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A B S T R A C T   

Traditional data-driven streamflow predictions usually apply a single model with inconsistent 
performance in different variability conditions. These days model ensembles or merging the 
benefits of different models without losing the general character of the data are becoming a trend 
in hydrology. This study compared three super ensemble learners with eight base models. Twelve 
years of monthly rolled daily time series data in three river catchments of Ethiopia (Borkena 
watershed: Awash river basin), (Gummera watershed: Abay river basin), and (Sore watershed: 
Baro Akobo river basin) is used for single-step daily streamflow simulation using previous thirty- 
day input timesteps. Five input scenarios are applied: three vegetation indices, three remote 
sensing-based precipitation products, ground-gauged rainfall, all fused inputs, and selected inputs 
with the Recursive Feature Elimination (RFE) algorithm. The time series is then divided into 
training and testing datasets with a ratio of 80:20. The performance of the proposed models was 
evaluated using the Root Mean Squared Error (RMSE), coefficient of determination (R2), Mean 
Absolute Error (MAE), and Median Absolute Error (MEDAE). Finally, the result is presented with 
the corresponding five input scenarios. The catchment’s and input scenario’s average perfor-
mance indicated that the three super ensemble learners outperformed the eight base models with 
relatively stable performance. The top-ranked WASE model exceeded the linear regression 
baseline by 13.3%. XGB, CNN-GRU, and LSTM proved the highest performance of the base 
models. This study also revealed that LSTM’s key downside is its performance drop in the absence 
of feature selection criteria. In comparison, XGB showed its superior performance after control-
ling redundant inputs internally. Moreover, this study uniquely highlights the potential of remote 
sensing-based vegetation indices in the science of data-driven streamflow modelling for non- 
gauged catchments with no meteorological time series.   

1. Introduction 

Water resources are gaining prominence due to population growth, industrialization, and the floods and droughts caused by climate 
change. Each country adopts a national water resource management plan to effectively manage its water resources. In order to 
implement these water resource management plans, such as integrated water resource management, understanding changes in 
discharge data is crucial [1]. 

Hydrological time series are also critical for water resource infrastructure planning and design. However, the absence of such data, 
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particularly ground streamflow measurements, significantly impairs the success of development initiatives. Streamflows are currently 
measured at river gauge stations. However, numerous studies indicate that most of the world’s gauging station records are becoming 
scarce [2]. Tourian et al. [3] used publicly available data from the Global Runoff Data Centre (GRDC) to create a time series visu-
alization of the number of stations with available discharge data. Between 1970 and 2010, this data series indicates a decline in total 
annual streamflows measured. Additionally, as most stations have been decommissioned, insufficient discharge monitoring has 
become a severe issue in developing nations [4]. Thus, research into the robustness of discharge data estimation is an unquestionably 
critical and futuristic endeavour, even more so for a country like Ethiopia. 

A possible alternative is to simulate streamflow using ground meteorological data sets. However, it is not always possible due to a 
lack of required meteorological data. In light of these data constraints, the literature has suggested that Remote Sensing (RS) data 
might be a viable alternative [5]. Rainfall estimation using remote sensing with different data sources (satellite, gauge, radar, analysis, 
or reanalysis), broad spatial coverage (from continental to fully global), spatial resolution (from 0.05◦ to 2.5◦), repeatable temporal 
coverage (from 30 min to monthly), temporal span (from 1 to 115 years), and latency (from 3 h to several years) have emerged over the 
past two decades as an adequate answer to the global data paucity [6]. 

Numerous studies have been conducted to ascertain the benefits and downsides of these P datasets [7]. Several studies also used 
independent gauge observations [8], while others compared their Spatio-temporal patterns [9]. There were also comparisons between 
river discharge prediction using remote sensing precipitation products and those actually observed [10,11]. Beck et al. [6] conducted 
the most exhaustive review of a global-scale P dataset. They compared 13 non-gauge-corrected P datasets to daily P gauge mea-
surements from 76,086 gauges located throughout the world. Nine additional gauge-corrected P datasets were analyzed by calibrating 
a hydrological model for 9053 catchments (50,000 km2) located throughout the world. According to the same study, MSWEP V2.0 is a 
good choice since it has a long-time record (1979–2020), worldwide coverage, high temporal and spatial resolution (0.3 h and 0.1 km), 
daily gauge corrections, and top-ranked performance in all climate types. Suppose a daily temporal resolution is sufficient for tropical 
areas. In that case, CHIRPS V2.0 may be a good option as long as the peak magnitude underestimate and spurious drizzle is not as 
important as it used to be [6]. Pradhan et al. [12] also demonstrated IMERG’s superior ability to reproduce spatial and temporal 
patterns and variability of extreme precipitation compared to other satellite products. 

Scientists have also tested indices for quantitatively and qualitatively evaluating vegetation cover, stamina, and growth dynamics 
using remote sensing spectral measurements. The Vegetation Indices (VI) were calculated utilizing a variety of aircraft and satellite 
platforms; currently, more than 100 VIs are in use [13]. Remotely sensed vegetation indices such as the Normalized Difference 
Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Modified Normalized Difference Vegetation Index 
(MNDWI), and the Enhanced Vegetation Index (EVI) have all made substantial contributions to hydrological analysis as input data 
[14]. However, the study on the possible use of RS indices to adequately reflect various hydro-meteorological variables and applying as 
input for different data-driven or machine learning-based streamflow estimations is minimal. 

