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Abstract: As a carrier of many biologically active compounds, blood is exposed to oxidants to a
greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant
defence under both normal and oxidative stress conditions. This review evaluates data published in
the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic
activities of albumin that determine its participation in redox modulation of plasma and intercellular
fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational
experiments devoted to the study of allosteric modulation of the functional properties of the protein
associated with its participation in antioxidant defence are analysed. It has been concluded that it
is fundamentally possible to regulate the antioxidant properties of albumin with various ligands,
and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives
for using the antioxidant properties of albumin in practice are discussed.
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1. Redox System in Health and Disease: Brief Overview

The production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an inherent
property of all tissues. ROS and RNS play a significant role in the regulation of the main functions
of cells: they participate in the reactions of oxidative phosphorylation, transmission of intracellular
signals from various growth factors, modulation of various transcriptional proteins, prostaglandin
biosynthesis, mitosis and several other processes [1,2].

The sources of ROS in cells are well known. The NAD(P)H-oxidase system (NOX) is perhaps
the foremost since ROS production is its main function. In the inflammatory and immune response,
NOX produces a superoxide anion by electron transfer from NAD(P)H to molecular oxygen [3,4].
NOX1 and NOX2 isoforms promote the development of endothelial dysfunction, hypertension
and inflammation. NOX2 acts as the main source of skeletal muscle ROS during contractions [5].
NOX4 is the only isoform that generates hydrogen peroxide instead of superoxide radical [3].
The investigation of NOX functions has not lost its relevance in 2020 in the context of the COVID-19
pandemic. Thus, in the research of Violi et al. [6], it has been demonstrated that oxidative stress
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caused by NOX2 activation is associated with severity of the disease and thrombotic events in
COVID-19 patients.

Mitochondria are a powerful source of cellular ROS and contain a number of enzymes that
convert molecular oxygen to superoxide or its derivative hydrogen peroxide [7,8]. Because of the leak
of electrons from the mitochondrial enzyme complexes I and III, about 2–5% of molecular oxygen
is converted into the active form. Moreover, monoamine oxidase and cytochrome-β5 reductase in
the outer mitochondrial membrane, glycerol-3-phosphate dehydrogenase and cytochrome P450 in inner
mitochondrial membrane, and matrix enzymes aconitase, pyruvate dehydrogenase and α-ketoglutarate
dehydrogenase can produce the superoxide radical [3]. Currently, long-chain fatty acid dehydrogenase
(LCAD) and very long-chain fatty acid dehydrogenase (VLCAD) are discussed as candidates to be
added to the list of mitochondrial ROS generators [8].

NO synthases (NOS) are heme-containing proteins that catalyse the conversion of L-arginine to
L-citrulline and NO, with the help of FAD, FMN and tetrahydrobiopterin (BH4). There are three main
isoforms of the enzyme: neuronal (nNOS), which functions primarily in the central and peripheral
nervous system, but also in skeletal muscles; inducible (iNOS), expressed in many cell types in response
to cytokines; and endothelial NOS (eNOS), functioning in vascular endothelial cells [9]. BH4 serves as
a modulator of NOS activity, providing an additional electron during the catalytic cycle. In its absence,
the enzyme produces less NO but more superoxide radical. Ca2+ is an activator of NOS: all isoforms
can bind calmodulin (CaM), which causes conformational changes in the enzyme molecule, facilitating
the reaction [10]. NOS suppression and the resulting NO deficiency play a key role in endothelial
dysfunction in different pathologies: infections; cardiovascular and lung diseases; renal and kidney
disfunction [11].

Xanthine reductase is another source of ROS in cells [12]. It is a molybdenum-containing enzyme
that catalyses the final stage of purine oxidation in humans and the oxidative transformation of
pteridines and some aldehydes. Xanthine reductase exists in two forms: xanthine dehydrogenase
and xanthine oxidase (XO), which is a post-translational modification of the former. Xanthine oxidase
converts molecular oxygen to superoxide anion or hydrogen peroxide [3]. As XO is a major contributor
to oxidative stress, the enzyme inhibitors are actively studied as therapeutic agents in pathologies
accompanied by oxidative stress development [13,14].

Cytochrome-dependent oxygenases (CYP450) are localised in the smooth endoplasmic reticulum of
liver cells, producing a superoxide radical during the oxidation or reduction in a number of endogenous
compounds (cholesterol, vitamins, steroids, arachidonic acid) and xenobiotics [15]. Some CYP450s
operate in other tissues as well—for example, in cells of the cardiovascular system [3]. Currently,
the efforts of many researchers are aimed at studying the role of CYP450 in drug–drug interactions
and drug–disease interactions [16–18].

We have listed just a few of the most basic sources of ROS and RNS in animal cells. Such systems
as animal heme-dependent peroxidases, cyclooxygenase and lipoxygenases, hemoglobin and red blood
cells could be added to the list. These systems are described in detail in the reviews [3,19–21].

ROS and RNS play an important role in the development of many pathologies: oncological,
neurological, cardiovascular, respiratory diseases; pathology of the kidneys and liver; diabetes;
intoxications with exogenous xenobiotics of various nature [3,22–25]. Of special importance is
the mechanism of ROS involvement in the toxic effect of organophosphates (OPs) in neuromuscular
synapses. Inhibition of acetylcholinesterase (AChE) activity by OPs leads to the accumulation
of acetylcholine (ACh) in the neuromuscular synapse, which in turn leads to hyperactivation of
nicotinic acetylcholine receptors (nAChR) on the post-synaptic membrane (Figure 1). The principal
consequences of excessive activation of nAChR are the uncontrolled entry of sodium ions into the cell
and prolonged depolarisation of the plasma membrane. A voltage-dependent conformation change in
dihydropyridine receptors (DHPR) coupled to ryanodine receptors (RyR) occurs. This conformational
change in the DHPR-RyR complex causes the release of Ca2+ from the sarcoplasmic reticulum (SR) into
cytosol, which in turn causes contraction of the skeletal muscle. In an uncontrolled release of calcium
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(in particular, as a result of calcium-induced calcium release) and inability of Ca-ATPase to pump out
the abundance of Ca2+ ions into the SR, seizures occur.
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Figure 1. Role of reactive oxygen species (ROS) in the mechanism of toxic effects of organophosphates
on skeletal muscle. OP—organophosphate; ACh—acetylcholine; AChE—acetylcholinesterase;
nAChR—nicotinic acetylcholine receptor; nNOS—neuronal nitric oxide synthases; ATP—adenosine
triphosphate; SOD—superoxide dismutase; ETC—electron transport chain in mitochondria;
DHPR—Dihydropyridine receptor; RyR—Ryanodine receptor; SR—Sarcoplasmic reticulum;
NOX—NADPH oxidase; GPx—Glutathione peroxidase; CAT—Catalase.

An increase in the concentration of intracellular calcium leads to the activation of
calcium-dependent proteases and mitochondrial enzymes (pyruvate dehydrogenase, isocitrate
dehydrogenase and alpha-ketoglutarate dehydrogenase). Seizures require a great amount of ATP,
but when electron transport and ATP synthesis are disrupted, an excess quantity of ROS is produced,
primarily ·O2

− [26]. Mitochondrial superoxide dismutase 2 (SOD2) converts two superoxide radicals
to hydrogen peroxide, and both of these ROS can leave the mitochondrion. The generation of H2O2

also occurs during the two-electron reduction in oxygen on the mitochondrial electron transport chain
(ETC). H2O2 is a natural uncoupling agent of the ETC: by decreasing the generation of ROS on the ETC,
hydrogen peroxide acts as a negative feedback regulator [27].

In addition, calcium overload enhances the work of NOXs, mainly NOX2. NOX2 produces
superoxide anion, which is converted into hydrogen peroxide by extracellular superoxide dismutase 3
(SOD3) [28]. ·O2

− and H2O2 can then re-enter the intracellular space through the chlorine channels
and aquaporins [29]. Moreover, Ca2+ activates nNOS, which normally produces NO, but in the case of
uncoupling, generates superoxide anion [3]. In the intracellular space, the superoxide anion binds
to NO to form peroxynitrite. Cytoplasmic superoxide dismutase 1 (SOD1) converts two superoxide
radicals into an oxygen molecule and hydrogen peroxide: the latter is destroyed by a catalase (CAT) or
glutathione peroxidase (GPX) cycle [30,31]. On the other hand, hydrogen peroxide can be converted to
a hydroxyl radical through the Fenton reaction with the participation of Fe2+ cations [32].

ROS accumulation in the intracellular space leads to a number of undesirable consequences,
including a redox-dependent modification of RyR, which leads to an even greater release of calcium
from SR, an increase in calcium overload and seizures. OPs have a similar effect on the heart
and respiratory muscles, except that in the heart muscle, DHPR and RyR do not contact each other,
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and Ca2+ ions first enter the cytosol through DHPR, and then Ca2+-dependent release of calcium occurs
from the sarcoplasm through RyR [33]. By a similar mechanism—via muscarinic receptors, calcium
channels and eNOS—OPs lead to endothelial dysfunction, which plays a key role in the pathogenesis
of poisoning [34].

