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We define an iterative method for dimensionality reduction using categorical gradient boosted 
trees and Shapley values and created four machine learning models which potentially could 
be used as diagnostic tests for acute myeloid leukaemia (AML). For the final Catboost model 
we use a dataset of 2177 individuals using as features 16 probe sets and the age in order to 
classify if someone has AML or is healthy. The dataset is multicentric and consists of data from 
27 organizations, 25 cities, 15 countries and 4 continents. The performance of our last model 
is specificity: 0.9909, sensitivity: 0.9985, F1-score: 0.9976 and its ROC-AUC: 0.9962 using ten 
fold cross validation. On an inference dataset the perormance is: specificity: 0.9909, sensitivity: 
0.9969, F1-score: 0.9969 and its ROC-AUC: 0.9939. To the best of our knowledge the performance 
of our model is the best one in the literature, as regards the diagnosis of AML using similar or 
not data. Moreover, there has not been any bibliographic reference which associates AML or any 
other type of cancer with the 16 probe sets we used as features in our final model.

1. Introduction

Acute myeloid leukaemia (AML) [1] is often characterized by non detectable early symptoms and its quick diagnosis, even in an 
intensive care unit could have a huge impact on the overall survival [2]. The use of machine learning can be helpful on the diagnosis 
of this disease and therefore in the creation of a screening tool [3], [4]. The early diagnosis of AML using only peripheral blood 
and the cost reduction a machine learning based diagnostic test could create a tremendous positive impact to society. A method for 
categorizing and examining acute myeloid leukemia is presented in the diagnostic flowchart in Figure 1 of [5]. It is founded on the 
recommendations of various authoritative bodies, such as the World Health Organization, the College of American Pathologists, the 
National Comprehensive Cancer Network, the American Society of Clinical Oncology, the European Society of Medical Oncology and 
the European LeukemiaNet. The diagnostic flowchart approach introduces a certain degree of complexity to the process, which in 
turn increases the cost and time needed to reach a near-certain diagnosis, which is far more complex and it could be more costly 
than our approach. If our work progresses, it may lead to a diagnostic approach that profiles the transcriptome of 16-34 genes from 
peripheral blood to determine if someone is healthy or has AML. While this method appears promising, it’s crucial to underscore 
the need for additional validation before gaining clinical acceptance, especially given that most of these markers aren’t conclusively 
associated with the disease.
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Here we focus on the primary diagnosis of AML using the minimum number of probe sets possible in order to achieve excellent 
performance regarding both true positives and true negatives. In addition, we use the age as feature to our final model since its 
prognostic value is high regarding the survival of patients with AML [6]. Another reason we include the age is that from deep 
learning work in radiology, in particular in ultrasound with even small data sets of 100 data instances [7], [8], and with CatBoost [9]

using features coming from different sources we can achieve high performance in binary classification problems both on sensitivity 
and specificity.

We first tune a CatBoost [10] on a curated publicly available Affymetrix microarray gene expression and normalized batch 
corrected dataset consisted of probe sets of 3374 individuals [3], in order to classify if an individual has AML or is healthy. CatBoost 
library offers the option to return the set of features’ importance of CatBoost algorithm and also the set of features’ importance of 
the loss function change using Shapley values [11]. The above two sets can differ.

CatBoost is a machine learning algorithm and it stands for “Categorical Boosting”. It is used to predict outcomes based on past 
data. It does this by repeatedly learning from the data, adjusting its predictions, and striving to make fewer mistakes in each round 
of learning, a process known as ‘boosting’. Catboost has 103 hyperparameters. In our approach, we tune only three of them: learning 
rate, depth and iterations. The default values of the other hyperparameters work in general very well. Regarding the hyperparameters, 
the learning rate determines how quickly or slowly the model ‘learns’ or adjusts its predictions in each iteration. The depth refers to 
the complexity of the model. A higher depth means a more complex model that can capture more nuanced relationships in the data. 
Iterations are the number of times the model goes through the learning cycle. Adjusting these hyperparameters helps find the best 
balance for the specific task, which in our case is the diagnosis of acute myeloid leukaemia. The default loss function catboost uses 
for binary classification problems is the log-loss:

𝐿(𝑦, 𝑝) = − 1
𝑁

𝑁∑

𝑖=1
[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]

where

• L(y,p) is the log-loss function.

• N is the total number of observations in the dataset

• 𝑦𝑖 is the true label (either 0 or 1) of the 𝑖 − 𝑡ℎ observation

• 𝑝𝑖 is the predicted probability of the 𝑖 − 𝑡ℎ observation being class 1.

The log-loss function measures how far the model’s predictions (𝑝𝑖) are from the true values (𝑦𝑖). If the predicted probability closely 
matches the actual class, the log-loss will be small, and vice versa.

