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Abstract

Background: Porcine rotavirus infection is a significant cause of morbidity and mortality in the
swine industry necessitating the development of effective vaccines for the prevention of infection.
Immune responses associated with protection are primarily mucosal in nature and induction of
mucosal immunity is important for preventing porcine rotavirus infection.

Results: Lactobacillus casei expressing the major protective antigen VP4 of porcine rotavirus
(pPG612.1-VP4) or VP4-LTB (heat-labile toxin B subunit from Echerichia coli) (pPG612.1-VP4-LTB)
fusion protein was used to immunize mice orally. The expression of recombinant pPG612.1-VP4
and pPG612.1-VP4-LTB was confirmed by SDS-PAGE and Western blot analysis and surface-
displayed expression on L. casei was verified by immunofluorescence. Mice orally immunized with
recombinant protein-expressing L. casei produced high levels of serum immunoglobulin G (IgG) and
mucosal IgA. The IgA titters from mice immunized with pPG612.1-VP4-LTB were higher than
titters from pPG612.1-VP4-immunized mice. The induced antibodies demonstrated neutralizing
effects on RV infection.

Conclusion: These results demonstrated that VP4 administered in the context of an L. casei
expression system is an effective method for stimulating mucosal immunity and that LTB served to
further stimulate mucosal immunity suggesting that this strategy can be adapted for use in pigs.

Background induce neutralizing antibodies resulting in protecting
Rotaviruses are members of the family Reoviridae. Rotavi-  herd from porcine rotavirus infection.

ruses affecting pigs are classified as group A, B or C based

on their respective inner capsid protein sequences[1]. The  Porcine rotaviruses are the major cause of acute diarrhea
rotavirus double-stranded RNA genome is composed of  in the piglets [3,4] and can cause mild-severe diarrhea
11 segments enclosed by a nonenveloped, triple-layered  associated with potentially high morbidity and mortality.
icosahedral capsid [2]. The outer capsid VP4 protein can ~ Group A rotaviruses cause diarrhea in pigs both before
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and after weaning [5] and can account for 53 and 44%
pre- and post-weaning rotavirus-associated diarrhea in
swine, respectively [6]. A recent report attributed 89% of
all rotavirus-associated diarrhea in commercial pig farms
to group A rotavirus infections [7]. Since rotaviruses can
survive in the environment for long period of time and are
transmitted via the fecal-oral route outbreaks are difficult
to control. Virion replication occurs at the tips of epithe-
lial cell in intestinal villi and destroy enterocytes primarily
in the jejunum and ileum resulting in villous atrophy
[8,9]. Furthermore, nutrients cannot be digested or
absorbed in the affected regions resulting in severe malab-
sorption [10]. A better understanding of rotavirus epide-
miology will contribute to the optimization of current
vaccines and prevention programs for the control of rota-
virus infection. Currently available vaccines (mostly
killed) can not offer efficient immunity. To stimulate effi-
cient immunity, a large vaccine dose and repeated admin-
istration are usually required. This often results in
undesirable clinical signs. To overcome these shortcom-
ings, the potential development of lactic acid bacteria
(LAB) to deliver heterologous antigen to the mucosal
immune system has been proposed.

Since rotaviruses are enteric pathogens, mucosal immu-
nity is likely to play an important role in protective immu-
nity. Innate immune responses in gut provide the first line
of defense against pathogenic microorganisms and also
initiate acquired immune responses. Furthermore,
immune responses resulting from oral immunization are
the only suitable method of stimulating gut immunity
[11] since this route facilitates stimulation of gut-associ-
ated lymphoid tissue (GALT) enhancing the production
of anti-viral IgA [12].