The content of active species in cells is strictly controlled by the antioxidant defence system, which
include both enzymatic and non-enzymatic processes. The most important non-enzymatic reaction of
radical cleavage is their interaction with low-molecular-weight antioxidants such as β-carotene, vitamin
C, vitamin E, uric acid, cysteine, glutathione (GSH), polyphenols, etc. As a result of this interaction,
the cascade of free radical formation is broken [35].

SOD and CAT, as well as peroxidases, glutathione reductase (GR), glutathione-S-transferase
(GST), peroxiredoxin (Prxs), thioredoxin system and paraoxonase (PON) are traditionally included
into the enzymatic antioxidant system. These enzymes are widely described in the literature [36,37].
Briefly, SOD (EC 1.15.1.1) converts two superoxide radicals into an oxygen molecule and hydrogen
peroxide. CAT (EC 1.11.1.6) catalyses the utilisation of hydrogen peroxide to form molecular oxygen.
Peroxidases (EC 1.11.1.x) are a large group of enzymes that catalyse oxidation reactions according to
the general scheme: ROOR’+ electron donor (2e−) + 2H+

→ ROH + R’OH. In particular, glutathione
peroxidase (GPx, EC 1.11.1.9) ensures the destruction of hydrogen peroxide and lipid hydroperoxides
with GSH oxidation. Glutathione reductase (GR, EC 1.8.1.7) reduces oxidised glutathione (GSSG)
with the participation of NADPH. A significant role in cellular redox-dependent processes belongs
to the family of glutathione-S-transferases (GST, EC 2.5.1.18), which catalyse the conjugation of GSH
with a wide range of xenobiotics, weakening their toxic effect [38]. Peroxiredoxins (Prxs, EC 1.11.1.15)
control the level of cytokine-induced peroxides involved in cellular signaling. Thioredoxins (Trx)
and glutaredoxins (Grx) are a family of the proteins that restore disulfide bonds in other oxidised
proteins by disulfide exchange, while thioredoxin reductase (TR, EC 1.8.1.9) reduces the pool of
oxidised Trx and Grx with the participation of NADPH [39]. Paraoxonase (PON, EC 3.1.8.1) isoform
1 is associated with high-density and, to a lesser extent, with low-density lipoproteins, protecting
them from ROS exposure, whereas PON2 is ubiquitously expressed intracellular protein, localised
in mitochondria and the endoplasmic reticulum; PON3 is localised both intracellullarly and on high
density lipoproteins [40]. PON1 plays a role in the detoxification of OPs by acting as a catalytic
scavenger [41].

The above is not a complete list. Antioxidant defence is also represented by the enzymes
that metabolise the end products of lipid peroxidation (aldehydes, epoxides, alkenes, alcohol),
including epoxyde hydrolases (EC 3.3.2.10) and aldose reductase (EC 1.1.1.21) [42]. Formaldehyde
dehydrogenase (EC 1.2.1.46) and lactoylglutathione lyase (EC 4.4.1.5) oxidise their substrates to organic
acids using GSH as a coenzyme [43]. Quinone reductase (EC 1.6.5.5) provides a two-electron reduction
in quinones to dihydroquinones, which prevents the formation of harmful one-electron reduction
products—semiquinones; epoxide hydrolase hydrates epoxides to form diols [44]. In addition, aldehyde
dehydrogenase (EC 1.2.1.3) oxidises malonic dialdehyde [45]. Hepatic acyl-CoA thioesterase 1 is worth
mentioning, since it has been shown to be involved in promoting oxidative capacity through regulation
of FA oxidation [46,47].

Oxidative stress is an abnormality of the prooxidant and antioxidant balance, which can be
caused by low levels of antioxidants and/or an increase in the concentration of reactive species [48].
This imbalance causes damage to a wide variety of target structures: lipid membranes, free amino acids,
polysaccharides, nucleic acids, receptors and transport proteins. The result of this effect is a change
in the functional state of a cell, its transformation or death. Currently, oxidative stress is considered
as an important pathogenetic link in the development of more than 200 diseases [49]. Blood as a
carrier of biologically active compounds is exposed to oxidants to a greater extent than the intracellular
environment, but the concentration of antioxidants in plasma is much lower than in cells [50], and it is
albumin that plays one of the key roles in the antioxidant defence of the body under normal conditions
and in oxidative stress [51,52].
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2. Structural Characteristics of Albumin and Their Interspecies Features

We first consider some general information about serum albumin. Albumin is synthesised in
the liver at a rate of about 0.7 mg per hour (i.e., 10–15 mg per day); the half-life of human serum
albumin (HSA) is about 19–20 days [53]. The molecule of HSA is formed by one polypeptide chain,
consisting of 585 amino acid residues. In albumins of other species, the length of the polypeptide
chain can vary; in particular, bovine serum albumin (BSA) contains 584 amino acid residues, rat serum
albumin (RSA)—583 residues. The secondary structure of the protein contains about 67% helical
structures next to 33% of turn and extended chain configurations without any β-sheets [54] (Figure 2A).
Three homologous domains (I, II, III), consisting of two subdomains (A, B), form a three-dimensional
structure of the protein, which is rather labile (Figure 2B). When albumin interacts with different
substances, the effects of cooperativity and allosteric modulation occur, which is more prevalent in
multimeric macromolecules [55,56].
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Figure 2. The structure of serum albumin. (A)—the secondary structure of albumin: the albumin
molecule does not contain β-sheets, α-helices are presented in grey, other regions are shown in red.
(B)—the tertiary structure of albumin: domains I, II and III are shown in orange, purple and green,
respectively; each domain consists of two subdomains (A and B). To create the figure, a three-dimensional
structure of human serum albumin from the PDB database, code 3JQZ [57], was used.

Many extracellular proteins undergo post-translational glycosylation, which is the process of
covalent binding of oligosaccharide chains to amino acid side-chains. In contrast to many other
plasma proteins, the albumin molecule is not covered with a carbohydrate moiety under normal
conditions, and can bind different endogenous and exogenous ligands: water and predominantly
divalent metal cations, fatty acids, hormones, bilirubin, transferrin, nitric oxide, aspirin, warfarin,
ibuprofen, phenylbutazone, etc. [58]. Ligand binding occurs at two primary sites (Sudlow sites I
and II), which were described for the first time by Gillian Sudlow and co-authors [59]. Additionally,
the albumin molecule has the third major binding site (Site III) and several secondary binding centers,
the exact number of which is unknown. The albumin molecule contains 17 disulfide bonds and one
free thiol group in Cys34. The latter largely determines the participation of albumin in redox reactions.
The number of disulfide bonds and Cys34 are conserved in all types of albumin. The role of Cys34 will
be discussed in more detail in Sections 3.2 and 3.3.

The three-dimensional structure of HSA was resolved rather late, only in the 1990s [60]. Previously,
it was assumed that the albumin molecule had the shape of an elongated or flattened ellipsoid (“cigar”
or “pill”), but X-ray analysis showed that the protein has the shape of a heart. In addition to HSA,
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three-dimensional structures of BSA [61], albumin of horse and rabbit [61], sheep and goat [62],
dogs [63] and cats [64] have been obtained so far.

However, the three-dimensional structure of albumin of rats—the principal animals used in
pharmacological and toxicological experiments—has not been obtained yet. Considering the fact that
albumin is able to bind almost all known drugs and toxic substances [65,66], this gap should be filled out.
The percentage of identity of the primary structures of HSA and RSA is 73.0%, BSA and RSA—69.9%.
In some studies, it was shown that HSA and RSA share similar characteristics of binding biologically
active substances, but binding efficiencies of some xenobiotics are different for HSA and RSA [67].
Therefore, the correct extrapolation of in vivo results obtained in rats to a human organism requires
the identification of amino acids involved in protein–ligand interaction, determination of all structural
and conformational features of the binding sites and comparison of the obtained characteristics in HSA
vs. RSA. It is especially important for developing of antidotal therapy for OPs poisoning since the use
of other mammals in acute experiments is quite complicated. The three-dimensional structure of RSA
is needed for such an analysis.

In the absence of crystallographic data, the three-dimensional structure of a protein can be obtained
with the help of homologous modeling. The approach allows the construction of a tertiary model
of the protein on the basis of its primary sequence and the known three-dimensional structures of
homologous proteins [68]. Homologous models of RSA have already been constructed both by our
group [67] and other researchers [69].