The concept of Shapley values originates from cooperative game theory, where it is used to divide up gains among players based 
on their contribution to the total gain. In the context of machine learning Shapley values are used to measure the importance of each 
feature — the equivalent of a “player” — in making a prediction. Specifically with CatBoost, both feature importance on predictability 
and feature importance on log-loss change assess the significance of each feature in the model, but they focus on different aspects 
and their calculations are influenced by different aspects of the model’s behavior.

• Feature Importance on Predictability using Shapley Values: In this context, the Shapley value of a feature is determined by 
systematically considering all possible combinations of features, and then averaging the changes in prediction caused by adding 
that feature. If a feature often results in significant changes in prediction when added to different combinations of other features, 
it would have a high Shapley value and therefore be considered important for predictability. In essence, it captures how much 
the presence of a feature changes the model’s predictions.

• Feature Importance on Log-Loss Change using Shapley Values: This method measures how much each feature contributes to 
changes in the log-loss, or error, of the model. It looks at how the log-loss changes when the values of a feature are altered. The 
Shapley value of a feature in this context indicates how much, on average, removing or including that feature changes the error 
of the model. If a feature significantly impacts the log-loss when its values are altered, it would be considered important in this 
context.

In summary, feature importance on predictability looks at how much the inclusion of a feature changes the model’s output, while 
feature importance on log-loss change looks at how much a feature changes the error of the model. Both perspectives are useful, and 
Shapley values provide a unified and theoretically grounded way to calculate these measures of feature importance.

Our approach is to keep the 100 most important features for each of the above two sets and then we take the intersection of these 
which consists of 34 probe sets. The idea of intersection comes from the fact that we would like to include features of high importance 
regarding the predictability of CatBoost algorithm and at the same time its loss function change during the training process.

We randomly split the dataset of the 34 probe sets and the 3374 data instances using 80% for training and 20% for validation. 
We use 10 fold cross validation (10CV) [12] in order to tune a CatBoost on the training set, and then we validate it on the test set.

From these 34 probe sets we keep only those for which we cannot find any bibliographic reference regarding their association to 
AML, Table 12. The only associated to AML feature we include in our final machine learning models is the age of each individual.

We randomly split the dataset of 2177 individuals using 80% for training and 20% for validation. We use 10CV in order to tune 
the CatBoost on the training set, and then we validate it on the test set.
2

In Fig. 1 we show diagram of the four models and the corresponding datasets of our approach.



Heliyon 9 (2023) e20530A. Angelakis, I. Soulioti and M. Filippakis

Fig. 1. Datasets and CatBoost models with their harmonic mean of precision and recall. The first integer corresponds to the number of the data instances and the 
second one corresponds to the number of features.

Table 1

Performance of the dimensionality reduction Cat-

Boost model of the 10CV on the 80% training set 
and on the 20% validation set of 3374 data instances 
and 44754 probe sets. The dataset corresponds to 
U133A, U133B and U133 2.0 microarrays.

Metrics Validation Set 10CV

Spec. 0.9929 0.9805

Sens. 1.0000 0.9991

AUC 0.9965 0.9898

F1-score 0.9964 0.9884

2. Models

The dimensionality reduction CatBoost model has 200 iterators, depth 6 and learning rate 0.1. We randomly split the initial 
dataset of 3374 data instances and 44754 probe sets. The performance of the tuned model appears in Table 1.

We compute the intersection of the sets of the most important features, regarding the predictability of CatBoost, and the most 
important features regarding the loss function change during the training process. We set the number of elements of each set to be 
100. The intersection has only 34 probe sets. We tune a CatBoost model (CatBoost34) of 200 iterators, depth 5 and learning rate 0.1 
on the dataset of 3374 data instances. The results in Table 2 show that using only 34 probe sets our machine learning model is able 
to achieve great performance.

From the 34 probe sets we exclude all which are associated from bibliographic references to AML so we keep only the 26 probe sets 
of Table 12. From these 26 probe sets six: {209603_at, 217680_x_at, 241611_s_at, 207636_at, 226311_at, 211772_x_at} are associated 
to other than AML blood malignancies (Acute Lymphoblastic Leukemia, T-cell Acute Lymphoblastic Leukemia, Multiple Myeloma, 
Chronic Lymphocytic Leukemia, Mixed Phenotype Acute Leukemias); 9 are associated to other types of cancer and from which 5 
belong to both blood and other types of cancer. To the best of our knowledge from the 26 probe sets of Table 12 the following 16 
are not associated to any type of cancer: {234632_x_at, 230527_at, 229963_at, 219513_s_at, 210789_x_at, 203294_s_at, 230753_at, 
214945_at, 222312_s_at, 214705_at, 241688_at, 236952_at, 236952_at, 244719_at, 239766_at, 243272_at}. The tuned CatBoost model 
which we use for the diagnosis of AML (CatBoost26) has 100 iterators and depth 11 with learning rate 0.1.