Compared to recombinant antigens or heat-killed formu-
lations, 'live' vaccines elicit the most effective protective
responses since they stimulate both systemic and mucosal
immunity [13-17]. However, oralvaccination presents a
challenge since the gut milieu often denatures and/or
inactivates potential vaccinogens therefore large vaccina-
tion doses and repeated vaccinations are required[18,19].
This often results in fecal shedding of the live vaccine in
addition to causing fever and diarrhea [16,18,19]. These
challenges can be overcome by using lactic acid bacteria
(LAB) as antigen delivery system for the stimulation of
mucosal immunity [20-25] owing to its safety. LAB are
used in industrial food fermentation, preservation and
have beneficial effects on the health of both humans and
animals and 'generally regarded as safe, (GRAS'micro-
organisms). In addition, many strains of LAB are able to
survive and colonize the intestinal tract [26,27] inducing
a non-specific immunoadjuvant effect [28] which
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prompted studies aimed at determining the oral vaccine
potential of LAB-derived vaccines.

Since genetically engineered vaccines composed of a sin-
gle recombinant antigen are poorly immunogenic, it is
important to increase their immunogenicity by combin-
ing with appropriate adjuvants. The E. coli heat-labile
toxin B subunit (LTB) has been shown to be a potent
mucosal adjuvant [29-33] with low potential of eliciting
allergic responses [34,35].

In this study, we tested the efficacy of the L. casei ATCC
393 expressing the heterologous VP4 porcine rotavirus
protein and its ability acting as an antigen delivery system
for oral vaccinations. We constructed recombinant strains
expressing porcine rotavirus VP4 and VP4-LTB. The
immunogenic potential of the two recombinant strains
was analyzed after oral administration of live bacteria to
mice. This is the first report describing the cloning and
expression of porcine rotavirus genes in Lactobacillus. The
data reported indicate that oral administration of two
recombinant strains pPG612.1-VP4 or pPG612.1-VP4-
LTB could induce specific anti-rotavirus mucosal and sys-
temic immune responses. The potency of the immune
responses measured was greater in animals immunized
with L. casei-expressing the VP4-LTB fusion (compared to
mice immunized with L. casei expressing VP4 only) dem-
onstrating the efficacy of LTB as a mucosal adjuvant.

Results

Expression of VP4 and VP4-LTB in L. casei

The sequences of the respective L. casei 393 transformants
are confirmed by plasmid DNA sequencing and the result
shows that there is no mutation in the transformants
(data not shown).

rLc393:pPG612.1-VP4 and pPG612.1-VP4-LTB  were
grown in basal MRS medium supplemented with either
xylose or glucose. Cell lysates subjected to SDS-PAGE and
showed the corresponding VP4 and VP4-LTB recom-
binant proteins at 27 and 40 kDa respectively after analyz-
ing by Coomassie blue staining, following xylose
induction (Figure 1A, lane 3 and Figure 1B, lane 3). Pro-
teins were not expressed if cells were grown in basal MRS
medium supplemented with glucose (Figure 1A, lane 2
and Figure 1B, lane 2). Gels run in parallel were trans-
ferred onto nitrocellulose membranes and examined by
Western blot analysis using anti-VP4 antibodies. Immu-
noreactive bands corresponding to VP4 and VP4-LTB were
observed at 27 and 40 kDa, respectively (Figure 2A, lane 2
and Figure 2B, lane 2). Reactive bands were not detected
if the cells were instead grown in the presence of glucose
(Figure 2A, lane 3 and Figure 2B, lane 1). These results

Page 2 of 11

(page number not for citation purposes)



BMC Microbiology 2009, 9:249

4. Olm—
BT. Ol

43, Olm—

30. Oln—

20, 1ln—

14, dla—

Figure |

+—— ITKD

http://www.biomedcentral.com/1471-2180/9/249

(B)

4. Olm—
BT. Olox

47 Ol *+—40KD

30, Dkoa

A0.1kn—

14 dkn—

Expression of VP4 and VP4-LTB in rLc393:pPGé612.1-VP4 and pPG612.1-VP4-LTB. Total cell lysates were analysed
by SDS-PAGE. Coomassie blue gel staining shows the expression of a 27 KD and 40 KD fusion protein in lysates of rLc393
induced by xylose (Fig. A, lane 3 and Fig. IB, lane 3), but not in basal MRS with glucose (Fig. | A, lane 2 and Fig. IB, lane 2).

demonstrated the efficiency and specificity of the L. casei
xylose promoter.