Figures 3–5 show the three-dimensional structures of Sudlow site I; Sudlow site II; and the redox
site (Cys34) of HSA, BSA and RSA. Due to the deletion at position 116, the numbering of amino
acids in BSA after residue 115 is shifted by one position relative to the numbering of HSA and RSA.
Below, when discussing the structure of albumins of different species, we give the numbering of HSA
as the reference, and if necessary, the corresponding amino acids of BSA is given in brackets—for
example, Tyr150(Tyr149). As can be seen in Figures 3 and 4, Sudlow site I is much less conservative
than Sudlow site II. Thus, Lys195 and Lys199 of HSA are replaced with more branched-chain arginines
Arg194 and Arg198 in BSA. In RSA, Lys195 is also replaced with arginine. Arg222 in HSA and in RSA
is substituted by Lys221 in BSA. Leu219 and Leu218 in HSA and BSA are replaced with Met219 in RSA.
Similarly, the isoleucines Ile264 and Ile263 in HSA and BSA correspond to Met264 in RSA. Isoleucines
are located in the position 290(289) in HSA and BSA, while leucine—in RSA. Valines at position 293(292)
in HSA and BSA are replaced with isoleucine in RSA. Histidines His242(His241) and His288(His287) in
the primary sequence of HSA and BSA are substituted by Asn242 and Gln288 in the RSA sequence.
The latter substitutions are of particular interest since His242(His241) and His288(His287) are located
in very close proximity to the catalytic tyrosine Tyr150(Tyr149). According to our computational
experiments [70–73], the imidazole ring of His242(241) can attract the proton of the hydroxyl group of
Tyr150(Tyr149) and thus regulate the hydrolytic activity of the tyrosine. It should be expected that
interspecies differences in the binding and catalytic properties of albumin will show themselves in
the characteristics of Sudlow site I.

Antioxidants 2020, 9, x FOR PEER REVIEW 6 of 29 

addition to HSA, three-dimensional structures of BSA [61], albumin of horse and rabbit [61], sheep 

and goat [62], dogs [63] and cats [64] have been obtained so far. 

However, the three-dimensional structure of albumin of rats—the principal animals used in 

pharmacological and toxicological experiments—has not been obtained yet. Considering the fact 

that albumin is able to bind almost all known drugs and toxic substances [65,66], this gap should be 

filled out. The percentage of identity of the primary structures of HSA and RSA is 73.0%, BSA and 

RSA—69.9%. In some studies, it was shown that HSA and RSA share similar characteristics of 

binding biologically active substances, but binding efficiencies of some xenobiotics are different for 

HSA and RSA [67]. Therefore, the correct extrapolation of in vivo results obtained in rats to a human 

organism requires the identification of amino acids involved in protein–ligand interaction, 

determination of all structural and conformational features of the binding sites and comparison of 

the obtained characteristics in HSA vs. RSA. It is especially important for developing of antidotal 

therapy for OPs poisoning since the use of other mammals in acute experiments is quite 

complicated. The three-dimensional structure of RSA is needed for such an analysis. 

In the absence of crystallographic data, the three-dimensional structure of a protein can be 

obtained with the help of homologous modeling. The approach allows the construction of a tertiary 

model of the protein on the basis of its primary sequence and the known three-dimensional 

structures of homologous proteins [68]. Homologous models of RSA have already been constructed 

both by our group [67] and other researchers [69]. 

Figures 3, 4 and 5 show the three-dimensional structures of Sudlow site I; Sudlow site II; and 

the redox site (Cys34) of HSA, BSA and RSA. Due to the deletion at position 116, the numbering of 

amino acids in BSA after residue 115 is shifted by one position relative to the numbering of HSA and 

RSA. Below, when discussing the structure of albumins of different species, we give the numbering 

of HSA as the reference, and if necessary, the corresponding amino acids of BSA is given in 

brackets—for example, Tyr150(Tyr149). As can be seen in Figures 3 and 4, Sudlow site I is much less 

conservative than Sudlow site II. Thus, Lys195 and Lys199 of HSA are replaced with more 

branched-chain arginines Arg194 and Arg198 in BSA. In RSA, Lys195 is also replaced with arginine. 

Arg222 in HSA and in RSA is substituted by Lys221 in BSA. Leu219 and Leu218 in HSA and BSA are 

replaced with Met219 in RSA. Similarly, the isoleucines Ile264 and Ile263 in HSA and BSA 

correspond to Met264 in RSA. Isoleucines are located in the position 290(289) in HSA and BSA, while 

leucine—in RSA. Valines at position 293(292) in HSA and BSA are replaced with isoleucine in RSA. 

Histidines His242(His241) and His288(His287) in the primary sequence of HSA and BSA are 

substituted by Asn242 and Gln288 in the RSA sequence. The latter substitutions are of particular 

interest since His242(His241) and His288(His287) are located in very close proximity to the catalytic 

tyrosine Tyr150(Tyr149). According to our computational experiments [70–73], the imidazole ring of 

His242(241) can attract the proton of the hydroxyl group of Tyr150(Tyr149) and thus regulate the 

hydrolytic activity of the tyrosine. It should be expected that interspecies differences in the binding 

and catalytic properties of albumin will show themselves in the characteristics of Sudlow site I. 

 

Figure 3. The structures of Sudlow site I of human (A), bovine (B) and rat (C) albumin. Figure 3. The structures of Sudlow site I of human (A), bovine (B) and rat (C) albumin.



Antioxidants 2020, 9, 966 7 of 28

Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 29 

Sudlow site II is highly conservative (Figure 4): there are substitutions only in positions 388 

(Ile388, Ile387 and Val388 in HSA, BSA and RSA, respectively), 390 (Gln390, Gln389 and Thr390 in 

HSA, BSA and RSA, respectively), 407 (Leu407, Leu406 and Ile407 in HSA, BSA and RSA, 

respectively) and 449 (Ala449, Thr448 and Val449 in HSA, BSA and RSA, respectively). All the 

replacements, except for the homologous substitution at position 407, are located at a sufficient 

distance from the catalytic tyrosine Tyr411(Tyr410). 

 

Figure 4. The structures of Sudlow site II of human (A), bovine (B) and rat (C) albumin. 

Even more surprising differences can be observed in the structure of the redox site near the 

amino acid residue Cys34 (Figure 5). Gln33, Phe36, Asp38 and Thr83 in HSA and BSA are replaced 

with Lys33, Tyr36, Glu38 and Asn83 in RSA, respectively. However, the most remarkable difference 

is that Tyr140(Tyr139) in HSA and BSA is replaced with His140 in RSA. Previously, we showed that 

Sudlow site I and the redox site of HSA and BSA have a mutual effect on each other: a change in the 

conformation of one site leads to conformational changes in the other [73,74]. In the redox site, the 

amino acid residues Cys34, His39, Tyr140(Tyr139) and Arg144(Arg143) and their mutual 

arrangement (the -SH groups of the cysteine and the -OH groups of the tyrosine relative to the 

imidazole ring of His39, as well as the -OH group of the tyrosine relative to the side chain of 

Arg144(Arg143)) play the main role in this effect. How this system works in RSA, where 

Tyr140(Tyr139) is replaced with a histidine, and how this replacement affects the behavior and 

availability of Cys34 are still unknown. It is even possible that in rats this mechanism is more 

effectual than in humans, since these rodents are incredibly omnivorous and adaptable to the 

environment. 

 

Figure 5. The structures of the redox site (Cys34) of human (A), bovine (B) and rat (C) albumin. 

3. Albumin Participates in the Redox Modulation of Blood Plasma and Interstitial Fluid 

As mentioned above, albumin plays a significant role in the antioxidant defence of the body. 

The structure of a protein contains a number of amino acids and amino acid sequences that 

Figure 4. The structures of Sudlow site II of human (A), bovine (B) and rat (C) albumin.

Antioxidants 2020, 9, x FOR PEER REVIEW 7 of 29 

Sudlow site II is highly conservative (Figure 4): there are substitutions only in positions 388 

(Ile388, Ile387 and Val388 in HSA, BSA and RSA, respectively), 390 (Gln390, Gln389 and Thr390 in 

HSA, BSA and RSA, respectively), 407 (Leu407, Leu406 and Ile407 in HSA, BSA and RSA, 

respectively) and 449 (Ala449, Thr448 and Val449 in HSA, BSA and RSA, respectively). All the 

replacements, except for the homologous substitution at position 407, are located at a sufficient 

distance from the catalytic tyrosine Tyr411(Tyr410). 

 

Figure 4. The structures of Sudlow site II of human (A), bovine (B) and rat (C) albumin. 

Even more surprising differences can be observed in the structure of the redox site near the 

amino acid residue Cys34 (Figure 5). Gln33, Phe36, Asp38 and Thr83 in HSA and BSA are replaced 

with Lys33, Tyr36, Glu38 and Asn83 in RSA, respectively. However, the most remarkable difference 

is that Tyr140(Tyr139) in HSA and BSA is replaced with His140 in RSA. Previously, we showed that 

Sudlow site I and the redox site of HSA and BSA have a mutual effect on each other: a change in the 

conformation of one site leads to conformational changes in the other [73,74]. In the redox site, the 

amino acid residues Cys34, His39, Tyr140(Tyr139) and Arg144(Arg143) and their mutual 

arrangement (the -SH groups of the cysteine and the -OH groups of the tyrosine relative to the 

imidazole ring of His39, as well as the -OH group of the tyrosine relative to the side chain of 

Arg144(Arg143)) play the main role in this effect. How this system works in RSA, where 

Tyr140(Tyr139) is replaced with a histidine, and how this replacement affects the behavior and 

availability of Cys34 are still unknown. It is even possible that in rats this mechanism is more 

effectual than in humans, since these rodents are incredibly omnivorous and adaptable to the 

environment. 