Streamflow time series are strongly non-stationary, non-linear, and highly complicated due to external influences such as pre-
cipitation, underlying surfaces, and evaporation. Thus, accurate and reliable streamflow simulation is required to support reliable 
engineering systems. Generally, streamflow simulation approaches fall into process-driven and data-driven categories [15]. The 
simulation accuracy of process-driven models depends on a lot of physical process data, which makes modelling difficult. Unlike 
process-driven models, data-driven models require less data and are more efficient in regions with data scarcity [16]. When precise 
estimations exceed physical interpretations, data-driven methods are preferable [17]. The two types of data-driven models are con-
ventional and Artificial Intelligence (AI) [18]. Conventional models have a basic structure and are widely used in hydrological pre-
dictions, including Multiple Linear Regressive (MLR), Linear Regression (LR), Auto-Regressive Moving Average with the eXogenous 
term (ARMAX), and Auto-Regressive Integrated Moving Average (ARIMA) [19]. Conventional models assume a linear correlation 
structure for time series, which streamflow data rarely exhibit. Hence, streamflow simulation requires a robust, non-linear, and 
optimized modelling technique [15]. 

AI-based data-driven models use regularities and patterns to create high-performance and low-complexity models [20]. Over the 
last two decades, the development of Machine Learning (ML) algorithms has shown their appropriateness for streamflow simulations 
[21]. ML models outperformed classical statistical models’ prediction accuracy [22]. The most often used AI methodologies in hy-
drologic research include Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Fuzzy set, Evolutionary Computation 
(EC), and Wavelet-Artificial Intelligence (W-AI) models [16]. Zounemat Kermani et al. [23] conducted a comprehensive review of 
research progress over the last two decades, the current state of the art, and the prospects for using machine learning in various el-
ements of hydrological sciences. The same study concludes that neurocomputing simulation models should be combined with other 
soft computing principles to improve performance and overcome limitations. 

A hybridization of ML methodologies with soft computing techniques, numerical simulations, and physical models boosted ML 
performance. These applications generated more resilient and efficient models to adapt to complicated flood systems [20]. Recent 
research has shown that hybrid neurocomputing models perform better on various tasks [24]. There is also an opportunity for progress 
in the science of machine learning, and emphasis should be given to future hybrid AI modelling, which will make hydrological research 
even more exciting, demanding, and rewarding for academics [25]. 

Along with hybrid models, the applications of ensemble ML models in hydrology have significantly increased in recent years and 
are receiving more attention [26]. Obviously, for similar data sets, one ML model may outperform others, but the outcomes will usually 
be different for different data sets. To exploit the benefits of each model without losing the general nature of data, the ensemble 
technique was devised, which takes each model’s (base learner) output as input, with an importance level assigned by an arbitrator 
[27]. 

Nourani et al. [27] performed a study targeted at ensemble rainfall-runoff modelling for Gilgel-Abay, Ethiopia, using several source 
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satellites and ground-gauged rainfall data sets. They conclude the study by stating that input fusion from several source satellite 
rainfall products is a viable option for accurate rainfall-runoff modelling in unmeasured or sparsely gauged catchments. Laan et al. [28] 
also introduced an ensemble approach called super learning that optimizes the weights of the base learners by minimizing a loss 
function given the learners’ cross-validated output. Super learning establishes the optimum weight matrix for the learners and ensures 
that performance is at least as good as the best individual learner [29]. An ensemble’s diverse group of base learners is vital for 
performance and generalization. The super learner adapts to varied challenges given a wide range of base learners because the 
component weights are tuned for the problem. The base learner set choice is also flexible based on the task or computing resources 
[29]. 

Tyralis et al. [30] conducted super ensemble learning by combining ten machine learning algorithms for one-step-ahead 
streamflow forecasting. They use a massive ground dataset to develop the model consisting of a 10-year time series of daily stream-
flow, precipitation, and temperature from 511 basins. The performance of the super learner is superior to that of other regression 
techniques. Hence testing super ensemble learning with different data assimilation techniques, combinations of base models, and 
modified meta-learners still requires more research. Many satellite-based sensors have high spatial and temporal resolutions suited for 
wall-to-wall runoff and erosion mapping, but their efficacy in runoff simulation is unknown. Researchers should also develop inte-
grative methods that may be used in any setting with optimal accuracy [31]. 

Considering this, various types of research are done to simulate streamflow utilizing ensemble learning algorithms. However, there 
is a significant research gap in using VIs as an input data source and their combination with various remote sensing and ground-based 
precipitation data products. “Super ensemble” is likewise a young concept in hydrology, with few previous studies trying to capture the 
whole picture, and future studies using novel methodologies may fill these gaps. As a result, the current study will significantly 
contribute to this area by implementing novel data assimilation mechanisms using a combination of cutting-edge ML base models and 
modified meta-learners. 

After critically investigating prior studies, we planned to conduct a single-step streamflow simulation using a super ensemble with 
five-fold cross-validation. The study applies different remote sensing data products, including precipitation (IMERG-final, CHIRPS, and 
MSWEP-V2), vegetation indices (NDVI, MDWI, and EVI), and ground gauge rainfall data set from three sample sub-catchments in three 
Ethiopian river basins. The number of base models in the ensemble is frequently maintained minimum because of the computational 
cost of training models and the diminishing returns in performance. Ensembles of three, five, or ten trained models are typical. As a 
result, we merged neural networks, hybrid models, decision trees, and boosting algorithms to create a collection of base learner al-
gorithms (GRU, LSTM, MLP, CNN-GRU, SVR, Lasso, XGB, LR). To learn from the output of base models, we evaluated three distinct 
meta-learners (Extra Tree Regression (ETR), Bayesian Model Averaging (BMA), and Weighted Average (WA). The significant limi-
tations of this study include the fact that the study area, base and meta-models, data assimilation methods, and input data parameters 

Fig. 1. The location of case study area one (Borkena: Awash River Basin).  
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Fig. 2. The location of case study areas two and three. (a) Gummera: Abay River Basin, (b) Sore: Baro Akobo River Basin.  
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variability were not fully taken into account. 
To the best of the authors’ knowledge, this is the first work to use super-ensemble modelling to evaluate a combination of vege-

tation indices (NDVI, MDWI, and EVI) for streamflow simulation. Furthermore, this work is novel regarding using merged average 
catchment VIs with point ground and satellite precipitation products (IMERG-final, CHIRPS, and MSWEP-V2) as input variables and 
testing various ML models with five input fusion scenarios. Furthermore, as base learners, we distinctively incorporated neural net-
works, hybrid models, decision trees, and boosting algorithms (GRU, LSTM, MLP, CNN-GRU, SVR, Lasso, XGB, and LR). 