As final experiment we use the 16 probe sets that, according to bibliography, there have not been associated yet with AML or 
3

with any other cancer and we tune another catboost model, namely the CatBoost16. In this machine learning model we also use the 
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Table 2

Performance of the CatBoost34 model of the 10CV 
on the 80% training set and on the 20% validation 
set of 3374 data instances and 34 probe sets. The 
dataset corresponds to U133A, U133B and U133 2.0 
microarrays.

Metrics Validation Set 10CV

Spec. 1.0000 0.9929

Sens. 1.0000 0.9926

AUC 1.0000 0.9920

F1-score 1.0000 0.9972

age as feature for the reasons we discussed above. The number of these probe sets makes the CatBoost16 a potential candidate for 
clinical application since the cost of identifying the expression of these 16 probe sets from peripheral blood is much less than the 
cost of examinations needed to finally conclude if an individual has AML. The results of CatBoost16 on the same train/test split that 
we used for CatBoost26 can be found at Table 5. We observe that CatBoost16’s performance is similar to the performance of the 
CatBoost26 and it is still better than the performance of the k-NN model (6) which uses 984 probe sets from [3]. CatBoost16 has 200 
iterators and depth 7 with learning rate 0.1.

3. Data

The initial dataset is a curated publicly available Affymetrix microarray gene expression one and it consists of 34 datasets 
derived from 32 studies [3]. It is an international multicentric dataset since its data instances come from 27 organizations, 25 cities, 
15 countries and 4 continents. The data come from different transcriptomic platforms: Affymetrix Human Genome U133 Plus 2.0 
microarray, Affymetrix Human Genome U133A microarray and Affymetrix Human Genome U133B microarray.

At first, the dataset consisted of 44754 probe sets and 3374 data instances which corresponded to 3374 individuals. From the 
3374 data instances 2668 (79.08%) were labelled as AML and 706 (20.92%) as healthy.

The dimensionality reduction tuned model is applied on this dataset. We keep the 26 probe sets of the 34 {227923_at, 212549_at, 
219386_s_at, 207754_at, 208022_s_at, 209543_s_at, 210244_at, 207206_s_at, 210789_x_at, 239766_at, 241688_at, 244719_at, 
236952_at, 241611_s_at, 217901_at, 229963_at, 230527_at, 222312_s_at, 214705_at, 203294_s_at, 209603_at, 243659_at, 230753_at, 
204777_s_at, 234632_x_at, 217680_x_at, 219513_s_at, 214719_at, 211772_x_at, 207636_at, 243272_at, 214945_at, 226311_at, 
242056_at} for which, to the best of our knowledge, there has not been any reference regarding their association to AML yet. 
Since we want to use also the age of the individuals as feature to our diagnostic CatBoost model, we drop-out all the data instances 
with no age filled-in.

The final dataset consists of 2177 data instances and it has 27 features (26 probe sets and the age). Tables 7, 8 and 11 provide 
detailed information about the dataset, including the number of samples used, the sample source, the sex and the age of the individ-

uals, the organizations which provided the data, the AML subtypes and statistics about the overall survival when available, as well 
as the total number of AML patients and healthy individuals.

From the 2177 individuals, 1013 are female (46.53%), 943 are male (43.32%) and 221 are unknown (10.15%). In addition, 
1629 are AML patients (74.83%) and 548 are healthy (25.17%). The mean and the standard deviation of age are 48.87 and 17.01, 
respectively. As regards the number of data instances per age group in the data set we have: 99 [0-19], 217 [20-29], 340 [30-39], 
393 [40-49], 487 [50-59], 390 [60-69], 212 [70-79] and 39 [80-89].

We randomly split the final dataset in two sets: training and validation (Table 7, Table 8). The training set consists of 1740 
data instances (79.93%) and the validation set of the rest 437 (20.07%). Since the dataset is relatively small we use 10 fold cross 
validation in order to tune our model. In the Fig. 2 we observe the feature importance of the 27 features as regards the predictability 
of the CatBoost model using the 10CV, while in the Fig. 3 we can see the feature importance of the loss change for each one of the 
27 features.

4. Results

At Table 3 we see that our diagnosis model, CatBoost26, performs really well. The confusion matrix, Table 4, shows the true-

positives (down-right), the true-negatives (up-left), false-positives (down-left) and false-negatives (up-right). Here, a positive data 
instance is a data instance labelled as AML and negative as a healthy one. The mean area under the curve (AUC) from the 10CV 
is 0.9988 with standard deviation 0.0023 and 95% confidence interval: [0.9994, 1.000]. The mean accuracy is 0.9994 with standard 
deviation 0.0011.