 

Figure 5. The structures of the redox site (Cys34) of human (A), bovine (B) and rat (C) albumin. 

3. Albumin Participates in the Redox Modulation of Blood Plasma and Interstitial Fluid 

As mentioned above, albumin plays a significant role in the antioxidant defence of the body. 

The structure of a protein contains a number of amino acids and amino acid sequences that 

Figure 5. The structures of the redox site (Cys34) of human (A), bovine (B) and rat (C) albumin.

Sudlow site II is highly conservative (Figure 4): there are substitutions only in positions 388
(Ile388, Ile387 and Val388 in HSA, BSA and RSA, respectively), 390 (Gln390, Gln389 and Thr390 in
HSA, BSA and RSA, respectively), 407 (Leu407, Leu406 and Ile407 in HSA, BSA and RSA, respectively)
and 449 (Ala449, Thr448 and Val449 in HSA, BSA and RSA, respectively). All the replacements, except
for the homologous substitution at position 407, are located at a sufficient distance from the catalytic
tyrosine Tyr411(Tyr410).

Even more surprising differences can be observed in the structure of the redox site near the amino
acid residue Cys34 (Figure 5). Gln33, Phe36, Asp38 and Thr83 in HSA and BSA are replaced with
Lys33, Tyr36, Glu38 and Asn83 in RSA, respectively. However, the most remarkable difference is that
Tyr140(Tyr139) in HSA and BSA is replaced with His140 in RSA. Previously, we showed that Sudlow site
I and the redox site of HSA and BSA have a mutual effect on each other: a change in the conformation
of one site leads to conformational changes in the other [73,74]. In the redox site, the amino acid
residues Cys34, His39, Tyr140(Tyr139) and Arg144(Arg143) and their mutual arrangement (the -SH
groups of the cysteine and the -OH groups of the tyrosine relative to the imidazole ring of His39,
as well as the -OH group of the tyrosine relative to the side chain of Arg144(Arg143)) play the main
role in this effect. How this system works in RSA, where Tyr140(Tyr139) is replaced with a histidine,
and how this replacement affects the behavior and availability of Cys34 are still unknown. It is even
possible that in rats this mechanism is more effectual than in humans, since these rodents are incredibly
omnivorous and adaptable to the environment.

3. Albumin Participates in the Redox Modulation of Blood Plasma and Interstitial Fluid

As mentioned above, albumin plays a significant role in the antioxidant defence of the body.
The structure of a protein contains a number of amino acids and amino acid sequences that determine
its role in redox processes. In this section, we consider three main activities of albumin associated with
redox modulation of blood plasma and interstitial fluid.
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3.1. Binding of Polyvalent Metal Ions

It is well known that polyvalent metals, primarily copper and iron, are pro-oxidants. Copper
and iron ions can react with hydrogen peroxide to form toxic hydroxyl radicals (Fenton reaction) [32].
By binding iron and copper cations, albumin heavily reduces their activity: bound ions are still available
for reaction, but the radicals formed immediately attack the albumin molecule itself and do not interact
with other blood components [75]. In this case, the albumin molecule is damaged, but due to the high
concentration of the protein this damage is biologically insignificant. In recent years, some details of
the interaction of polyvalent metals with albumin have been determined. Thus, the main binding site
for Cu(II) is the N-terminal region of human albumin Asp-Ala-His-Lys (N-terminal site, NTS) [76]
(Figure 6). Binding involves the nitrogen atoms of the backbone and the nitrogen atom of the imidazole
ring of the NTS histidine [77]. Using spectroscopic and computational methods, Sendzik et al. [78]
showed that the imidazole rings of two histidines play a key role in the binding of the Cu(I) cation.
Based on the data obtained, the authors suggested that these histidines can be either His-67 and His-247
of the metal-binding site of albumin (MBS) (Figure 6) or His-3 and His-9 (the first is included in the NTS,
the second is in the nearest environment). Normally, albumin is not a physiological carrier of Fe, but it
can bind Fe(II) and Fe(III) during pathological iron overload [79]. This binding, however, is apparently
non-specific, and takes place somewhere on the surface of the protein and does not involve the NTS
or MBS.
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Figure 6. The main binding sites of HSA and the amino acids that are responsible for the participation
of albumin in redox reactions. Left: dark gray surface shows the areas of major albumin binding
sites—Sudlow site I, Sudlow site II and Site III (see Section 2); the N-terminal site (NTS, Asp-Ala-His-Lys)
is shown in blue; the metal-binding site (MBS, His-67 and His-247) is shown in brown; the amino acids
involved in the binding of polyunsaturated fatty acids are shown in purple. Right: Cys34 is represented
in yellow; six methionine residues are shown in orange; the cysteines within the disulfide bonds that
can be reduced when interacting with low-molecular-weight thiols are shown in green. To create
the figure, a three-dimensional structure of HSA from the PDB database, code 3JQZ [57], was used.

3.2. ROS Neutralisation

Albumin acts like a ROS trap due to six methionine residues, but mainly due to the free thiol
group of Cys34 residue [51,80,81] (Figure 6). This group of activities probably includes the cyanide
detoxification reaction by formation of thiocyanate, catalysed in the IIIA subdomain, but without
the participation of Tyr411 [82]. In physiological conditions, about 80% of all detected plasma thiols are
albumin thiols (99% of GSH is kept in erythrocytes, and about 2/3 of extracellular cysteine/cystine is in
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a bound form) [83,84]. The Cys34 residue is able to neutralise such ROS and RNS as hydrogen peroxide
(H2O2), peroxynitrite (ONOO−), superoxide anion and hypochlorous acid (HOCl), being oxidised to
sulfenic acid (HSA-SOH) [51,85].

HSA-SOH is a central intermediate in the processes of redox modulation of blood plasma
and interstitial fluid [86]. The final result of the oxidative process depends on what happens next
to the sulfenic acid. The HSA-SOH form of albumin can be irreversibly oxidised to sulfinic acid
(HSA-S(O)O−) [87]. In theory, the side radical of cysteine can be irreversibly oxidised to sulfonic
acid (Cys34-S(O)O− O−); however, according to the literature, the percentage of Cys34 in the form of
sulfonic acid in blood plasma is extremely low [87]. Sulfenic acid can also be converted to disulfide
(HSA-S-S-R) by interacting with low-molecular-weight blood plasma thiols (GSH, homocysteine, free
cysteine), and then reduced to HSA-SH [88–90].

3.3. Interaction of Albumin with Low-Molecular-Weight Thiols

Bocedi et al. [89] wanted to answer the question of why a healthy person has only 30 percent
of oxidised albumin, while for low-molecular-weight thiols this value is from 70 to 80 percent.
The HSA-cysteine conjugate (HSA-Cys34-S-S-Cys) was used as a model of oxidised human albumin,
since this disulfide is the main form of oxidised albumin in blood plasma. Biochemical experiments
have shown that cysteine is the strongest reducing agent for albumin of the plasma thiols studied,
and cystine (cysteine dimer Cys-S-S-Cys) is the strongest oxidising agent. However, it turned
out that for the reduction reaction the second order rate constant was about 6 M−1

·s−1, while
for the oxidation reaction it was 10 times less: 0.6 M−1

·s−1. The authors have concluded that
the ratio of the reduced and oxidised forms of albumin is determined by kinetic equilibrium with
the cysteine/cystine ratio. In the case of pathology, when the percentage of cystine increases, albumin
acts as a redox buffer, maintaining a safe Cys-SH/Cys-S-S-Cys ratio for the body. Moreover, according
to the data obtained in this work, the remaining 34 albumin cysteines (forming 17 disulfide bridges)
barely undergo cysteinylation even with high concentrations of free cysteine, 150-fold higher than its
normal concentration in the blood plasma [89].

According to other experimental data, however, the interaction of HSA with low-molecular-weight
thiols involves not only Cys34 but also some cysteine residues that form disulfide bonds: Cys75,
Cys90, Cys91, Cys101, Cys124, Cys200, Cys265, Cys392, Cys487, Cys567 [90,91]. Nakashima et al. [90]
proposed a mechanism of albumin cysteines thiolation. According to this model, the free thiol group
Cys34 is thiolated first. As a result of this reaction, the thiolate anion RS− is formed, which attacks
one of the disulfide bonds of albumin. As a result, one of the cysteines that forms disulfide bonds
is thiolated, and the second cysteine is converted into the thiolate anion HSA-S− and interacts with
the next molecule of low-molecular-weight disulfide, etc. According to the authors’ assumption,
the cascade of reactions is interrupted when there are no more disulfide bonds on the surface of
the protein available for the thiolate anion. The partial destruction of disulfide bonds of albumin is a
rather dramatic event that can lead to protein aggregation and change its functional characteristics.