Immunofluorescence analysis

L. casei surface-displayed expression of VP4 and VP4-LTB,
respectively, was confirmed by immunofluorescence.
Overnight cultures of pPG612.1-VP4 and pPG612.1-VP4-
LTB were grown in basal MRS medium supplemented

(&)

with either xylose or glucose. The cells were washed, incu-
bated with mouse anti-VP4 anti serum followed by a
FITC-conjugated goat anti-mouse IgG. VP4 was detected
on the surface of pPG612.1-VP4 and pPG612.1-VP4-LTB
cells grown in the presence of xylose (Figure 3B and 3C).
No immunofluorescence was observed when wild-type L.
casei 393 was incubated in a similar fashion (cells were
stained red by Evans blue dye, Figure 3A).
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Figure 2

Western-blotting analysis of VP4 and vp4-LTB expression in recombinant strain. Inmunoreactive bands were
observed (Fig. 2A, lane 2 and Fig. 3B, lane 2) in the similar position as shown in the SDS-PAGE, however, there were no immu-
noblots in the same cell lysates induced by glucose (Fig. 2A, lane 3 and Fig. 3B, lane 1).
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Figure 3

Immunofluorescence analysis. Wild-type L. casei 393 was induced by xylose, the result of immunofluorescence was nega-
tive, and the cells were dyed red by Evans blue (A). When pPG612.1-VP4 and pPG612.1-VP4-LTB were induced by xylose,
there were green-yellow fluorescence reaction on the surface of the cells (B, C).

Antibody responses following oral immunizations

The ability of the respective VP4-expressing L. casei vectors
to elicit systemic and/or mucosal immunity was assessed
by determining the presence of anti-VP4 IgG and IgA anti-
bodies, respectively. Anti-VP4 IgG antibody levels in
serum of mice treated with either pPG612.1-VP4 or
pPG612.1-VP4-LTB were similar to each other but higher
than only with pPG612.1 (Figure 4). After the first
booster, a prompter and stronger level of anti-VP4-specific
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Figure 4

Specifis IgG antibodies in serum. Serum from groups of
mice (10 mice every group) immunized orally with
pPG612.1-VP4, pPG612.1-VP4-LTB and equivalent dose of
pPG612.1 were analyzed for the presence of anti-VP4 spe-
cific IgG by ELISA. IgG titers of serum in mice given
pPG612.1-VP4 or pPG612.1-VP4-LTB were similar but
higher than that of mice given pPG612.1. ** P < 0.01 signifi-
cant difference between IgG titers of serum in mice given
pPG612.1-VP4 and pPG612.1 on day 7, 21 and 35. Results
are the IgG titers + standard errors of the means in each

group.

serum IgG was elicited in mice that were administered
with recombinant strains. A statistically significant differ-
ence was observed on day 7, 21 and 35 (** P < 0.01, Fig-
ure 4). No significant elicitation of anti-VP4 antibodies
was observed in the control groups that received
pPGG612.1.

As the results showed, there were no substantial differ-
ences in mucosal IgA levels between experimental and
control groups prior to oral immunization. Following
administration with the L. casei recombinants, specific
anti-VP4 mucosal IgA responses were observed. After the
second boost, significant levels of anti-VP4 IgA were
observed from mucosal secretions following administra-
tion of either pPG612.1-VP4 or pPG612.1-VP4-LTB com-
pared to responses observed in control mice. Statistically
significant difference (** P < 0.01, Figure 5 and 6) was
observed in ophthalmic and vaginal wash of mice admin-
istered with recombinant strains after seven days and fecal
pellets after one day. The mucosal IgA levels elicited by
pPG612.1-VP4-LTB were higher than pPG612.1-VP4
immunization and the difference is significant statistically
(* P <0.05,* *P < 0.01, Figure 5 and 6). This indicated
that LTB enhanced the mucosal immune system response.