Since the performance of the CatBoost26 model is perfect on the validation set, in order to eliminate the possibility that our 
results are based on the random split, and we would like to have a better understanding of the robustness of our model, we randomly 
split, 96 more times, the data in train and validation sets (80%/20%) and we run 10 fold cross validation on the train set and we 
apply on the validation set. The Table 9 shows the descriptive statistics of the performance of the CatBoost26 of the total 97 random 
4

splits.
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Fig. 2. Features’ importance of the predictability of CatBoost diagnosis model.

Fig. 3. Features’ importance of the CatBoost diagnosis model.

Table 3

Performance of the CatBoost diagnosis model, Cat-

Boost26, of the 10CV on the 80% training set and on 
the 20% validation set of 2177 data instances on 26 
probe sets and the age.

Metrics Validation Set 10CV

Spec. 1.0000 1.0000

Sens. 1.0000 0.9992

AUC 1.0000 0.9988

F1-score 1.0000 0.9996

Table 4

Confusion Matrix of the CatBoost diagnosis 
model’s performance on the training set.

437 1

0 1302
5
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Table 5

Performance of the CatBoost16 of the 10CV on the 
80% training set and on the 20% validation set of 
2177 data instances on 16 probe sets and the age.

Metrics Validation Set 10CV

Spec. 0.9909 0.9909

Sens. 0.9969 0.9985

AUC 0.9939 0.9962

F1-score 0.9969 0.9976

Table 6

Performance of the k-NN model of [3] of the 10CV 
on 80% training set and on the 20% validation set of 
3374 data instances and 984 probe sets.

Metrics Validation Set 10CV

Spec. 0.9716 0.9546

Sens. 0.9925 0.9920

AUC 0.9821 0.9788

F1-score 0.9925 0.9899

From Figs. 2 and 3 we observe that the probe set: 234632_x_at, which is a cDNA capturing a RNA molecule, is the most important 
probe set as regards both, the predictability of the CatBoost and the loss function change.

Our CatBoost34 model is transcriptomic platform agnostic [13] since the label if a data instance comes either from Affymetrix 
Human Genome U133 Plus 2.0 microarray or the Affymetrix Human Genome U133A microarray or the Affymetrix Human Genome 
U133B microarray, has not been used as feature. This helps in the robustness and universality of our model’s application in the 
diagnosis of AML. As regards the diagnosis model CatBoost26, all the data instances comes from the Affymetrix Human Genome 
U133 Plus 2.0.

From Fig. 2 we observe that the first 8 probe sets have the highest impact on the predictability of CatBoost26, including 6 
named genes {GATA3, BEX5, DSG2, SLC46A3, SH2D3A, CEACAM3}, 1 uncharacterized gene {LOC101926907} and 1 cDNA probe 
set. The first probe set has remarkably high feature importance compared to the others, more than 4 times higher. To the best of our 
knowledge these genes have not been associated to AML yet. The gene GATA3 has been associated to acute lymphoblastic leukemia 
[54] and other types of cancer as well breast cancer [55], bladder cancer [56]; the gene DSG2 is implicated in various kinds of 
cancer including cervical cancer [58], epithelial-derived carcinomas [59], pancreatic cancer [60], breast cancer [61], colon cancer 
[62], lung cancer [63], [64], gastric cancer [65], [66], ovarian cancer [67], laryngeal cancer [68] and liver cancer [69]. In addition, 
SLC46A3 is associated to liver cancer [70] and BEX5, SH2D3A, CEACAM3 have not been associated to any type of cancer yet.

In Fig. 3 we observe that the first 11 probe sets have the highest importance of loss function change of CatBoost26, including 10 
named genes {GATA3, BEX5, DSG2, SLC46A3, FAM153A, FAM153B, FAM153C, PATL2, CEACAM3, MAL}, 3 uncharacterized genes 
{LOC101926907, LOC100507387, LOC105377751}, 1 expressed sequence tag and 1 cDNA probe set. The 234632_x_at probe set, 
which binds to LOC653117, has at least 4 times higher feature importance than the 210789_x_at, while 230527_at is approximately 
3 times more important feature than 210789_x_at. Moreover, the gene MAL has been associated to gastric cancer [72], breast cancer 
[73], ovarian cancer [74] and colorectal cancer [75]. The genes {PATL2, FAM153A, FAM153B, FAM153C} have not been associated 
to any type of cancer yet.

Following similar approach with in total 97 random splits, different from the 97 random splits where we applied CatBoost26 In 
order to reduce the impact of randomness on the initial split of the dataset to train and validation, we applied 96 more random 
splits, different from the 96 random splits where we applied CatBoost26. The performance of CatBoost16 on the 97 random splits is 
similar to the performance of CatBoost26 both on the test and using 10 fold cross validation. The descriptive statistics can be found 
in Table 10.