3.4. Enzymatic Antioxidant Activity of Albumin

Over the years, it has been shown that albumin has a thioesterase [92], glutathione and cysteine
peroxidase [93,94] and peroxidase activity towards lipid hydroperoxides [93–96].

The authors of the work [92], by measuring the outcome of mercaptoethanol (MER),
found that human blood serum contains a certain thioesterase that catalyses the hydrolysis of
S-lauroylmercaptoethanol (S-LME). The authors concluded that this enzyme is serum albumin. Firstly,
the unit amount of reaction product per 1 mg of crystalline HSA and per 1 mg of serum albumin was
the same. Secondly, the rate of MER outcome reduced by about 50 percent with various anionic or
non-ionic lauryl derivatives and urea; moreover, the product outcome terminated when HSA was
inactivated with various detergents or high temperature. The rate of MER outcome significantly
reduced after about 8 moles of mercaptoethanol released per mole of HSA. The authors concluded that
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there is an irreversible acylation of albumin amino acids. Moreover, according to the data obtained,
lysines, but not tyrosines, are the most likely amino acid residues responsible for the thioesterase
activity of HSA towards S-LME, since during the reaction of albumin with S-LME, no decrease in
absorption at 278 nm typical for acylation of tyrosine residues was observed.

According to the Korean researchers Cha and Kim [93], a 65 kDa protein isolated from human blood
plasma and identified by the N-terminal amino acid sequence as serum albumin was able to accelerate
H2O2 reduction by GSH. The authors did not report on the kinetic characteristics of HSA for peroxide
and GSH, but they noted that the rate of glutathione-dependent reduction in H2O2 in the presence of
HSA in the reaction mixture was a function of the albumin concentration and had a saturation behavior.
The results obtained suggested the presence of glutathione peroxidase (GSH: H2O2-oxidoreductase)
activity in HSA, but the authors, unfortunately, did not report on the stoichiometry of the reaction.
If the molar ratio between GSH and H2O2 in their interaction catalysed by HSA would be confirmed as
2:1, then this would allow us to more confidently say that albumin is functionally capable of being
a GSH:H2O2 oxidoreductase. Later, the same group of researhers demonstrated that activation of
thiol-dependent antioxidant activity of HSA at alkaline pH was due to the conformational change
favorable for the functional cysteine(s)-mediated catalysis [95]. Later, it was shown that palmitoyl-CoA
induced the conformational changes of HSA and thus provided thioredoxin-linked lipid hydroperoxide
peroxidase activity of the protein [96].

In 1999 R. Hurst and co-authors [94] found that HSA is effective in catalysis of the reduction in
1-palmitoyl-2-(13-hydroperoxy-cis-9,trans-11-octadecadienoyl)-L-3-phosphatidylcholine to the corresponding
hydroxy derivative when using thiols such as cysteine, glutathione, cysteinylglycine and homocysteine
as oxidisable substrates (listed in decreasing order of their effectiveness in albumin-catalysed
hydroperoxide reduction). HSA reduced phospholipid hydroperoxide in the absence of a thiol
reducing agent, but at a lower rate than with any of them. The authors evaluated the stoichiometry
of the reduction in the phospholipid hydroperoxide to the corresponding hydroxy derivative in
the presence of albumin and cysteine. The molar ratio between the resulting 1-palmitoyl-2-(13-hydroxy-
cis-9,trans-11-octadecadienoyl)-L-3-phosphatidylcholine and cystine (cysteine disulfide) was close to 1:1,
which confirms the hypothesis that albumin functions as a cysteine peroxidase—i.e., catalyses the reaction
according to a scheme similar to that of the glutathione peroxidase reaction: ROOH + 2Cys-SH→ ROH
+ H2O + Cys-SS-Cys, where Cys-SH is cysteine, Cys-SS-Cys is cystine, ROH is a hydroxy derivative
and ROOH is hydroperoxide. The kinetic characteristics towards cysteine were calculated with a fixed
concentration of phospholipid hydroperoxide and vice versa, towards phospholipid hydroperoxide with a
fixed concentration of cysteine [94]. The obtained values of the apparent Km and Vmax for cysteine were
600 ± 80 µM and 0.21 ± 0.02 nmol/(min ×mg protein), respectively (M ± SD). The same parameters for
phospholipid hydroperoxide are 9.23 ± 0.95 µM and 0.11 ± <0.01 nmol/(min ×mg protein). Treatment of
albumin with dithiothreitol (DTT) decreases both apparent Km and increases both apparent Vmax, while
modification with n-ethylmaleimide leads to a decrease in both Km and Vmax. In general, this means that
the presence of free SH-groups in the albumin molecule enhances its catalytic properties. The authors confirm
the same conclusion using captopril, which increases the cysteine peroxidase activity of albumin, while
the relation between activity and the concentration of captopril has a saturation behavior [94]. The results
using captopril indicate the participation of Cys34 in catalysis, but, apparently, the release of additional
thiol groups in the albumin molecule during DTT treatment provides greater catalytic efficiency of albumin.
Surely, the cysteine peroxidase activity of albumin in relation to phospholipid hydroperoxide is low (and its
glutathione, cysteinylglycine and homocysteine peroxidase activities towards the same reducible substrate
are, apparently, even lower), but, as the authors fairly note, the low activity should be compensated
by its high concentration in plasma [94]. Furthermore, cysteine is a major low-molecular-weight thiol
in blood plasma, the physiological concentration of which is 9–12 µM [97]. The total concentration of
phosphatidylcholine hydroperoxides in plasma is 20–430 nM [94]. It is probable that albumin makes
a certain contribution to the catalysis of thiol-dependent reduction in phospholipid hydroperoxides in
blood plasma together with other peroxidases. In any case, the presence of cysteine peroxidase (cysteine:
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phospholipid-hydroperoxide-oxidoreductase) activity in human serum albumin can be confidently stated.
In contrast to the intracellular analogue, the monomeric Se-containing protein phospholipid hydroperoxide
glutathione peroxidase (also named glutathione peroxidase-4; abbreviations—PHGPx, GPx4; EC 1.11.1.12),
the role of which in the protection of cells, including nervous, from the damaging effect of lipid hydroperoxides
can hardly be overestimated [98–100], as well as in contrast to the extracellular tetrameric glutathione
peroxidase-3 (GPx3; EC 1.11.1.9), the decrease in the activity of which is consistently correlated with
the development of oncological diseases [101,102], monomeric (but multi-domain) serum albumin does not
contain selenium.

Paraoxonase activity of albumin is described in detail in our previous research: albumin is able to
operate as a paraoxonase though does not depend on Ca2+ ions [72].

3.5. Indirect Mechanisms of Albumin Participation in the Antioxidant Defence of the Body

Roche et al. [51] discuss the ability of albumin to bind polyunsaturated fatty acids (PUFAs)
and bilirubin, and thus indirectly further enhance the antioxidant defence of the body. It is known that
albumin-bound bilirubin can inhibit lipid peroxidation. Bilirubin binds at Site III of albumin [103]
(Figure 6). As for PUFAs, according to the authors, it is possible that in combination with albumin,
they are protected from peroxidation. The amino acids Arg117, Lys351 and Lys475 are responsible for
the interaction of the protein with PUFA molecules (Figure 6).

4. Interplay of Binding, Enzymatic and Antioxidant Properties of Albumin

As mentioned above, the structure of albumin is rather labile and tends towards allosteric
modulation: binding of a ligand in one site can affect the efficiency of binding in another. Thus,
the conformational changes occur in the albumin molecule after the binding of a number of endogenous
compounds, such as bilirubin [104], urea [105], estradiol [106] and glucose [107]. Exogenous compounds
might also have an allosteric effect. For example, the binding of lorazepam in Sudlow site II changes
the binding efficiency of warfarin in Sudlow site I [108], the binding of tenoxicam in Sudlow site I
enhances the binding of diazepam in Sudlow site II and vice versa [109]. These features suggest that a
targeted modulation of albumin with the help of the molecules regulating its structural and functional
properties can influence the process of the protein interaction with ROS and RNS.

On the other hand, oxidative stress accompanies many diseases, the level of oxidised albumin
increases, which in turn can affect the kinetics of pharmacological and toxic compounds. Therefore,
it is essential to study the interaction of various activities of albumin and answer the following
questions. Does oxidation of the thiol group of Cys34 (and other amino acids) affect the binding
and catalytic properties of albumin towards its ligands? Does this effect depend on the oxidative agents
and on the structure of the ligand? Do endogenous and exogenous compounds affect the availability
and reactivity of the thiol group of Cys34 and, as a consequence, the antioxidant properties of albumin?