2. Materials and methods 

2.1. Materials 

2.1.1. Study area 
This study focused on three river basin sub-catchments in Ethiopia: (a) the Borkena sub-catchment in the Awash River basin 

(Fig. 1), (b) the Gummera sub-catchment in the Abay River basin (Fig. 2 (a)), (c) Sore sub-catchment in Baro Akobo River basin (Fig. 2 
(b)).  

• Borkena Catchment (Awash River Basin/Ethiopia) 

The Awash River Basin is one of Ethiopia’s 12 major river basins. The basin begins in the middle Ethiopian highlands and runs 
northeast for 1200 km till it joins Lake Abe on the border of Djibouti and Ethiopia. Mountains reach 4195 m in the highlands and 210 m 
in the lowlands. The mean annual rainfall ranges from 1600 mm near the origin northeast of Addis Ababa to 160 mm closer to the 
northern boundary. The temperature ranges from 19 to 23 ◦C, with May and June being the hottest. The Borkena River basin in Wollo’s 
highlands receives heavy runoff from the Upper Awash Basin, and this watershed’s rainfall is unimodal. From July to September, the 
primary rainy season (Kiremt) accounts for over 80% of total rainfall, and the rest of the year (Bega: October–January) is primarily dry.  

• Gummera Catchment (Abay River Basin/Ethiopia) 

The third case study area is the Gummara sub-basin, Ethiopia, one of Lake Tana’s primary tributaries in the Abay River basin. The 
Lake Tana sub-basin covers an area of approximately 15,114 km2. It spans a latitude range of 10.95◦ N to 12.78◦ N and a longitude 
range of 36.89◦ E to 38.25◦ E on the Earth’s surface. Its altitudes range from 914 m to 4096 masl. The lake is located in the north- 
western highlands and gets runoff from around 40 rivers. Gummera, Gilgelabay, Megech, and Ribb are the major watersheds in 
this sub-basin. The Gummera watershed is located in the southeast of Lake Tana and contains a drainage area of around 1592 km2, with 
altitudes varying from 1788 to 3750 masl. Guna hills southeast of Debre Tabor, at a height of around 3250 masl, are the source of the 
Gummara River. The area is mainly agricultural, characterized by hilly, rough, and dissected terrain with steep slopes in the higher and 
middle regions. The rainfall is unimodal, with a single peak from July to August.  

• Sore Catchment (Baro Akobo River Basin/Ethiopia) 

The Baro-Akobo River basin is located in the southwestern Ethiopian plateau, which reaches a maximum elevation of 3240 masl. To 
the west, the undulating and hilly topography rapidly changes into a lengthy series of sharp escarpments and lowland plains with the 
lowest elevation of 395 m above sea level. With an area of 75,912 km2 (6.9% of the country), the basin has the second biggest runoff 
(23.6 B m3). The Baro, Alwero, Gilo, and Akobo Rivers are major rivers. These rivers begin in the eastern highlands, run west to the 
Gambela plain, and drain to the north across the Ethiopia-Sudan boundary into the Machar Marshes. 

The Sore watershed is one of the Baro Akobo River basin sub-catchments. It has an area of 1711 km2 and an elevation ranging from 

Table 1 
The available meteorological and hydrological stations and their time series statistical properties for each case study area.  

Catchment Station Maximum Minimum Mean Standard deviation 

Borkena Chefa (mm) 81.6 0.00 3.52 8.51 
Desi (mm) 80.6 0.00 3.29 8.13 
Kemise (mm) 81.9 0.00 3.11 7.88 
Kombolcha (mm) 73.2 0.00 3.14 7.71 
Majeti (mm) 81.3 0.00 3.23 8.31 
Flow at gauging station (m3/sec) 95.98 0.00 9.47 18.68 

Gummera Amed Ber (mm) 91 0.00 3.79 8.49 
Debre Tabor (mm) 115 0.00 4.06 8.41 
Wanzaye (mm) 134.2 0.00 3.96 9.82 
Arb Gebey (mm) 70 0.00 2.89 6.61 
Mekan Eyesus (mm) 79.6 0.00 3.57 7.37 
Flow at gauging station (m3/sec) 306.73 1.77 43.65 67.53 

Sore Gore (mm) 71.8 0.00 4.63 8.16 
Flow at gauging station (m3/sec) 267.99 0.97 51.15 52.79  
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2661 to 1547 m. a.s.l., with the highest elevation ranges situated east and south. Annual rainfall is between 1804 mm and 2020 mm. 
The monthly maximum temperature ranges between 24 and 28 oc, while the monthly low temperature ranges between 12 and 14 oc. 
This study used a river gauging station near Mettu. 

2.1.2. Data  

• Ground Data 

The ground data set used for this study includes daily rainfall and streamflow data from 2003 to 2014. The first ten years of data 
were used for training, and the remaining two years were used for model testing. The three gauging stations’ streamflow time series 
used in this study were obtained from the Ethiopian Ministry of Water and Energy (MoWE). The three catchments’ available rainfall 
data are also collected from the Ethiopian National Meteorological Agency (NMA). Table 1 shows each watershed’s available mete-
orological and river gauge stations and the time series statistical properties.  

• Remote Sensing based Precipitation data (RSP) 

Three remote sensing-based precipitation data products are used for this study: IMERG-final, CHIRPS, and MSWEP-V2.  

• IMERG-final 

National Aeronautics and Space Administration (NASA) and Japan Aerospace and Exploration Agency (JAXA) launched the Global 
Precipitation Measurement (GPM) satellite mission to standardize and improve global precipitation measurements from space. GPM’s 
primary observation platform, introduced on February 28, 2014, can deliver global rain and snow data in 3 h. GPM extends to the 
planet’s poles, unlike the Tropical Rainfall Measuring Mission (TRMM). It can detect precipitation due to its excellent spatial-temporal 
resolution and sensor performance [32]. 