5. Related work

The first machine learning approach on a subset of the dataset of 3374 individuals with the 44754 probe sets, has been done in 
[3]. Statistical methods have been used in order to reduce the dimensionality of the dataset, which dropped down to 984 probe sets. 
Here we trained the k-NN machine learning model of [3] on the same 80% train set as we did with our four dimensionality reduction 
CatBoost models, using 10CV. The results, Table 6, shows that the dimensionality reduction CatBoost model, CatBoost34, as well as 
CatBoost26 and CatBoost16 outperform k-NN (Tables 1, 2, 5).

Using similar to our work data of Affymetrix Human Genome U133A microarray, Affymetrix Human Genome U133 2.0 microarray 
and Illumina RNA-seq, different machine learning models and statistical learning techniques have been used (k-NN, LASSO, linear 
discriminant analysis, random forest, linear SVM, polynomial SVM, radial SVM, sigmoid SVM) in [13] in order to predict if an 
individual has AML or is healthy. The best results regarding the accuracy are the following: 97.6%, 98.0% and 99.1%. These results 
have been achieved by training and validating the LASSO algorithm on each of the Affymetrix Human Genome U133A microarray, 
6

Affymetrix Human Genome U133 2.0 microarray and Illumina RNA-seq datasets accordingly. The first dataset consisted of 2500 data 
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Fig. 4. Our approach on the diagnosis of AML using CatBoost16.

instances from which 1049 (41.96%) were labelled as AML and 1451 (58.04%) as healthy. The second dataset consisted of 8348 data 
instances from which 2588 (31.00%) were labelled as AML and 5760 (69%) as healthy. Finally, the third dataset consisted of 1181 
data instances from which 508 (43.01%) were labelled as AML and 673 (56.99%) as healthy.

The last work related directly to ours is [14] in which using microarrays a deep neural network (DNN) has been trained to classify 
AML from healthy individuals. The corresponding dataset consisted of only 26 data instances. DNN’s accuracy score was 96.67%.

All methods above use datasets from gene expression profiling (GEP) to diagnose AML. Another approach on different type of 
data like histopathology slides, using machine techniques has a been tried out but the performance of the corresponding model, as 
regards accuracy, is around 95% [15].

Using invariant cluster genomic signatures a machine learning approach has been developed in [16] for the classification of 
primary and secondary AML reaching an accuracy score of 97%.

Our method can be used in the classification of diffuse large B-cell lymphoma patients [17] and also in sub-classification of 
leukaemia [18] since GEP has been used as dataset in both cases.

6. Conclusion

We developed four machine learning models which using CatBoost and gene expression profiling data produced in Affymetrix 
Human Genome U133A, Affymetrix Human Genome U133B and Affymetrix Human Genome U133 2.0 and samples retrieved from 
peripheral blood or bone marrow are able to diagnose with the highest performance in literature if an individual has acute myeloid 
leukaemia or is healthy. We use CatBoost not only as a predictor to our problem, but also as a dimensionality reduction/feature 
selection technique and information retrieval. In our approach, all the three machine learning models, CatBoost34, CatBoost26 
and CatBoost16 outperform other machine learning approaches which use a variety of different classifiers and similar or different 
datasets.

On the clinical side, we show that the diagnosis of AML could be possible using only 16 probe sets and our model CatBoost16. Our 
approach as a flowchart can be found in 4. The potential use of our solution could be applicable even in primary care. It would be of 
great importance to further investigate the role of these 16 probe sets, not only as regards the AML, but also other types of cancer. 
Machine learning can provide to us different insights from conventional approaches. As regards the explainability part, we hope the 
scientific community will use the importance of the probe sets shown in Figs. 2 and 3 in order to explain further their behavior in 
AML. In addition, from the 16 probe sets some of them have not been yet related to known genes.

Incorporating demographic data such as age, sex, and other can enrich transcriptomic datasets and the problem could be defined 
as a multriparametric one. Consequently, a comprehensive analysis could be conducted to evaluate the impact of these additional 
features on the performance of machine learning models, like the CatBoost model.

The current dataset consists of only 20% of the samples representing healthy individuals. Such an imbalance could pose a 
significant challenge for the development of robust and reliable machine learning models, especially given that in clinical settings, 
we typically encounter a large number of healthy individuals compared to a relatively small cohort of AML patients. Even though 
the dataset is imbalanced the performance scores of our machine learning models show the robustness of their applicability to the 
general population. Future studies could enrich the dataset with a more representative sample of healthy individuals to enhance the 
model’s utility and reliability in real-world applications.

Acute myeloid leukaemia can appear suddenly to anyone. The importance of a screening tool where its sensitivity and specificity 
is close to 1.00, where the sample source is peripheral blood and the cost is low, it would have a tremendous impact to humanity.

CRediT authorship contribution statement

Athanasios Angelakis: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, 
Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Ioanna Soulioti: Visualiza-
7

tion, Software, Formal analysis, Data curation. Michael Filippakis: Visualization, Software, Formal analysis.