4.1. Effect of Cys34 Oxidation on the Functional Properties of Albumin

We now review the effect of Cys34 oxidation on albumin binding and pseudo(esterase) activity.
Our own computational experiments, performed as a part of investigation of the interaction of albumin
with OPs, were devoted to the study of the influence of the redox status of HSA on their interaction with
paraoxon [73]. We tested three models of the oxidation state of albumin: Cys34 is reduced (Cys34-SH),
Cys34 is oxidised to sulfenic acid (Cys34-SOH) and Cys34 is oxidised to sulfinic acid (Cys34-S(O)O−).
According to the data obtained, the redox status of Cys34 had no significant impact on the possibility
of esterase reactions at Sudlow site I. The affinity of HSA Sudlow site I does not depend on the redox
status of the cysteine neither. However, the modification of the cysteine changed the conformation of
Sudlow site I of HSA and the position of paraoxon molecule within the site. Oxidation of albumin
practically did not affect either the conformation of the Sudlow site II of HSA, or the position of
the ligand in this site or the affinity of the site for paraoxon.
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Similar results were obtained in biochemical in vitro experiments with HSA. Bertucci et al. [110]
showed that HSA Cys34 oxidation with ethacrynic acid did not affect the affinity of neither Sudlow site
I towards phenylbutazone nor Sudlow site II towards diazepam, but improved the binding efficiency
of bilirubin in the third major albumin binding site (Site III).

In the research of Anraku et al. [111], human albumin was oxidised in vitro by three different
methods: by a metal-catalysed oxidation system (MCO), chloramine-T and hydrogen peroxide.
It turned out that oxidation (by any means) had practically no effect on the binding of warfarin in
Sudlow site I. Oxidation with hydrogen peroxide did not affect the binding of ketoprofen in Sudlow
site II, but oxidation with MCO and chloramine-T reduced the affinity of Sudlow site II for ketoprofen.
The different effect of different oxidants can be explained by the fact that MCO and chloramine-T
can oxidise not only Cys34 but also the side chains of lysines and arginines, including Arg410
and Arg485 [111,112], localised in Sudlow site II.

The results of in vivo experiments contradict the data obtained in vitro and in silico. In healthy
people, about 70% of albumin remains in a reduced form, but the level of oxidised albumin can increase
in some pathological processes and during the aging process [113,114]. The research of [115] showed
that albumin in patients with liver cirrhosis (a disease in which the content of oxidised albumin is
increased) binds ligands of Sudlow site II more weakly than in healthy subjects. Nagumo et al. [116]
revealed that the content of cysteinylated albumin (HSA-Cys34-S-S-Cys) increased in patients with
chronic kidney and liver disease. The binding activity of albumin towards warfarin (a ligand of Sudlow
site I) and diazepam (a ligand of Sudlow site II) in these patients was significantly lower than in healthy
people. Thus, the modification of Cys34 impaired the affinity of Sudlow sites I and II for both warfarin
and diazepam, which contradicts in vitro data [110,111].

There are several possible explanations for the conflict between in vitro and in vivo data. One of
them is that liver and kidney disease can lead to increased levels of certain molecules in blood plasma,
which in turn can inhibit (competitively or non-competitively) the binding of ligands in Sudlow sites.
For example, it is known that the level of glucose in blood can be increased in liver cirrhosis [117].
On the other hand, the authors of [118] showed that oxidation of albumin SH-groups with potassium
permanganate led to an increase in the number of the sites on the albumin surface available for glucose
binding. One more explanation is that serum albumin is loaded with fatty acids (FAs) in blood [119],
which can affect the binding characteristics of the protein in both reduced and oxidised form.

4.2. Effect of Cys34 Oxidation on the Structural Properties of Albumin

Changes in the functional characteristics of albumin caused by a change in its redox status
are primarily the result of the structural rearrangements in the protein molecule. A number of
spectroscopic studies have been carried out so far to study the structural characteristics of reduced
and oxidised albumin.

For example, Maciążek-Jurczyk and Sułkowska [120] studied how the oxidation of HSA with
chloramine-T affects the spectral characteristics of the protein. The method of synchronous fluorescence
spectroscopy revealed changes in the position of the fluorescent band of the tyrosines and of tryptophan
Trp214 (the single tryptophan in the HSA molecule) in oxidised albumin compared to the native protein.
The red-edge shift spectroscopy technique demonstrated chloramine-T-induced structural changes
in the environment of Trp214 located in the immediate vicinity of Sudlow site I. It was confirmed by
proton nuclear magnetic resonance (1H NMR) that the oxidation of HSA led to structural changes in
the protein molecule, mainly in the surrounding of Cys34 and Trp214. Moreover, the data obtained
indicated structural changes in the conformation of the peptide backbone.

It is interesting to compare the study of Maciążek-Jurczyk and Sułkowska with the paper of
Sakurama et al. [112], who also oxidised HSA with chloramine-T and studied the conformational
changes in the protein molecule by the circular dichroism method. This research did not reveal
significant structural change in oxidised HSA. In both studies, chloramine-T and HSA were mixed
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in similar proportions at the same temperature. The possible explanations are that different albumin
samples and different ways to interrupt the oxidation reaction were used in these experiments.

Despite some disagreements regarding the conformational rearrangements of the albumin
polypeptide chain after oxidative modification, oxidation of albumin definitely leads to
the conformational changes of amino acids in the microenvironment of the modification sites.

In the research of Pieniazek et al. [121], albumin was isolated from the plasma of healthy volunteers
and patients with chronic kidney disease (CKD) on hemodialysis. It was demonstrated by the method of
electron paramagnetic resonance (EPR) that oxidation of albumin of the healthy subjects with hydrogen
peroxide and tert-butyl hydroperoxide led to conformational changes in the microenvironment of
the binding sites of maleimide and iodoacetamide spin labels, which interact predominantly with
the thiol group of Cys34. The oxidants practically did not affect the structural characteristics of
albumin from plasma of the subjects with CKD, since albumin of these patients had been already
significantly oxidised.

Christodoulou et al. [122] reduced fatty acids free BSA with DTT and oxidised with auranofin,
and then studied the structural features of the samples by 1H NMR. Comparing the spectra, the authors
suggested that the oxidation of Cys34 led to a change in the conformation of His3 at the N-terminal
site of the protein.

In our own studies, we have applied the 1H NMR method to study how the oxidation of BSA
with ethacrynic acid (EtAc) affects the conformational characteristics of the protein. Figure 7 shows
the spectra of three samples: phosphate buffered saline (PBS) used to prepare BSA solution; commercial
BSA of concentration 360 µM; commercial BSA of concentration 360 µM after incubation with EtAc
in a molar ratio of 1:5 (oxBSA). Commercial BSA was prepared using the same procedure as in [123].
Oxidised BSA was prepared as described in [110] with minor modifications. The prepared samples
of commercial and oxidised BSA were supplemented with deuterium oxide and scanned at room
temperature by the one-dimensional 1H-NMR water suppression method using excitation sculpting
with gradients on a Bruker Avance III 500 NMR spectrometer. Chemical shifts δ were calibrated to
tetramethylsilane; the spectra were accumulated for 128 scans using a 4.3 s delay between the first
radiofrequency pulses.

Figure 7A shows the full spectrum. Both samples of BSA contain the impurities associated with
the imperfect purity of the supplied PBS tablets (green spectrum). Based on the literature, it is highly likely
that the peak with a chemical shift of 1.85 ppm corresponds to acetic acid (CH3COOH) [124,125] and a
singlet with a chemical shift of 3.6 ppm most likely corresponds to ethylene glycol (CH2OH)2 [126–128].
Additionally, the sample of oxidised BSA contains ethanol (C2H5OH), which was used to dissolve EtAc.

Figure 7B shows the aliphatic region of the spectrum. The change in the shape of the spectrum in
the region 3.1–2.8 ppm (peaks a and a’) can probably be associated with a change in conformation of
the microenvironment of Cys34 (CβH2 groups [129]) after its oxidation with EtAc. Differences between
the two samples can also be observed in the region 2.08–1.98 ppm (peaks b and c). We suppose that
this might be due to a change in the conformation of glutamine Gln33 (signal of the CγH2 group [130,131])
and/or proline Pro35 (signal of the CγH2 group [130,131]) located in the microenvironment of Cys34
(Figure 5B). According to the literature, Cys34 oxidised to sulfenic or sulfinic acids can form an
intramolecular bond with Gln33, while these amino acids do not interact in reduced albumin [87].

Figure 7C shows the aromatic region of the spectrum. The change in the shape of the spectrum in
the regions 8.2–7.5 ppm and 7.1–6.9 ppm reflects the change in signals from CεH and CγH2 groups of
histidines, respectively [128,129,132]. The appearance of a weak signal d and a decrease in the intensity
of h’ peak in oxBSA probably indicates a change in the conformation of His39, which interacts with
the SH-group of Cys34 in reduced but not in oxidised albumin [73,74]. Stewart et al. also noted
the importance of His39 in the reactivity of the thiol group of Cys34 [133].
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Figure 7. 1H NMR spectrum of phosphate buffered saline (PBS, green), commercial bovine serum
albumin (BSA, blue) and BSA incubated with ethacrynic acid in a molar ratio of 1:5 (oxBSA, red).
(A) Full spectrum. (B) Aliphatic region. (C) Aromatic region.
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As we have mentioned above, in [122], a change in the signal in this region after BSA oxidation
was proposed to be due to a change in the conformation of His3 in the NTS of albumin. So, we think
that peak e in oxBSA can correspond to a change in His3 conformation.