The Integrated Multi-Satellite Retrievals for GPM (IMERG) algorithm uses data from the GPM satellite constellation to estimate 
global precipitation. This technique is beneficial across large areas of the planet with no precipitation-measuring sensors. IMERG’s 
algorithm combines early precipitation estimates from the TRMM satellite (2000–2015) with more recent precipitation predictions 
from the GPM satellite (2014 - present). 

IMERG data are available in Early, Late, and Final run formats and processing types to meet the needs of data users. The data is also 

Table 2 
The meteorological stations used for remote sensing precipitation data generated for each of the three case study areas and their time series statistical 
properties.  

Catchment Station Maximum Mean Standard deviation 
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Borkena Harbu 76.19 67.93 50.44 2.74 2.55 2.67 7.38 6.77 5.84 
Boru 73.32 86.52 63.94 2.13 2.93 2.49 6.2 8.01 5.73 
Kutaber 75.76 82.43 70.19 2.14 2.99 2.44 6.39 8.19 5.86 
Sulula 73.32 86.52 63.94 2.13 2.93 2.49 6.2 8.01 5.73 
Mekoy 107.78 95.87 77.31 3.2 2.67 2.69 8.4 7.09 5.93 
Jimate 134.94 53.18 69.93 3.26 2.41 2.02 8.91 6.46 5.51 
Ancharo 83.33 67.29 51.56 2.47 2.74 2.74 6.79 7.39 6.15 
Kombolcha 83.33 67.2 51.56 2.47 2.57 2.74 6.79 6.86 6.15 
Desie 68.56 75.83 62.56 2.27 2.99 2.56 6.35 8.16 5.93 
Rabel 85.22 74.2 129 2.84 3.09 3.03 7.47 8.49 7.01 
Kemise 127.3 58.51 63.38 3.17 2.5 2.52 8.53 6.65 5.27 

Gummera Amed Ber 107.41 77.41 49.31 2.86 3.51 3.07 6.65 8.39 5.29 
Arb Gebey 67.68 88.14 43.19 2.82 2.69 3.59 6.53 7.3 5.41 
Debre Tabor 81.14 128.83 43.25 3.28 4.22 3.39 6.8 10.24 5.29 
Gasay 81.33 110.77 67.13 3.04 3.96 3.78 6.49 10.01 7.54 
Mekan Eyesus 92.31 110.14 46.63 3.03 3.57 3.53 6.69 8.96 5.49 
Wanzaye 62.04 71.29 40.69 2.62 3.82 3.54 6.38 7.76 5.4 

Sore Becho 86.77 57.91 75.5 3.99 4.94 4.67 8.06 8.13 6.01 
Gore 81.19 99.76 91.62 3.94 5.46 4.32 8.24 8.68 5.77 
Hurumu 88.31 57.48 93.06 3.95 4.78 4.58 8.25 8.06 5.89 
Leka 176.76 83.98 89.94 4.26 5.15 5.07 8.85 8.55 6.47 
Metu 74.76 73.82 79.75 3.73 4.73 4.21 7.69 8.19 5.63 

N.B. The minimum precipitation at all stations and data products is zero. 
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accessible at the NASA website (pmm.nasa.gov/data-access/downloads/gpm) and can be downloaded in various time intervals, 
including half-hourly, 3-hourly, and daily. Since using the final IMERG product for research is usually recommended, we choose daily 
IMERG-Final data from January 1, 2003 to December 31, 2014. This product has a spatial resolution of 0.1◦/10 km and was extracted 
using Python code for all individual meteorological station data points and three case study areas.  

• CHIRPS 

Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) is a satellite-based precipitation product providing a quasi- 
global rainfall dataset for almost three decades. From 1981 to the near-present, this gridded rainfall time series data has been available 
with a spatial resolution of 0.05◦/5 km [33]. To extract daily precipitation data, we used the Google Earth Engine (GEE) code editor for 
each meteorological station in three case study areas.  

• MSWEP-V2 

Multi-Source Weighted-Ensemble Precipitation (MSWEP-V2) is the first genuinely worldwide precipitation dataset with a 0.1◦ (11 
km at the equator) resolution, with a 3-hourly temporal resolution, spanning 1979 to the present generated by optimally integrating a 
range of the gauge, satellite, and reanalysis estimations. Since version 1 (0.25◦ spatial resolution) in May 2016, MSWEP has been 
effectively deployed globally for several research purposes [34]. This study used the improved MSWEP-V2 and extracted precipitation 
time series for each meteorological station with Python code. Table 2 shows the meteorological stations in each watershed used to 
generate all RS-based precipitation time series products using Python code and the statistical features of the time series.  

• Remote sensing-based Vegetation Indexes (VI) 

We specifically investigate the influential RS indices from the various options that may be applied to hydrological studies in the 
literature. As a result, we proposed the three commonly used VIs (NDVI, NDWI, and EVI). NDVI is calculated as (NIR - Red)/(NIR +
Red) from each Near-IR and Red bands scene. NDWI is sensitive to changes in plant canopies’ liquid water content and uses two 
infrared bands (NIR band at around 840–860 nm and an infrared band at 1630–1660 nm) in a formula very similar to NDVI or 
(NIR–IR)/(NIR + IR). Moreover, EVI is a vegetation index that enhances the vegetation signal in areas with high biomass, using MODIS 
Near-IR, Red, and Blue (B) surface reflectance [35]. All these VI values span from − 1.0 to 1.0. MODIS/MYD09GA surface reflectance 
composites and GEE code editor extracted the average catchment time series for each three-case study area. 