Heliyon 9 (2023) e20530A. Angelakis, I. Soulioti and M. Filippakis

Table 7

Number of samples and sample source, (peripheral blood (PB), bone marrow (BM)) of the train and 
validation set of 2177 individuals.

Index Train #Sam. & Sam. Source % Val. #Sam. & Sam. Source %

0 6 BM 75.00% 2 BM 25.00%

1 245 BM 81.67% 55 BM 18.33%

2 22 PB 84.62% 4 PB 15.38%

3 56 (52 BM & 4 PB) 71.80% 22 (21 BM & 1 PB) 28.20%

4 412 (379 BM & 33 PB) 78.48% 113 (103 BM & 10 PB) 21.52%

5 14 BM 87.50% 2 BM 12.50%

6 194 (177 BM & 17 PB) 77.29% 57 (54 BM & 3 PB) 22.71%

7 6 PB 75.00% 2 PB 25.00%

8 18 PB 81.82% 4 PB 18.18%

9 11 PB 78.57% 3 PB 21.43%

10 13 PB 76.47% 4 PB 23.53%

11 20 PB 80.00% 5 PB 20.00%

12 50 PB 79.37% 13 PB 20.63%

13 22 (12 BM & 10 PB) 64.71% 12 (9 BM & 3 PB) 35.29%

14 11 PB 91.67% 1 PB 8.33%

15 1 PB 50.00% 1 PB 50.00%

16 11 (9 BM & 2 PB) 91.67% 1 BM 8.33%

17 28 PB 80.00% 7 PB 20.00%

18 120 BM 85.71% 20 BM 14.29%

19 37 PB 80.43% 9 PB 19.57%

20 12 (10 BM & 2 PB) 92.30% 1 BM 7.70%

21 19 PB 79.17% 5 PB 20.83%

22 9 (6 BM & 3 PB) 75.00% 3 (2 BM & 1 PB) 25.00%

23 148 BM 80.87% 35 BM 19.13%

24 12 PB 100.00% - 00.00%

25 3 PB 100.00% - 00.00%

26 42 (23 BM & 19 PB) 93.33% 3 (2 BM & 1 PB) 6.67%

27 26 PB 86.67% 4 PB 13.33%

28 25 PB 71.43% 10 PB 28.57%

29 49 PB 76.56% 15 PB 23.44%

30 99 PB 81.82% 22 PB 18.18%

31 - 00.00% 1 PB 100.00%

Table 8

Number of patients per age group of the train and validation set. As regards the train set the mean 
of age is 48.98 with standard deviation 17.06 and as regards the validation set the mean of age is 
48.46 and the standard deviation is 16.79.

Train set Validation set

Age group: # Number of patients % Age group: # Number of patients %

0 to 19: 75 4.31% 0 to 19: 24 5.5%

20 to 29: 180 10.34% 20 to 29: 37 8.49%

30 to 39: 272 15.62% 30 to 39: 68 15.6%

40 to 49: 313 17.98% 40 to 49: 80 18.35%

50 to 59: 378 21.71% 50 to 59: 109 25%

60 to 69: 319 18.32% 60 to 69: 71 16.28%

70 to 79: 171 9.82% 70 to 79: 41 9.4%

80 to 100: 33 1.9% 80 to 100: 6 1.38%

Table 9

Descriptive statistics of the performance of CatBoost26 on 97 random splits in train and validation sets using 
10 fold cross validation on the training set.

spec_test sens_test roc_test f1_test spec_cv10 sens_cv10 roc_cv10 f1_cv10

mean 0.9966 0.9995 0.9987 0.9992 0.9962 0.9990 0.9978 0.9988

std 0.0065 0.0017 0.0030 0.0016 0.0025 0.0006 0.0010 0.0005

min 0.9730 0.9906 0.9818 0.9906 0.9908 0.9969 0.9950 0.9973

25% 1.0000 1.0000 0.9978 0.9978 0.9953 0.9985 0.9973 0.9985

50% 1.0000 1.0000 1.0000 1.0000 0.9956 0.9993 0.9977 0.9988

75% 1.0000 1.0000 1.0000 1.0000 0.9977 0.9992 0.9985 0.9992

max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9996
8
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Table 10

Descriptive statistics of the performance of CatBoost16 on 97 random splits in train and validation sets using 
10 fold cross validation on the training set.

spec_test sens_test roc_test f1_test spec_cv10 sens_cv10 roc_cv10 f1_cv10

mean 0.9870 0.9990 0.9963 0.9973 0.9877 0.9980 0.9949 0.9969

std 0.01267 0.0025 0.0044 0.0025 0.0035 0.0008 0.0013 0.0007

min 0.9545 0.9863 0.9737 0.9886 0.9798 0.9961 0.9920 0.9953

25% 0.9833 1.0000 0.9939 0.9956 0.9844 0.9977 0.9942 0.9965

50% 0.9868 1.0000 0.9977 0.9978 0.9871 0.9977 0.9951 0.9969

75% 1.0000 1.0000 1.0000 1.0000 0.9909 0.9985 0.9958 0.9973

max 1.0000 1.0000 1.0000 1.0000 0.9934 1.0000 0.9977 0.9985
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Table 11

References, GEO Accesion, Health Status, Origin of Study, AML subtypes of the study and Overall Survival of the train and validation set of 2177 individuals. 
The index corresponds to the index of Table 7. Some references which have not been published yet are notated with NYP.