Neutralization ability of the induced antibodies analysis

The Neutralization ability of the induced antibodies was
investigated to further detect whether the antibody
responses were against RV. Results demonstrated that the
presence of anti-rPRV-VP4 IgG in the culture medium
conferred statistically significant neutralizing effects (** P
<0.01, Figure. 7) on RV infection. A near 50.28% =+ 0.83%
reduction of CPE was consistently observed when the
assays were carried out using 2-to 16-fold diluted sera
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Figure 5

Specific IgA levels in ophthalmic and vaginal wash were detected after oral immunization (10 mice every
group administered with different recombinant strains). Specific IgA antibody titers were detectable in the mice
immuned with pPG612.1-VP4 and pPG612.1-VP4-LTB after the first administration (Fig. 5A, B). Statistically significant differ-
ence (** P < 0.01) was observed in ophthalmic and vaginal wash of mice administered with recombinant strains after seven
days. IgA levels elicited by pPG612.1-VP4-LTB were higher than those elicited following pPG612.1-VP4 immunization and the
difference is significant statistically (** P < 0.01). Bars represent the IgA titers * standard errors of the means in each group.
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Specific IgA levels in fecal pellets after oral immunization. The mice (10 every group) received three consecutive
immunization, three times at 2-week intervals. The control group of mice received the same dose of pPG612.1. Fecal pellets
were collected |, 2, and 7 days after every immunization. Both of the groups immuned with pPG612.1-VP4 or pPG612.1-VP4-
LTB produced specific IgA. Statistically significant difference (** P < 0.01) was observed in fecal pellets of mice administered
with recombinant strains after one day. The levels of IgA in fecal pellets induced by pPG612.1-VP4 appeared lower than those
induced by pPG612.1-VP4-LTB (*P < 0.05,**P < 0.01). Results are the IgA titers * standard errors of the means in each group.

from mice immunized with pPG612.1-VP4, and a 56.06%
+ 0.77% reduction of CPE was observed by using 2-to 16-
fold diluted sera from mice immunized with pPG612.1-
VP4-LTB. The inhibitory effect decreased gradually on fur-
ther dilutions of sera and reached to the level similar to
that of the control, which of sera administered with
pPG612.1-VP4 is 1:128 and pPG612.1-VP4-LTB is 1:256
in Figure. 7. The neutralizing efficacy of anti-VP4 IgG from
mice immunized with pPG612.1-VP4 was lower than
pPG612.1-VP4-LTB and the difference was significant sta-
tistically (*P < 0.05,* *P < 0.01, Figure. 7).

Discussion

Porcine rotaviruses are the major cause of acute diarrhea
in the piglets and can cause mild to severe diarrhea with
potentially high morbidity and mortality rates. Infection
with porcine rotavirus has been an economic concern to
worldwide pig breeders. Vaccination is the main prophy-
latic method for the prevention of porcine rotavirus infec-
tions. Mucosal immunization offer a number of
advantages over other routes of antigen delivery, includ-
ing ease of administration, cost effectiveness and the
capacity of inducing both local and systemic immune
responses [36-41].

To assess mucosal immune responses, specific IgA anti-
VP4 protein levels were examined from various mucosal
surfaces. Oral administration of recombinant VP4 or VP4-

LTB-expressing L. casei induced both systemic (IgG) and
mucosal (IgA) immune responses. Specifically, IgA spe-
cific for VP4 could be isolated from the gastrointestinal
tract, vagina and eye secretions compared to no detectable
IgA anti-VP4 responses in control animals. These experi-
ments suggested that L. casei expressing recombinant VP4
could be used in the vaccination of pigs, potentially pro-
tecting them from porcine rotavirus infections since this
vector successfully elicited a significant and specific anti-
VP4 IgA response.

The titers of anti-VP4 IgG in the serum from mice immu-
nized with the L. casei pPG612.1-VP4 or pPG612.1-VP4-
LTB were similar but higher than the control group.
rLc393:pPG612.1-VP4-LTB induced even higher IgA spe-
cific for VP4 compared to mice immunized with the
pPG612.1-VP4 as a result of the LTB mucosal adjuvant. It
demonstrated the specific mucosal adjuvanticity of LTB,
highlighting its potential use as a safe and effective
mucosal adjuvant that can be used in conjunction with
VP4 for the elicitation of specific anti-porcine rotavirus
immunity.