2.2. Supplementary materials  

• Ensemble Learning 

Ensemble learning as a core idea dates back to the nineteenth century. Sir Francis Galton (1822–1911), an English philosopher and 
statistician, developed a weight-guessing contest during a livestock fair. The contestants had to guess an ox’s weight. Hundreds entered 
this challenge, but no one correctly guessed the weight: 1198 pounds. Surprisingly, the average of all estimations came close to the 
precise weight: 1198 pounds. To produce an accurate prediction, Galton combined several predictions in this experiment [36]. The 
ensemble learning theory, advanced by Bates & Granger [37] and Wallis [38] in the literature, provides even more support for the use 
of forecast combinations. Specifically, in hydrology, Zounemat Kermani et al. [26] reviewed over 160 peer-reviewed scientific articles 
published over the last two decades. This research demonstrated the application of various types of ensemble learning focusing on 
distinct hydrological domains such as surface hydrology, hydrogeology, and extreme hydrological events. The same study also closes 
by indicating the potential of ensemble machine learning models and suggests as the primary candidate for complicated hydrological 
problems. Ensemble learning employs a wide range of methodologies, each with a sort of structure. Stacking, averaging, bagging, and 
boosting are all examples of this [26]. In our study, we implement stacking generalization.  

• Base Learners 

Base learners are the ensemble’s strategic components/individual learners. Most ensemble approaches produce homogeneous base 
learners using a single learning algorithm, whereas some build heterogeneous learners using multiple learning algorithms. Since there 
is no standard base learning algorithm, various scholars combine base learners depending on their task and computational capability 
[39]. As a result, we mix many classes of algorithms in our study, including a decision tree, a boosting method, and a neural network. 
Half of the base learners GRU, LSTM, MLP, and CNN-GRU implemented in this study are described in-depth in our previous research 
article [24]. The remaining half of the base learners are presented in the following paragraphs.  

• Linear regression 

The simplest base learner to be employed in this study is linear regression. In linear regression, a linear relationship exists between 
the dependent and the independent variables [40]. Linear regression is the foundation for a large number of modern modelling tools. 
When the sample size is small, or the information is weak, linear regression frequently provides an acceptable approximation to the 
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underlying regression function [41].  

• Least Absolute Shrinkage and Selection Operator (LASSO) 

In statistics and machine learning, LASSO is a regression analysis technique, where the term was first coined by Robert Tibshirani 
[42]. LASSO combines variable selection and regularization to improve the predictive accuracy and interpretability of the produced 
statistical model. In addition, it imposes the LASSO penalty (L1 shrinkage) on the least-squares approach, intending to shrink its 
coefficients while enabling the deletion of non-influential predictor variables through their coefficient nullification [30,43].  

• Support Vector Regression (SVR) 

SVR is a regression form of Support Vector Machine (SVM) that Cortes and Vapnik introduced in 1995 [44] and has been frequently 
employed in hydrological simulations. A hyperplane separates the independent features in SVR. The boundary line is drawn using 
support vectors, which are data points near the hyperplane. Unlike other regression models that try to minimize the gap between the 
actual and predicted values, SVR tries to fit the optimal line within a threshold value or a distance between the hyperplane and the 
boundary line [40]. 

One of the primary advantages of SVR is that its computational complexity is independent of the input space’s dimension instead on 
the number of support vectors (a small set of training data samples). SVR develops a model that can represent the significance of a 
variable in describing the association between input and output [45]. Additionally, it possesses an exceptional capacity for general-
ization, as evidenced by its high prediction accuracy [46].  

• eXtreme Gradient Boosting (XGB) 

Tianqi & Carlos [47] present XGB, a gradient boosted decision trees technique variant. Predictions are generated using weak 
learners, which are continuously improved due to their predecessors’ errors. The fundamental idea of XGB is to speed up the training 
process by utilizing all samples and adjusting their weights [26]. The loss function fits residual error, and when the residual error is 
small enough or reaches a particular number of iterations, the prediction result is the weighted average of the prediction outcomes of 
each round. XGB is the fast, scalable version of the gradient boosting framework. In addition, it improves performance by controlling 
overfitting using a more regularized model formalization. It has recently earned considerable popularity as the algorithm of choice for 
many winning teams in machine-learning contests [48].  

• Super Ensemble 

In their study titled “Super Learner,” Laan et al. [28] from the University of California, Berkeley proposed the super learner al-
gorithm published in a biology journal. However, other fields of study, particularly hydrology, have not fully embraced the concept 
[30,49]. Super Learner is an ensemble technique based on cross-validation for combining base learners that produce predictions at 
least as good as those given by the best single base learner. The super learner methodology is an example of “stacked generalization” or 
“stacking.” The approach begins by pre-defining the k-fold split of the training data and then fitting these split data to selected base 
learners. All base model simulations are retained and used to train the meta-model to combine the simulation optimally [49]. Typi-
cally, a linear model is employed as the meta-learner; however, in this study, we applied Extra Tree Regression (ETR), Bayesian Model 
Averaging (BMA), and Weighted Average (WA) as meta-learners. The following paragraphs discuss these meta learners. Fig. 4 also 
illustrates the super ensemble methodology in detail.  

• Extra Tree Regression (ETR) 

The Extra Tree Regression (ETR) technique was created by Geurts et al. [50] and is based on the Random Forest (RF) model. This 
algorithm implements a meta estimator, which fits many randomized decision trees (also known as extra-trees) on different 
sub-samples of the dataset and utilizes averaging to increase predicted accuracy and control over-fitting. It may often produce as good 
or better performance than the random forest approach and uses a simpler algorithm to generate the ensemble’s decision trees.  

• Bayesian Model Averaging (BMA) 

When we choose one model over another, we may come to conclusions that are too sure of themselves and make riskier decisions 
because we ignore the uncertainty of the model we chose in favor of particular distributions and assumptions about that model. 
Therefore, it would be good to model this source of uncertainty so that suitable models can be chosen or combined. Bayesian inference 
has been suggested as a framework that could help reach these goals, and Bayesian Model Averaging (BMA) is an extension of the usual 
Bayesian inference methods [51]. Using Bayes’ theorem, it is possible to get posterior distributions for model parameters and the 
model itself, allowing for direct model selection, combined estimation, and prediction.  