The region at 7.3–6.6 ppm corresponds to the signals of the aromatic rings of tyrosine
residues [128,129,132]. The change in the shape of the spectrum in this region (peaks g, g’ and i)
is highly likely associated with a change in the conformation of Tyr84 and its microenvironment.
According to abundant evidence, Tyr84 plays a key role in the reactivity of Cys34 [133,134]. Additionally,
we suppose that peak f in oxidised BSA could be a signal of the benzene ring of EtAc covalently bound
to the SH-group of Cys34 [135]. The signal of the second aromatic hydrogen of EtAc in oxBSA might
contribute to the intensity of peak g too.

Thus, according to the data obtained, BSA oxidation leads to a change in the conformation of
the microenvironment of Cys34: Gln33, Pro35, His39 and Tyr84. It should be mentioned that it
is undoubtedly difficult to unambiguously interpret the one-dimensional NMR spectrum of such a
composite protein as albumin. Our conclusions are rather in the nature of an assumption, but nevertheless
the result is in fairly good agreement with the literature data.

The tools for studying the structural characteristics of macromolecules are constantly evolving.
Thus, the solution structure (which is more natural than the crystal one) of some proteins with
a molecular weight over 30 kDa have been obtained by NMR technique to date [136]. In future,
it probably would be possible to obtain the solution structure of albumin, the molecular weight of
which is 66 kDa, and to trace how the structure of the protein changes when interacting with various
ligands. Molecular modeling methods are being developed, too: the mathematical apparatus describing
the interaction of atoms is being improved; computer power is growing. Currently, the classical
molecular dynamics is the main computer method for studying the conformational changes of
macromolecules; however, it cannot simulate the changes in the structure of a protein at atomic level
(for example, the transfer of a proton from one amino acid to another or the formation of covalent
bonds between ligands and proteins). With the development of computing power, it became possible
to apply the method of quantum molecular dynamics, which is able to simulate these processes [137].
Additional spectroscopic and computational experiments will help amplify the obtained information
about structural rearrangements in the albumin molecule after oxidation or reduction in Cys34 in future.

4.3. Effect of Endogenous and Exogenous Compounds on the Reactivity of the Thiol Group of Cys34

Now, we consider the possibility of modulating the antioxidant properties of albumin. First of all,
it is obvious that the oxidation of the thiol group of Cys34 or its nitrosylation (Cys34-S-N=O) reduces
the ability of albumin to neutralise ROS and RNS [85].

However, in addition to the direct oxidation of Cys34, albumin can undergo other chemical
modifications that affect its structure and conformation, which in turn can lead to modulation of
its antioxidant properties. Glycation is one of these modifications, which is the covalent binding
of glucose or another monosaccharide to the side chains of lysines and arginines [138]. To date,
more than 60 albumin glycation sites have been described, but many researchers agree that Lys525 is
the most reactive of them [139–141]. Modifications caused by glycation have an important effect on
the functional properties of albumin, mainly associated with the changes in its conformation [142–145].

However, FAs appear to play the main role in the regulation of the antioxidant properties of
albumin. For the first time, this conclusion was made by Gryzunov and co-authors [80,146]. According
to the data obtained, blocking of Cys34 by n-ethylmaleimide did not affect the fluorescence intensity
of probe K-35 (binding in the Sudlow site I) in HSA free of FAs [80]. However, adding FAs (oleic
and linoleic), firstly, changed the conformations of Sudlow sites I and II, and, secondly, strengthened
the reactivity of Cys34 thiol group towards 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) having increased
its steric availability. The authors hypothesised that FAs, when bound to albumin, simultaneously
regulated both its transport and antioxidant functions, serving as a necessary intermediary between
these activities [146].
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A similar result was obtained in the research of Torres et al. [147]. The authors showed that in
the presence of FAs (palmitic, myristic, lauric, stearic, oleic), the reactivity of HSA towards DTNB
increased by about 6 times (with a minor scatter depending on FA structure) compared to FAs free
albumin. Stearic acid doubled the rate of the reaction of Cys34 with hydrogen peroxide and peroxynitrite
and strengthened the reactivity of sulfenic acid of HSA towards low-molecular-weight thiols. Oxidation
of Cys34 thiol group did not change the efficiency of the interaction of HSA with FAs.

Pavićević et al. [148] showed that the binding of FAs (palmitic, docosahexaenoic, stearic,
oleic, myristic, eicosapentaenoic and fish oil) with HSA increased the reactivity of Cys34 towards
methylglyoxal. Subsequent experiments demonstrated that the reaction of DTNB with Cys34 (both
reduced and modified with methylglyoxal) was accelerated in the presence of fatty acids too. The same
research group demonstrated later that the binding of polyphenols enterolactone and enterodiol with
HSA increased the reactivity of the Cys34 SH-group towards DTNB [149]. It was shown that fatty
acids were able to modulate this effect. Finally, one of the latest investigations of this group revealed
that the binding of copper cations Cu(II) with defatted HSA practically did not affect the reactivity
of Cys34, while the addition of copper to the complex of HSA with FAs (oleic, myristic, or fish oil)
increased the reactivity of the cysteine cumulatively [150].

In our recent computational experiments [73], we have analysed how the redox status of HSA
affects the binding of paraoxon in Sudlow sites I and II. However, an analysis of the effect of paraoxon
binding on the conformation of Cys34 and its microenvironment has not been performed. Here we fill
this gap. Figure 8 shows how the conformation of Cys34 with different oxidation level of the thiol
group depends on the occupancy of Sudlow sites. In the upper row (Figure 8A–C), paraoxon is bound
in Sudlow site I; in the lower one (Figure 8D–F), it is bound in Sudlow site II.
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Figure 8. Effect of paraoxon on the conformation of human serum albumin redox site with different
oxidation states of Cys34 according to molecular modeling data. (A–C)—paraoxon is bound in Sudlow
site I; (D–F)—is bound in Sudlow site II; (A,D)—Cys34 is reduced (Cys34-SH); (B,E)—Cys34 is oxidised
to sulfenic acid (Cys34-SOH); (C,F)—Cys34 is oxidised to sulfinic acid (Cys34-S(O)O−).
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It could be noticed that the occupancy of Sudlow sites has the greatest effect on the conformation
of Cys34 oxidised to sulfenic acid (Cys34-SOH) (Figure 8B,E). When paraoxon is bound in Sudlow
site I (Figure 8B), the availability of the -SOH group is greater than in the case of paraoxon bound in
Sudlow site II. It has been mentioned in Section 3.2 that HSA-Cys34-SOH is a central intermediate
in the processes of redox modulation of blood plasma and intercellular fluid, and the final result of
the oxidative process depends on what happens with this sulfenic acid. However, our observation has
more theoretical than practical significance, since the concentration of the lethal dose of paraoxon in
blood hardly exceeds 15 µM, which can in no way affect the total albumin pool.

Recently, Litus et al. performed multifactorial computational disorder analysis of HSA
and BSA [151]. For all the residues of HSA and BSA, the authors calculated the values of mean predicted
disorder scores (MPDSs) characterising the flexibility of the amino acids, and then they analysed
the MPDS values of the phosphorylation, acetylation, ubiquitination, methylation and glycosylation
sites. According to the data obtained, serum albumins in their function (including the antioxidant
properties) often rely on disordered or flexible residues characterised by MPDS ≥ 0.5 and 0.2 ≤MPDS
< 0.5, respectively. For example, the arginines and lysines participating in albumin glycation are
characterised by rather high disorder scores ranging from 0.19 to 0.53. The amino acids of NTS
Asp–Ala–His–Lys (binding site for Cu(II)) have MPDS values of 0.31, 0.31, 0.32 and 0.36, respectively.
The researchers concluded that intrinsic disorder and high structural flexibility are important for
the functionality of serum albumin.

In conclusion of this section, it can be noted that all the papers mentioned above indicate
the fundamental possibility of modulating the antioxidant properties of albumin with endogenous
and exogenous ligands. Another important aspect worth paying attention to is that FAs are the key
transmitters of information between the sites of binding and antioxidant activity of albumin. This fact
must be taken into account in the biochemical studies of the drugs interacting with albumin.

5. Antioxidant Properties of Albumin: Practical Application

Albumin is usually one of the first proteins to be influenced oxidative stress; therefore, its
redox status is widely used as a biomarker of various pathological conditions. It is known that in
chronic liver and kidney diseases, as well as in diabetes mellitus, the percentage of cysteinylated
albumin (Cys34-S-S-Cys) is markedly increased [116]. In recent years, it has been shown that
oxidised albumin can be a biomarker of the severity of such diseases as hyperparathyroidism [152],
acute ischemic stroke [153], Parkinson’s disease [154], Alzheimer’s disease [155], Duchenne muscular
dystrophy [156], etc.