Index Reference GEO Acc. AML/Healthy City, Country, Org. AML subtypes OS

0 [19] GSE10258 AML Vienna, Austria, Medical University of 
Vienna

M1, M5 n/a

1 [20], [21] GSE10358 AML St Louis, USA, Washington University School 
of Medicine

M0, M1, n/a

M2, M3,

M4, M5,

M6, M7

2 [22] GSE11375 Healthy Boston, USA, Massachusetts General Hospital n/a n/a

3 [23], [24] GSE12417 AML Munich, Germany, University of Munich M0, M1, Mean: 614.76,

M2, M4, Std: 503.59

M5, M6

4 [25], [26], [27] GSE14468 AML Houston, USA, MD Anderson Cancer Center M0, M1, n/a

M2, M3,

M4, M4 eos,

M5, M6

5 [28] GSE14479 AML Rotterdam, Netherlands, Erasmus University 
Medical Center

n/a n/a

6 [29] GSE15434 AML New York, USA, Columbia University 
Medical Center

n/a n/a

7 Wu 2012 (NYP) GSE15932 Healthy Hangzhou, China, Second Affiliated Hospital, 
School of Medicine, Zhejiang University

n/a n/a

8 [30] GSE16028 Healthy Basel, Switzerland, F.Hoffmannn/La Roche 
AG

n/a n/a

9 Krug 2011 (NYP) GSE17114 Healthy Lisbon, Portugal, Instituto de Medicina 
Molecular

n/a n/a

10 [31] GSE18123 Healthy Boston, USA, Boston Children’s Hospital n/a n/a

11 [32] GSE18781 Healthy Portland, USA, Oregon Health & Science 
University

n/a n/a

12 [33] GSE19743 Healthy Palo Alto, USA, Stanford Genome 
Technology Center

n/a n/a

13 [34] GSE23025 AML Duarte, USA, City of Hope Beckman 
Research Institute

n/a n/a

14 [35] GSE25414 Healthy Barcelona, Spain, Institut de Recerca 
Hospital Vall d’Hebron

n/a n/a

15 [36] GSE2842 Healthy Bolzano, Italy, EURAC n/a n/a

16 [37] GSE29883 AML Berlin, Germany, Charité t(8;21), t(16;16) n/a

17 [38] GSE36809 Healthy Boston, USA, Massachusetts General Hospital n/a n/a

18 [39], [40], [41], [42] GSE37642 AML Munich, Germany, University Hospital 
Grosshadern, 
Ludwign/Maximiliansn/University (LMU)

M0, M1, Mean: 962.32,

M2, M3, Std: 1106.70

M4, M5,

M6, M7

19 [43], [44] GSE39088 Healthy Brussels, Belgium, Université catholique de 
Louvain

n/a n/a

20 Bullinger 2014 (NYP) GSE39363 AML Berlin, Germany, Charité t(3;3) n/a

21 [45] GSE46449 Healthy New York, USA, Columbia University 
Medical Center

n/a n/a

22 [46], [47] GSE46819 AML Berlin, Germany, Charité t(16;16) n/a

23 Leong 2015 (NYP) GSE68833 AML Rockville, USA, NCI M0, M1, n/a

M2, M3,

M4, M5,

M6, M7

24 [48] GSE69565 AML Singapore, Singapore, Cancer Science 
Institute of Singapore

n/a n/a

25 Meng 2015 (NYP) GSE71226 Healthy Changchun, China, the Department of 
Cardiology, China-Japan Union Hospital, 
Jilin University

n/a n/a

26 Bohl 2016 (NYP) GSE84334 AML Ulm, Germany, University Hospital of Ulm n/a n/a

27 [49] GSE84844 Healthy Fujisawa, Japan, Takeda Pharmaceutical 
Company Limited

n/a n/a

28 [50] GSE93272 Healthy Fujisawa, Japan, Takeda Pharmaceutical 
Company Limited

n/a n/a

29 [51] GSE98793 Healthy Cambridge, United Kingdom, University of 
Cambridge

n/a n/a

30 [52] GSE99039 Healthy Tel Aviv, Israel, Tel Aviv University n/a n/a

31 Green 2009 (NYP) GSE14845 Healthy Southport, Australia, Griffith Insitute for 
Health & Medical Research

n/a n/a
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Table 12

The 26 probe sets ranked by their feature importance regarding the predictability of CatBoost. Information such as, probe set’s ID, corresponding gene symbols or 
NCBI accession numbers, blood malignancies and/or other types of cancer they are associated with, as well as, general annotations about the probe sets and the role 
of the gene products are presented here.