• Weighted Average (WA) 
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Fig. 3. The basic flow chart of the proposed five input scenarios, eight base models, and three meta-learners.  
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Fig. 4. Data analysis flow diagram of the modified super ensemble learner with three meta-learners [28].  
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Weighted Average Ensembles assume that some models in the ensemble have more performance than others and give them more 
credit when making the ensemble predictions. This meta-learner is an improvement on voting ensembles, which assume that all models 
are equally good and contribute the same amount to the ensemble’s predictions. 

Each model is given a fixed weight in this approach, multiplied by the base learner prediction value, and used to analyze the sum or 
average prediction. Even though in this type of ensemble learning, it is challenging to figure out how to calculate, assign, or look for 
model weights that lead to better performance, in our study, we propose base learner prediction R2 values as a weight parameter. 

2.3. Methods 

This study is the first to investigate super ensemble learning with three meta-learners (Extra Tree Regression (ETR), Bayesian Model 
Averaging (BMA), and Weighted Average (WA)) and eight base models (GRU, LSTM, MLP, CNN-GRU, SVR, Lasso, XGB, LR) for one- 
step daily streamflow simulation using three remote sensing-based vegetation indexes (NDVI, NDWI, EVI) and precipitation products 
(IMERG-final, CHIRPS, and MSWEP-V2). The basic flow chart for the eight base models, three meta-learners, and five input scenarios is 
shown in Fig. 3. The five input scenarios were explicitly created to investigate the potential of each type of input separately and then to 

Table 3 
Model hyperparameter choices or value ranges for optimization by Keras tuner.  

No Hyperparameters Value Rangesa Choices Default 

Min Max Step   

1 Conv_1_filter 8 32 8 b b 
2 Conv_1_kernal b b b 2 or 3 b 
3 Conv_1_pool_size b b b 2 or 3 b 
4 GRU, LSTM, MLP, CNN-GRU, Layer 1 units 5 40 5 b b 
5 Dropout 1 0.0 0.3 0.1 b 0.2 
6 GRU, LSTM, MLP, CNN-GRU, Layer 2 units 5 30 5 b b 
7 Learning rate b b b 1e-2, 1e-3 or 1e-4 b 
8 Number of epochs 10 100 10 b b 
9 Number of batch sizes 10 100 10 b b 

N.B. For XGB we applied five hyperparameters, and their respective ranges are presented as follows: Base score (0.25,0.5,0.75,1), Number of esti-
matiors (100, 500, 900, 1100, 1500), Maximum depth (2, 3, 5, 10, 15), Booster (gbtree), Learning rate (0.05,0.1,0.2,0.3), and minimum child weight 
(1,2,3,4). While for SVR: C (0.1,1, 10, 100), gamma (1,0.1,0.01,0.001), kernel (rbf), and for LASSO: alphas (0, 1, 0.01), Number of alphas (200). 

a Value ranges or choices for keras tunner: (Objective = “Validation Loss”, Max Trials = 30, Executions Per Trial = 1). 
b Not applicable. 

Table 4 
The individual and average performance of eleven algorithms in three sub-catchments using vegetation indexes as input and displayed with a heat 
map. 
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Fig. 5. Mean spread of prediction error (m3/s) or box plot for the 11 models during the test period (a) and time series graph of actual values and predicted values of the optimized BMASE model (b) 
Borkena, (c) Gummera, and (d) Sore catchments. 
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test the performance improvement when the inputs are combined or employed after influential inputs have been selected for the 
optimal streamflow simulation. When selecting the base models, we consider four types of ML architectures: neural networks, hybrid 
models, decision trees, and boosting algorithms. Three meta-learners also exploited or combined the advantages of each type of model. 
As a result, we thoroughly analyze five input scenarios with eleven models and three case study catchments in Ethiopia, totaling 165 
scenarios. In addition, we applied a monthly rolling average to all input time series and used the preceding 30 days of data to generate 
streamflow time series in a single time step. 

2.3.1. Model development 
In model development, the hyperparameter values are the model’s key, influencing its precision; they are also the model’s external 

configuration that should be fixed before model training. Hyperparameters such as the number of layers, batch size, number of epochs, 
and learning rate must be optimized appropriately to efficiently train the base models in ensemble learning. After examining all the 
possibilities, we chose the computationally efficient random search method known as Keras Tuner, created by the Google team from 
among the various optimization approaches for hyperparameter tuning in literature: grid, random, trial-and-error, and probabilistic 
approaches. In order to optimize the Keras tuner efficiently, the hyperparameter value range is fixed and specified in Table 3 below. 

Several open-source Python modules were used to build the models, including Keras, Tensorflow, Scikit-Learn, Statsmodels for 
performance assessment, and Matplotlib for visualization. Additionally, the Google Earth engine was also used to extract the VIs time 
series, and the simulation was run on a computer with an Intel(R) Core(TM) i7-6500U CPU at 2.50 GHz processor and 8 GB RAM. 

2.3.2. Performance measures 
The following performance metrics were used to assess the model’s accuracy: coefficient of determination (R2), Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and Median Absolute Error (MEDAE) [52]. These are displayed in Equations (1)–(4), 
respectively.  