Furthermore, in order to confirm the efficacy of the
induced antibodies in inhibiting the virus, we tested
whether sera collected from immunized mice could
inhibit the infection of RV in MA104 cells by neutraliza-
tion ability assay. The results showed that serum collected
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Neutralization ability of the sera prepared from mice immunized with pPG612.1-VP4 and pPG612.1-VP4-LTB.
The maximum reduction of CPE, expressed as a percentage of CPE obtained for the negative control samples, by using sera
collected from mice fed with pPG612.1-VP4 or pPG612.1-VP4-LTB, was 50.28% + 0.83% or 56.06% + 0.77%, respectively. Sta-
tistically significant difference (** P < 0.01) was observed in sera of mice administered with recombinant strains. The neutraliz-
ing efficacy of anti-VP4 IgG from mice immunized with pPG612.1-VP4 was lower than antibodies obtained from mice
immunized with pPG612.1-VP4-LTB and the difference was significant statistically (* P < 0.05,%*P < 0.01). Results are mean val-

ues and standard errors (error bars) of triplicates.

from mice immunized with recombinant strains demon-
strated statistically significant inhibition. The neutraliza-
tion by sera antibodies obtained from mice immunized
with pPG612.1-VP4-LTB was more effective than that of
mice immuned with the pPG612.1-VP4.

Conclusion

In this report, we described the methods for constructing
two L. casei recombinant expression vectors expressing the
porcine rotavirus VP4 antigen or VP4-LTB fusion protein.
L. casei is an excellent delivery vector since it can with-
stand the rigors of the intestinal environment in addition
to being able to colonize different mucosal sites (gastroin-
testinal and genital tracts) and guaranteeing proper
(intact) presentation of the respective antigens to the
immune system. In addition to the versatility of L. casei, it
possesses probiotic properties making it an even more
attractive vaccine delivery system i.e., immunization with
L. casei expressing VP4-LTB elicited potent anti-VP4 IgA
responses. Testing the efficacy in a porcine vaccination
and infection model is a next step in testing the efficacy of
this vaccine formulation.

Methods

Strains and culture conditions

L. casei ATCC 393 (a kind gift of Jos Seegers, NIZO, The
Netherlands) was grown anaerobically in MRS broth
(Sigma, St, Louis, MO) at 37°C without shaking. To ana-
lyze protein expression, transformed L. casei were grown
in basal MRS medium (10 g peptone, 8 g beef extract, 4 g
yeast extract, 2 g potassium phosphate, 5 g sodium ace-
tate, 1 ml Tween 80, 2 g diammonium citrate, 0.2 g mag-
nesium sulfate, and 0.05 g manganese sulfate per liter)
supplemented with 2% xylose. L. casei was plated on MRS
medium with 1.5% agar. The antibiotic concentration
used for the selection of lactobacilli transformants was 10
pg/ml of chloromycetin (Cm; Sigma). Porcine rotavirus
JL94 (belonging to P[7]) was conserved in the laboratory.

Mice

Balb/c mice (female) weighing 25-30 g (7 weeks of age)
were obtained from the inbred colony maintained at the
Harbin Veterinary Research Institute. Each experimental
and control group consisted of 10 mice. The animals were
fed balanced rodent food and water ad libitum. The mice
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were handled and maintained under strict ethical condi-
tions according to the international recommendations for
animal welfare and the Ethical Committee for animals sci-
ences of HeiLongJiang province (032/2006).

Mouse anti-VP4 antibodies

The mouse anti-VP4 antibodies used in Western-blot and
immunofluorescence analysis had been prepared and
stored in our laboratory. The recombinant plasmid VP4-
pGEX-6P-1 was constructed and transformed into E. coli
BL21(Yan Song). The recombinant strain was induced
with IPTG. The serum was obtained from the Balb/c mice
immunized with the purified VP4 protein. Western-blot
test and neutralization test circumstantiate the expressed
protein has biological activity(data not shown).