Probe set ID Gene Symbol/NCBI 
Accesion Number

Blood Malignancies Other types of cancer General

234632_x_at AK026267 n/a n/a cDNA: FLJ22614 fis, clone HSI05089 [53]

209603_at GATA3 Acute Lymphoblastic 
Leukemia (ALL) [54]

Breast Cancer [55], Bladder 
Cancer [56]

This gene encodes a protein, which plays a role as 
regulator of T-cell development [53]

230527_at LOC101926907 n/a n/a Uncharacterized Gene [53]

229963_at BEX5 n/a n/a The protein encoded by this gene plays a role in 
neuronal development [57]

217901_at DSG2 n/a Cervical Cancer [58], 
Epithelial-derived Carcinomas 
[59], Pancreatic Cancer [60], 
Breast Cancer [61], Colon Cancer 
[62], Lung Cancer [63], [64], 
Gastric Cancer [65], [66], 
Ovarian Cancer [67], Laryngeal 
Cancer [68], Liver Cancer [69]

This gene encodes a calcium-binding 
transmembrane glycoprotein component of 
desmosomes, which plays a role in cell-cell 
junctions between epithelial, myocardial, and 
other types of cells [53]

214719_at SLC46A3 n/a Liver Cancer [70] This gene encodes a protein, which is involved in 
transportation of small molecules across 
membranes [53]

219513_s_at SH2D3A n/a n/a This gene encodes a protein, which may play a 
role in JNK activation [71]

210789_x_at CEACAM3 n/a n/a The protein encoded by this gene it is thought to 
play an important role in controlling 
human-specific pathogens [53]

204777_s_at MAL n/a Gastric Cancer [72], Breast 
Cancer [73], Ovarian Cancer 
[74], Colorectal Cancer [75]

This gene encodes a protein, which plays a central 
role in the formation, stabilization and 
maintenance of glycosphingolipid-enriched 
membrane microdomains [53]

203294_s_at LMAN1 n/a n/a This gene encodes a protein, which is involved in 
glycoprotein transportation [53]

230753_at PATL2 n/a n/a This gene encodes an RNA-binding protein, which 
plays a role as translational repressor in 
regulation of maternal mRNAs during oocyte 
maturation [76]

242056_at TRIM45 n/a Lung Cancer [77], Glioma [78] The encoded protein acts as a transcriptional 
repressor of the mitogen-activated protein kinase 
pathway [53]

217680_x_at RPL10 T-cell Acute 
Lymphoblastic 
Leukemia (T-ALL) [79], 
[80]

Ovarian Cancer [81], Pancreatic 
Cancer [82]

The encoded protein is a component of the 60S 
ribosome subunit [53]

214945_at FAM153A & FAM153B 
& FAM153C & 
LOC100507387 & 
LOC105377751

n/a n/a Unknown function/Uncharacterized gene [53]

222312_s_at AW969803 n/a n/a Expressed sequence tag [53]

214705_at PATJ n/a n/a This gene encodes a protein, which is located in 
tight junctions and in the apical membrane of 
epithelial cells [53]

241688_at AA677700 n/a n/a Expressed sequence tag [53]

241611_s_at FNDC3A Multiple Myeloma [83] n/a The protein encoded by this gene plays a role in 
spermatid-Sertoli adhesion during 
spermatogenesis [84]

236952_at AI309861 n/a n/a Expressed sequence tag [53]

207636_at SERPINI2 Chronic Lymphocytic 
Leukemia (CLL) [85]

pancreatic cancer [86] The encoded protein is involved in the regulation 
of a variety of physiological processes, including 
coagulation, fibrinolysis, development, 
malignancy, and inflammation [53]

243659_at N63876 n/a n/a Expressed sequence tag [53]

226311_at ADAMTS2 Mixed Phenotype Acute 
Leukemias (MPAL) [87]

Gastric Cancer [88], Kidney 
Cancer [89]

This gene encodes an extracellular 
metalloproteinase, which plays a significant role 
in the excision of the N-propeptides of 
procollagens I-III and type V [53]

211772_x_at CHRNA3 T-cell Acute 
Lymphoblastic 
Leukemia (T-ALL) [90]

Lung Cancer [91] The protein encoded by this gene is a 
ligand-gated ion channel, which plays a role in 
neurotransmission [53]

244719_at AA766704 n/a n/a Expressed sequence tag [53]

239766_at BF507518 n/a n/a Expressed sequence tag [53]
11

243272_at LOC101593348 n/a n/a Uncharacterized gene [53]
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