• Coefficient of Determination (R2) 

R2 =
n(

∑
Qobs ∗ Qsim) − (

∑
Qobs) ∗ (

∑
Qsim)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
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√
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2]
(1)    

• Root Mean Squared Error (RMSE) 

Table 5 
The individual and average performance of eleven algorithms in three sub-catchments using remote sensing precipitation product as input and 
displayed with a heat map. 
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Fig. 6. Mean spread of prediction error (m3/s) or box plot for the 11 models during the test period (a) and time series graph of actual values and predicted values of the optimized ETRSE model (b) 
Borkena, (c) Gummera, and (d) Sore catchments. 
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RMSE=
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• Mean Absolute Error (MAE) 

MAE=
1
n
∑n

t=1

⃒
⃒Qt

0bs − Qt
sim

⃒
⃒ (3)    

• Median Absolute Error (MEDAE)  

MEDAE = median(|Qobs(1) - Qsim(1) |, …,|Qobs(n) - Qsim(n) |)                                                                                                              (4) 

Where, Qobs is the measured discharge, Qsim is the simulated discharge, and n is the total number of measurements. There is poor 
fitting between the observed and simulated values when R2 is set to 0, and there is a perfect correlation when R2 is set to 1. RMSE, MAE, 
and MEDAE, on the other hand, function best when we get as near to 0 as possible. Simulations with R2 > 0.90 are excellent; those with 
R2 values between 0.90 and 0.60 are average; those with R2 0.60 are unsatisfactory. 

3. Results and discussion 

3.1. Result of modelling by remote sensing-based indexes 

Remote sensing technology offered new opportunities for monitoring surface water dynamics. As opposed to traditional in situ 
observations, remote sensing can continuously monitor the Earth’s surface at several scales and record track changes at regular and 
frequent intervals [53]. 

Recognition and validation of remote sensing’s role in continuous streamflow datasets have been well established and widely 
accepted. M L Tan [54] categorizes the role of remote sensing in the estimation of streamflow time series into two distinct categories. 
Remotely sensed data may be used as “input” for a hydrological model, or it can estimate streamflow directly without using a hy-
drological model [54]. There are many prominent independent variable options for hydrological modelling with deep learning, 
including precipitation, evapotranspiration, temperature, and soil moisture. Previous studies have shown that vegetation plays a vital 
role in runoff modelling. However, studies demonstrating the application of vegetation indices in streamflow modelling, particularly in 
deep learning, are insufficient. 

This study, in particular, used three popular MODIS vegetation indices (NDVI, EVI, and NDWI) to estimate single-step streamflow in 

Table 6 
The individual and average performance of eleven algorithms in three sub-catchments using ground data as input and displayed with a heat map. 
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Fig. 7. Mean spread of prediction error (m3/s) or box plot for the 11 models during the test period (a) and time series graph of actual values and predicted values of the optimized WASE model (b) 
Borkena, (c) Gummera, and (d) Sore catchments. 
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three Ethiopian river basin sub-catchments using eight base machine learning models and three super ensemble meta-learners. Table 4 
contains the model results with four performance indices, considering R2 as the primary criterion and the other indexes as the sec-
ondary criterion. The average performance on the three catchments is also shown in Table 4, with BMASE as the best model and WASE 
and LSTM in second and third place, respectively. The worst two models (LASSO and LR) had an R2 score of 16% lower than the best 
ensemble models, and LSTM performed better than the base models. Furthermore, the catchments’ agro-climatic variability exhibited 
significant performance differences, with Gummera having the highest performance score and Borkena catchment having the lowest. 
The findings clearly show a significant relationship between streamflow generation and vegetation indexes. Fig. 5 (a) also displays the 
mean spread of prediction residuals using a box plot for eleven models during the test period. Fig. 5 (b), (c), and (d) show the time 
series graph of predicted vs. test values for the optimized high score BMASE model in Borkena, Gummera, and Sore catchments, 
respectively. The red circles indicate that the vegetation index input data failed to capture the high-flow time series. 

3.2. Result of modelling by remote sensing-based precipitation products 

Precipitation is the primary driver of the hydrologic cycle and the most critical input for hydrological models [6]. For accurate 
hydrological models, reliable and continuous precipitation estimations are required [55]. Globally high-quality ground weather data is 
not easily accessible due to low rain gauge distribution and many weather stations having incomplete or inconsistent historical records 
of observations [27]. Remote sensing can be a viable option to supplement meteorological data. In this study, we chose the 
top-performing remote-sensing precipitation products from the literature, considering a variety of available gridded P datasets [6]. As 
a result, we examined three fused high-performance remote sensing products (IMERG-final, CHIRPS, and MSWEP-V2) as inputs to the 
eleven algorithms in this study. 

As seen in Table 5, remote sensing precipitation products showed a few mean performance increments compared to the previous 
vegetation index input scenario, with ETRSE scoring the highest value, followed by LSTM and WASE. 

Among the eight base models, the performance of LSTM is almost identical to that of the super ensemble model (ETRSE), which 
scored 13% higher R2 value than the lowest-scoring LASSO and LR models. Fig. 6 (b), (c), and (d) shows the actual value and predicted 
time series for the super ensemble model with a high mean R2 score for Borkena, Gummera, and Sore catchments, respectively. 
Borkena showed the best match, followed by Gummera and Sore. The red circles in Fig. 6 also illustrate the high-performing ETRSE 
algorithm gaps in generating the time series; however, this model generally exhibited the mean high performance in the evaluated 
three case study catchments. The Box plot in Fig. 6 (a) also illustrates the mean distribution of the residual errors for each of the eleven 
algorithms. 

Table 7 
The individual and average performance of eleven algorithms in three sub-catchments using all fused inputs and displayed with a heat map. 
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Fig. 8. Mean spread of prediction error (m3/s) or box plot for the 11 models during the test period (a) and time series graph of actual values and predicted values of the optimized XGB model (b) 
Borkena, (c) Gummera, and (d) Sore catchments. 
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3.3. Result of modelling by ground-based rainfall data 

In hydro-meteorological research, especially in developing countries, ground rain gauges are the primary means of measuring 
precipitation [56]. However, the precipitation data’s quality and stability cannot be guaranteed due to the shortage of precipitation 
station locations, uneven regional distributions, restricted time scales, and susceptibility to environmental and human variables. It is 
also common to use a specific gauge to indicate precipitation across large areas, such as tens or hundreds of square kilometers, 
throughout the globe [57]. These trends are typically the most significant source of uncertainty in hydrological modelling, and 
merging ground observation with satellite-based precipitation observations now provides an alternative option for hydrological 
modelling performance accuracy [6,58]. In our study, we will first evaluate the available ground meteorological rainfall data as an 
input to the eleven proposed algorithms. Then we will merge the ground observation with the remote sensing option and examine the 
results. 