Expression plasmid construction

The pPG612.1 plasmid is an expression vector containing
an ssUsp signal peptide secretion sequence (kindly sup-
plied by Jos Seegers, NIZO, The Netherlands). Nucleic
acid manipulation and cloning procedures were per-
formed according to standard procedures [42]. All DNA
manipulations were performed according to standard
procedures [43]. A gene fragment about 756 bp (VP8)
encoding the main structural polypeptide of VP4
(obtained from the genome of PRV strain JL94) was
amplified by polymerase chain reaction (PCR) using for-
ward  primer 5'-CAGGGATCCAATGGCTITCGCTCA-
3'(BamHI site underlined) and the reverse primer 5'-
GGCCTCGAGAGCTCTTGTGTGCA-3'(Xhol site under-
lined) (Figure 8). PCR amplification conditions were as
follows: 95°C, 5 min followed by 30 cycles at 94°C, 1
min; 56.5°C, 1 min; 72°C, 1 minand a 72°C 10 min final
extension. The VP4 gene PCR product was cleaved with
BamH]I and Xhol and ligated into the corresponding sites
of pPG612.1 digested with BamHI and Xhol, respectively,
giving rise to pPG612.1-VP4. A gene fragment of about
375 bp encoding the E. coli LTB structural polypeptide was
amplified by PCR using the forward primer 5'-
AAGGTCGACTGCTGTVVGATGAATAAAGTAAAATGT-
TAT-3" (Sall site underlined) and the reverse primer 5'-
AAGCTCGAGCTAGTTTITCCATACTGATTGCCG-3'(Xhol
site underlined). PCR amplification conditions were as
follows: 95°C, 5 min followed by 30 cycles of 1 min at
94°C; 1 min, 56°C; 1 min, 72°C and a final extension at
72°C for 10 min. The LTB PCR product was cleaved with
Sall and Xhol and inserted into the corresponding sites in
pPG612.1-VP4 digested with Sall and Xhol, giving rise to
pPG612.1-VP4-LTB (Figure 8).

Electroporation of L. casei was carried out as previously
described [44]. Briefly, plasmid DNA (10 pl) was added to
150 pl of L. casei 393, gently mixed at 4°C for 5 min and
subjected to a single electric pulse (25 pF of 2.5 kV/cm).
The mix was then incubated in MRS medium without Cm

http://www.biomedcentral.com/1471-2180/9/249
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Figure 8

Target amplification fragments of VP4 and VP4-LTB
fusion gene. Lane |,5: Blank controls; Lanes 2: Target ampli-
fication fragment of VP4 gene; Lanes 3: 2000 bp DNA
marker; Lane 4:Target amplification fragment of VP4-LTB
fusion gene.

at 37°C anaerobically for 2 h. Recombinant strains were
selected on MRS-agar medium containing 10 pg/ml of
Cm. The sequences of the respective L. casei 393 trans-
formants were confirmed by plasmid DNA sequencing.

Protein expression and Western-blot analysis

To analyze the expression of the VP4 and VP4-LTB fusion
protein following xylose induction of rLc393:pPG612.1-
VP4 and pPG612.1-VP4-LTB, respectively, overnight cul-
tures grown in basal MRS broth supplemented with xylose
(or glucose as a negative induction control) and pellets
collected by centrifugation at 12,000 x g for 10 min. The
pellets were washed twice with sterile 50 mM Tris-Cl, pH
8.0 and treated with 10 mg/ml lysozyme at 37°C for 60
min. The lysates were centrifuged at 12000 x g for 10 min
and subjected to 10% sodium dodecyl sulphate polyacry-
lamide gel electrophoresis (SDS-PAGE) and either stained
with Coomassie blue or electrotransferred onto nitrocel-
lulose membranes. The immunoblots were blocked with
PBS containing 5% skimmed milk for 2 hr at 37°C. Blots
were washed three times between all steps for ten min-
utes. Blots were incubated with 1:800 dilution(100 pL) of
mouse anti-VP4 antibodies in phosphate-buffered saline
(PBS), washed and then probed with a horseradish perox-
idase (HRP)-conjugated goat anti-mouse IgG (Sigma)
diluted at 1:2500(100 pL) in PBS. The blots were washed
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and incubated with the Chemiluminescent Substrate rea-
gent (Pierce, Rockford, IL) according to the manufac-
turer's instruction. Control blots incubated with
secondary antibody only did not result in visible protein
band reactivity.

