. These cells also expressed the VDR, as pre-
viously shown [45]. Accordingly, our data support that calci-
triol and its analogue exert immunomodulatory effects on
these cells, being that both increased IL-1β and TNF-α
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Figure 4: Calcitriol and its analogue increased IL-1β and TNF-α gene expression in SUM-229PE cells. Cells were cultured in the absence or
presence of different concentrations of calcitriol (black bars) or EB1089 (white bars) for 24 hours. (a) IL-1β and (b) TNF-α gene expression
was assessed by qPCR. The results represent the average of at least 3 experiments in triplicate ± SD. ∗P < 0 05 vs. control (0). For data
normalization, gene expression in cells without treatment was considered as one.

Table 2: IL-β and TNF-α secretion induced by calcitriol and its analogue in breast cancer cell lines.

SUM-229PE HCC1806 MCF7
IL-1β (pg/ml) TNF-α (pg/ml) IL-1β (pg/ml) TNF-α (pg/ml) IL-1β (pg/ml) TNF-α (pg/ml)

Calcitriol (nM)

0 14 9 ± 8 9 7 1 ± 2 2 29 2 ± 2 5 28 4 ± 9 9 15 4 ± 4 9 27 9 ± 10 5
1 16 3 ± 1 2 10 5 ± 1 7 24 9 ± 1 7 23 7 ± 0 4 13 8 ± 4 0 34 3 ± 9 9
10 19 1 ± 2 3 22 9 ± 6 6∗ 31 3 ± 1 8 19 9 ± 1 7 12 8 ± 2 4 26 7 ± 3 1
100 33 4 ± 2 4∗ 10 9 ± 3 1 32 1 ± 3 4 20 3 ± 1 0 20 5 ± 3 4 36 4 ± 8 2

EB1089 (nM)

1 39 2 ± 11 2∗ 13 1 ± 1 3∗ 46 4 ± 3 4∗ 23 5 ± 6 3 11 76 ± 4 5 24 5 ± 8 6
10 24 3 ± 0 9∗ 17 9 ± 0 9∗ 41 7 ± 3 4∗ 21 3 ± 6 2 13 54 ± 1 3 25 0 ± 11 4
100 27 4 ± 5 1∗ 17 7 ± 1 6∗ 38 7 ± 0 8∗ 28 4 ± 7 3 17 84 ± 6 6 35 7 ± 0 7

Results are expressed as the mean ± SD cytokine secretion of triplicate determinations and represent at least three different experiments. ∗P < 0 05 vs.
nontreated cells (0).
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mRNA and secretion in SUM-229PE cells and IL-1β levels in
HCC1806 cells. Also, we found that our cultured cells
responded to IL-1β and TNF-α in terms of cell proliferation.
In this regard, these two cytokines inhibited cell growth, in a
similar manner than calcitriol. However, controversial effects
have been attributed to IL-1β and TNF-α in breast cancer [8,
14, 46, 47]. These controversial results are difficult to explain;
however, variances in the cellular type and context, experimen-
tal conditions, and culture microenvironment could be taken
into consideration to explain the differential responses to IL-
1β and TNF-α on our cultured breast cancer cells. Indeed, these
cytokines significantly inhibited or did not change proliferation
depending on the concentration and cell line evaluated. Similar
to our results, the antiproliferative functions of these cytokines
were also demonstrated, in the same concentrations, in MCF7
cells herein and elsewhere [14]. From a clinical perspective,
we found that in TCGA data retrieved from the Human Protein
Atlas database, breast cancer patients with elevated expression
of IL-1β had better prognosis reflected in the OS.

Regarding calcitriol and its analogue, and as expected,
both compounds decremented SUM-229PE and MCF7 cell
proliferation [32, 34]; however, they did not affect the growth
of HCC1806 cells. In this study, SUM-229PE cells were more
sensitive to calcitriol and cytokines when compared to
HCC1806 cells. Indeed, although both lines are TNBC cells,
SUM-229PE cells belong to the basal-like 1 (BL1) subtype,
whereas HCC1806 cells to basal-like 2 (BL2). It is known that
the BL1 subtype is characterized by increased proliferation,
loss of cell cycle control, and high expression of genes
responding to DNA damage [6], while the BL2 subtype is dis-
tinguished by high expression of myoepithelial markers and
increased growth factor signaling. In addition, the BL2 sub-
type does not respond to any classical treatment [48]. Taking

these observations into consideration, the cytokines as well as
calcitriol and its analogue could be inhibiting proliferation in
SUM-229PE cells by inducing cell cycle arrest, as it has been
observed in other tissues [49–52]. This requires further
investigation.