The possibility of using the covalent binding of the products of OPs hydrolysis with Cys34 for
developing the biomarkers of intoxication is of particular interest. OPs adducts with Tyr411 are widely
studied and described in the literature [157–159]. However, for thioether OPs (such as VX), another class
of adducts can be identified. Kranawetvogl et al. [160] showed that the thiol formed after hydrolysis of
this class of OPs can interact with the thiol group of Cys34, and the resulting adduct can be detected by
mass spectroscopic methods. The same group of researchers, in a recent work [161], studied a real case
of poisoning with demeton-S-methyl (O,O-Dimethyl S-2-(ethylsulfanyl)ethyl phosphorothioate, ODM).
ODM belongs to the class of dimethylphosphoryl (DMP) pesticides. 2-(ethylsulfinyl) ethanethiol
(ESOET) is a product of ODM hydrolysis by blood esterases. The patient’s blood plasma was treated
with pronase (a mixture of proteinases), and then the obtained samples were examined by mass
spectroscopy. Among the identified adducts of albumin with ODM, the adduct DMP-Tyr (Tyr411) had
the weakest peak, and could only be detected within two hours after poisoning. The peak intensity
of the ESOET-CysPro adduct (Cys34 and Pro35 of albumin) was 200 times higher, and its lifetime
was 73 h.

Fujii et al. [162] performed a comprehensive study of 281 Japanese residents: the ratio
of oxidised/reduced albumin, the thickness of the intima-media complex of the carotid arteries
and the number of plaques in the carotid arteries (the latter two indicators characterise the risk of
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atherosclerosis) were measured. An inverse relationship was found between the level of oxidised
albumin and the risk of atherosclerosis. Violi et al. recently showed that HSA level is independently
associated with mortality in COVID-19 [163]. The researchers suggested that it might be connected
with the antioxidant and anticoagulant properties of albumin.

Attempts are being made to use albumin not only as an informant about the condition of patients
but also as a therapeutic agent. An interesting application of the redox properties of albumin was
proposed by Japanese scientists [164]. It is known that reactive sulfur species (RSS) are able to neutralise
ultraviolet radiation products (for example, ROS and NO) that promote melanin synthesis. However,
the instability of RSS limits their use as inhibitors of melanin synthesis. The authors proposed a method
for using albumin as the RSS delivery system. It was shown that thiolated albumin (obtained by
the incubation of albumin and sodium polysulfide) significantly inhibited melanin synthesis in B16
melanoma cells. The researchers also suggested that albumin modified in such a way could be used in
cosmetology to whiten the skin.

In the research of Schneider et al. [165], the possibility of using human albumin solution to
protect patients of an intensive care unit (ICU) from bacterial infections was studied. The polypeptide
vasostatin-1 is known to have antimicrobial properties and play a key role in protecting the body from
gram-positive bacteria. However, the oxidised form of vasostatin loses its antibacterial properties.
Oxidative processes are often developed in ICU patients, which means that they are more at risk of
infection. The study showed that continuous infusion of 4% albumin reduced the risk of nosocomial
infections. By mixing albumin with oxidised vasostatin-1 and using a high-performance liquid
chromatography (HPLC) method, the authors demonstrated that albumin reduced the oxidised form
of vasostatin, thereby increasing its antibacterial properties.

Analysis of the literature data allows us to take a fresh look at the results of our research aimed
at the development of adjuvant therapy for OP poisoning. In Section 4.3, we have reviewed studies
demonstrating that many FAs and some polyphenols affect the reactivity of HSA Cys34 thiol group.
Earlier in our experiments, we tested polyphenols of green tea extract (GTE) as a component of
functional nutrition before and after acute poisoning with paraoxon and demonstrated the weakening
effect of GTE on the development of delayed symptoms of poisoning [166]. In biochemical in vitro
experiments, we have shown that GTE polyphenols have an activating effect on the true esterase activity
of the protein in Sudlow site I towards paraoxon [167] and have suggested that GTE promotes not
only the transport but also the utilisation of OPs by albumin in the bloodstream. However, in the light
of new data, it is possible that the major polyphenol of GTE epigallocatechin gallate (EGCG) has an
additional effect: by binding to albumin, it affects the reactivity of the Cys34, enhances its antioxidant
properties, weakens the strength of oxidative stress and thereby reduces the intensity of delayed effects
of poisoning. This hypothesis requires additional testing.

Despite some progress in studying the possibility of enhancing the antioxidant properties
of albumin, the development of the methods for correcting oxidative stress taking into account
this ability of the protein is still in its infancy. Recently, such classes of compounds as thiol
antioxidants (n-acetylcysteine, carbocysteine and erdosteine), superoxide dismutase mimetics
(magnesium-containing porphyrins), NADPH oxidase inhibitors (apocinin, diphenyliod), setanaxib
traps (disulfenton sodium), activators of the transcription factor Nrf2 (Sulforaphane, Bardoxelone
methyl, Dimethylfumarate) have been actively tested or are already being used to reduce oxidative
stress [168–171]. It might be that in the future it will be possible to create the complex therapy for
oxidative stress management taking into account the functional properties of albumin.

6. Concluding Remarks

The literature data analysed and the results of our own research allow us to formulate some
concluding remarks. Firstly, albumin is a universal molecule in a certain sense, which can bind
almost all known endogenous compounds, metal ions and xenobiotics and possesses a number of
enzymatic activities: (pseudo)esterase, paraoxonase, phosphotriesterase, thioesterase, glutathione
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peroxidase, cysteine peroxidase and some others. Due to this versatility, albumin is a participant of
many biochemical processes in the human organism, including participation in antioxidant defence.
Of course, albumin takes part in the redox reactions non-specifically due to the fact that its concentration
in the extracellular compartment is very high and renewal occurs relatively quickly (about 20 days).
At the same time, it is a sacrificial antioxidant, which takes the brunt of the extracellular component of
oxidative stress. The second important point to note is that albumin is easily modulated due to its
flexible structure. The interaction of albumin with active species and oxidation of Cys34 can lead to an
alteration of the protein binding properties towards the ligands, in particular pharmaceuticals and toxic
substances. Additionally, the binding of some compounds affects the reactivity of the thiol group of
Cys34 and modulates the antioxidant properties of the protein in the direction of strengthening or
weakening. Undoubtedly, these properties of albumin should be taken into account in the development
of therapy for pathologies associated with oxidative stress.
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Abbreviations

1H NMR Proton nuclear magnetic resonance
ACh Acetylcholine
AChE Acetylcholinesterase
BH4 Tetrahydrobiopterin
BSA Bovine serum albumin
CaM Calmodulin
CAT Catalase
CKD Chronic kidney disease
COVID-19 Coronavirus Disease 2019
CYP450 Cytochrome-dependent oxygenases
DHPR Dihydropyridine receptors
DMP Dimethylphosphoryl
DTNB 5,5′-dithiobis-2-nitrobenzoic acid
DTT Dithiothreitol
EGCG Epigallocatechin gallate
eNOS Endothelial nitric oxide synthase
EPR Electron paramagnetic resonance
ESOET 2-(ethylsulfinyl) ethanethiol
EtAc Ethacrynic acid
ETC Electron transport chain
EtOH Ethanol
FAs Fatty Acids
GPx Glutathione peroxidase
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GPx3 Tetrameric glutathione peroxidase-3
GR Glutathione reductase
Grx Glutaredoxins
GSH Reduced glutathione
GSSG Oxidised glutathione
GST Glutathione-S-transferase
GTE Green tea extract
HPLC High-performance liquid chromatography
HSA Human serum albumin
ICU Intensive care unit
iNOS Inducible nitric oxide synthase
LCAD Long-chain fatty acid dehydrogenase
MBS Metal-binding site
MCO Metal–catalysed oxidation system
MPDS Mean predicted disorder score
MER Mercaptoethanol
MM-PBSA Molecular Mechanics/Poisson-Boltzmann Surface Area
nNOS Neuronal nitric oxide synthase
NOS Nitric oxide synthase
NOX NAD(P)H-oxidase system
NPA p-nitrophenyl acetate
NTS N-terminal site
ODM O,O-Dimethyl S-2-(ethylsulfanyl)ethyl phosphorothioate
OPs Organophosphates
oxBSA Oxidised bovine serum albumin
PBS Phosphate buffered saline
PHGPx Phospholipid hydroperoxide glutathione peroxidase
PON Paraoxonase
Prxs Peroxiredoxin
PUFAs Polyunsaturated fatty acids
RNS Reactive nitrogen species
ROS Reactive oxygen species
RSA Rat albumin
RSS Reactive sulfur species
RyR Ryanodine receptors
S-LME S-lauroylmercaptoethanol
SOD Superoxide dismutase
SR Sarcoplasmic reticulum
TR Thioredoxin reductase
Trx Thioredoxin
VLCAD Very long-chain fatty acid dehydrogenase
XO Xanthine oxidase
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