Immunofluorescence analysis

Immunofluorescence was used to analyze VP4 and VP4-
LTB  protein  surface  expression by  either
rLc393:pPG612.1-VP4 or pPG612.1-VP4-LTB as described
previously [45]. Briefly, 2 ml induced cultures were har-
vested to an OD600 = 0.5-0.6 and then resuspended in 1
ml sterile PBS 3% bovine serum albumin (BSA) contain-
ing anti-VP4 antibodies and then incubated overnight at
37°C. The cells were then pelleted, washed 3 times with
sterile PBS 0.05% Tween 20. The cell-antibody complexes
were then incubated for 6 h at 37°C in the dark with flu-
oreoscein isothiocyanate (FITC)-conjugated goat anti-
mouse IgG (Sigma) containing 1% Evans blue. Cells were
washed 3 times with PBS 0.05%, Tween 20 and then air-
dried on a glass slide. Analysis was performed using a con-
focal microscope. Non-induced or glucose-induced
recombinant strains were used as negative controls.

Immunizations

rLc393:pPG612.1-VP4 and 1Lc393:pPG612.1-VP4-LTB
were cultured and centrifuged as described above. Cell
pellets were washed once with sterile PBS and resus-
pended in PBS (pH 7.4). Mice were orally vaccinated with
0.2 ml 10° colony-forming units (c.f.u.)/ml of the recom-
binant strains, respectively. A control group of 10 mice
received L. casei ATCC 393 containing the empty plasmid
was also included. Mice in all groups were immunized on
days 0, 1 and 2 and boosted on days 14, 15 and 16 and
again on days 28, 29 and 30.

Enzyme-linked immunosorbent assay (ELISA)

Mouse serum was collected on days 7,14,21 and exam-
ined for specific anti-VP4 antibodies by ELISA. Feces was
collected at 1, 2 and 7 days after every immunization as
described previously [46]. Ophthalmic washes were
obtained by washing the eyes with 50 pl PBS 7 days after
every immunization. Vaginal washes were collected by
washing the vagina with 200 pl PBS 7 days after every
immunization. All samples were stored at -20°C until
assayed by ELISA.

Polystyrene microtitre plates were coated overnightat 4°C
with either porcine rotavirus propagated on MA104 cells
or with supernatants harvested from MA104 cells cultured
without rotavirus as negative control. ELISA plates were
washed 3 times with PBS 1%Tween 20 and then blocked
with PBS 5% skim milk at 37°C for 2 h. Serum or mucosal
wash samples were serially diluted in PBS 1% BSA and
incubated at 37°C for 1 h, washed 3 times and then incu-
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bated with a 1:2000 dilution(100 pL) of an HRP-conju-
gated goat anti-mouse IgA (Sigma) or IgG (Sigma),
washed and visualized following the addition of 100 ul of
o-phenylene diamine dihydrochloride substrate(Sigma).
The absorbance was measured at 490 nm. Differences in
the samples between treatments were examined for the
level of significance by ANOVA.

Neutralization ability of the induced antibodies

Serum samples from mice immunized with recombinant
strains expressing VP4 or VP4-LTB were evaluated [47] to
determine the neutralization ability of the induced anti-
bodies. In brief, sera from mice fed with non-expressor
strains was used as negative control. Fifty microliters of
samples in serial dilutions (from 1:2 to 1:512) was pre-
pared in a 96-cell plate. RV adjusted to 200 TCID50 in 50
uL of virus diluent (10% concentrated Hanks balanced
salt solution, pH 7.4) was added to the cell plate contain-
ing serially diluted serum. The mixture of antibody and
virus was mixed and incubated at 37°C for 1 h. Then 100
pL of MA104 cells (used for virus infection) was added to
the antibody-virus mixture and incubated in a 5% CO2
incubator at 37°C for 5 days. The overlay medium was
then discarded, after which the wells were washed three
times with sterile PBS, pH 7.4, and stained with 1% crystal
violet solution. Differences in the number of plaques
formed between treatments were examined for the level of
significance by ANOVA.

Statistical analysis
Statistical significance was determined using ANOVA,
with a P value < 0.05 considered as significant.
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