Since in this study, both IL-β and TNF-α inhibited cell
proliferation and their synthesis was stimulated by calcitriol,
we hypothesized that the antiproliferative effects of calcitriol
could be partially carried out by regulating endogenous pro-
duction of IL-1β and TNF-α in SUM-229PE TNBC cells. Our
results demonstrated that when the action of IL-1R1 and
TNFR1 was inhibited with specific antibodies, the inhibitory
effect of calcitriol was significantly abolished, strongly sup-
porting our hypothesis. Regarding the specific cytokine
receptor involved in this effect, the reversibility of the growth
inhibitory actions of calcitriol by anti-IL-1R1 and anti-
TNFR1 antibodies was expected, given that IL-1β signaling
is known to require mainly IL-1R1, since IL-1R2 acts rather
as a decoy receptor [10, 11], and TNFR1 activation mainly
induces apoptosis, in contrast with TNFR2 that promotes cell
proliferation [15–17]. In fact, SUM-229PE cells had higher
IL-1R1 and TNFR1 protein expression when compared to
IL-1R2 and TNFR2, which could be one of the factors con-
tributing to signaling by these receptors. Opposed to this
mechanism of action of calcitriol found in our study, Peleg
et al. demonstrated that calcitriol and some analogues
blocked IL-1β-induced growth of acute myelogenous leuke-
mia progenitor cells [27]. The above observations indicate
that the cellular context, conditions, and microenvironment
play a role in calcitriol and cytokine signaling and their final
biological effects. Specifically, our results demonstrated that
calcitriol induces IL-1β and TNF-α production, which, act-
ing in an autocrine fashion through IL-1R1 and TNFR1,
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Figure 5: Calcitriol inhibited cell proliferation by inducing endogenous production of IL-1β and TNF-α. SUM-229PE cells were treated with
calcitriol (10 nM), IL-1β (0.5 ng/ml), TNF-α (5 ng/ml), anti-IL-1R1 (5 ng/ml), and anti-TNFR1 (2 ng/ml), individually or combined as
indicated. Cell proliferation was evaluated after 6 days of treatment using the XTT method. Vehicle-treated cells were considered as 100%
of cell proliferation. The results represent the average of 3 experiments, each in triplicate ± SD. ∗P < 0 05 vs. vehicle-treated cells (-). ∗∗P <
0 05 calcitriol or cytokine alone vs. combined treatments.
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inhibits TNBC cell proliferation. Collectively, our data
demonstrated an additional mechanism of action by which
calcitriol exerts antiproliferative effects, highlighting immu-
nomodulatory and antiproliferative functions of this hor-
mone in the TNBC tumor subtype.

In recent years, combination regimens of drugs have
improved treatment outcomes in cancer. In this regard, our
laboratory and others have clearly shown the effects of calci-
triol on cell proliferation in a variety of cancer cell lines, partic-
ularly when combined with other well-established cancer
therapies [32–34]. On the other hand, TNF-α combined with
radiotherapy or cryosurgery results in a synergistic antitumor
response or complete tumor destruction, respectively, in breast
cancer models [53, 54]. Interestingly, the pretreatment with
calcitriol analogues potentiated TNF-α cytotoxic effects on
ER-positive breast cancer cells in terms of loss of cell viability
and DNA fragmentation [31]. In a similar way, in this study,
we demonstrated that the combination of calcitriol with
TNF-α resulted in a greater antiproliferative effect than drug
alone in all breast cancer cells evaluated. Notably, HCC1806
cells, which were less sensitive to calcitriol, showed a significant

reduction in cell proliferation when exposed to the compound
combination. Possibly, the combined treatment of calcitriol
and TNF-α improved the growth inhibitory response of cells
due to the ability of calcitriol to increase TNF-α-induced apo-
ptosis, as it had been previously demonstrated with vitamin D
derivatives in MCF7 cells by Pirianov and Colston [31].

5. Conclusions

The data presented herein indicated that, mechanistically,
the antiproliferative actions of calcitriol involve the participa-
tion of the endogenous proinflammatory cytokines IL-1β
and TNF-α in TNBC cells. These results are of particular
importance, especially for their implications in the treatment
of some breast cancers, such as those bearing a triple-
negative phenotype.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Figure 6: The combination of calcitriol and TNF-α inhibited cell proliferation in a greater extent than each compound alone. SUM-229PE
(a), HCC1806 (b), and MCF7 (c) cells were incubated with calcitriol, TNF-α, or their combination during 6 days, and cell proliferation
was evaluated. Calcitriol was used at the concentrations of 0.1, 100, and 10 nM in SUM-229PE, HCC1806, and MCF7 cells, respectively,
and TNF-α at a concentration of 5 ng/ml in all cases. Data from vehicle-treated cells (-) were normalized to 100%. The results represent
the average of 3 experiments, each in triplicate ± SD. ∗P < 0 05 vs. vehicle and ∗∗P < 0 05 vs. combined treatment.
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