Five available rainfall stations are used for each Gummera and Borkena station, and the streamflow simulation results are very 
good; however, since the Sore watershed only has one rainfall station with an acceptable continuous time series, the predicted 
streamflow time series with this station data is unacceptable. As a result, we calculated and reported the average performance indices 
using only the two catchments in Table 6 below. 

While XGB in Borkena catchment and GRU in Gummera catchment had the most excellent R2 score, this model’s performance is 
inconsistent in other catchments, with WASE, BMASE, and LSTM ranking one to three on average, respectively. Furthermore, MLP and 
SVR models have unexpectedly low performance for this input scenario, lower than LR, indicating the importance of carefully selecting 
machine learning models according to the inputs we will employ. 

Fig. 7 (b), (c), and (d) illustrate the accuracy of the actual values with the predicted time series. In the Figure, the red circles indicate 
that the input scenario has more under and overestimated points than the remote sensing-based precipitation input scenario. In 
addition, Fig. 7 (a) also shows the mean prediction residuals for all algorithms in a box plot. 

3.4. Result of modelling by input fusion 

In streamflow modelling where uncertainty is a significant concern, ensemble streamflow modelling appears to be the way forward. 
This instance also emphasized the adoption of ensemble precipitation products [26,59]. Furthermore, Nourani et al. [27] indicated 
that combining different sources of satellite and gauged rainfall products is a promising alternative for improving rainfall-runoff model 
accuracy in data-scarce catchments. Hence, this study uniquely proposed the fusion of three parameters: three satellite precipitation 
products, ground-gauged rainfall measurements, and three satellite-based vegetation indices for an accurate streamflow simulation in 
the catchments like Sore Watershed. 

The results are shown in Table 7. The data scarce sore watershed simulation result has improved accuracy compared to prior input 

Table 8 
The individual and average performance of eleven algorithms in three sub-catchments using selected inputs and displayed with a heat map. 
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Fig. 9. Mean spread of prediction error (m3/s) or box plot for the 11 models during the test period (a) and time series graph of actual values and predicted values of the optimized WASE model (b) 
Borkena, (c) Gummera, and (d) Sore catchments. 
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scenarios, with XGB scoring the highest and LSTM scoring the lowest with R2 value. This finding demonstrates that ensembles of 
decision tree models, such as XGB, are designed to effectively optimize the internal relevance of a prediction model’s input features. In 
contrast, the LSTM model result revealed that this model is highly susceptible to redundant features; while LSTM ranked in the top 
three algorithms for each of the previous three input scenarios, in this case, it scored the lowest out of the eleven algorithms. 

In addition to XGB, BMASE, and WASE produced accurate results. Fig. 8 (b), (c), and (d) display the time series difference between 
the actual and predicted value, with red circles indicating areas with high flows that were inaccurately predicted, and also Fig. 8 (a) 
displays the average spread of prediction error for all models as a box plot. 

3.5. Result of modelling by selected inputs 

Feature selection identifies the relevant inputs from the subset of original data sets by eliminating unnecessary and redundant 
information. As a result, speeding up the training process and enhancing accuracy can be categorized as supervised, unsupervised, and 
semi-supervised [60]. This study carefully selected the popular supervised wrapper Recursive Feature Elimination (RFE) algorithm. 
This feature selection method is simple to implement and utilize; the two configuration options when implementing RFE are the 
number of features to select and the optimizing algorithm for feature selection [61]. After conducting some preliminary tests, we 
selected ten features and the Decision Tree Regressor (DTR) as the optimization algorithm. RFE then tunes all original data features in 
the training time series and successfully eliminates features until the required number is reached. 

As shown in Table 8, WASE is ranked first, followed by LSTM, which improved its performance due to feature selection, and CNN- 
GRU and ETRSE perform nearly identically. Fig. 9 (b), (c), and (d) also displays the difference between the actual and predicted time 
series of the top-ranked model. The Figure also illustrates that the predicted time series is more stable than the noise we depict in the 
previous time series graph with a fused input scenario. In addition, Fig. 9 (a) displays the average prediction error spread with the box 
plot. 

4. Conclusions 

The primary objective of this study is to build continuous streamflow time series using ground and remote sensing data and multiple 
ML algorithms. This work explicitly investigates the influence of input variability on the performance of these models. Also, it tests 
different model assimilation methodologies to optimally combine the advantages of each type of ML architecture. For this aim the 
study introduces a novel method of estimating daily streamflow utilizing a fusion of remote sensing-based vegetation index, precip-
itation product, and ground gauge rainfall data. Five input scenarios are designed to comprehend the performance increments 
resulting from these inputs: only vegetation index, only remote sensing precipitation, only ground gauged precipitation, all fused 
inputs, and selected input variables. We employed super ensemble learning with three distinct meta-learners (BMASE, ETRSE, WASE) 
and eight base models (GRU, LSTM, MLP, CNN-GRU, SVR, Lasso, XGB, LR) to train the input scenarios. As a case study, we chose three 
Ethiopian river basin sub-catchments with relatively good data sets (Gummera and Borkena) and the Sore watershed with poor 
meteorological data. We applied 12 years of time series (2003–2014) for all experiments, rolled the predictor variables monthly, and 
used data from the previous thirty days to forecast one-step streamflow value. 

The following key findings will summarize this study: 

Table 9 
The average performance of eleven algorithms in three sub-catchments and five input sce-
narios are displayed with a heat map. 
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➢ As shown in Table 9, the average performance of eleven algorithms in three sub-catchments and five input scenarios was nearly 
similar for the three proposed super-ensemble models. Even though WASE, BMASE, and ETRSE demonstrated the best R2 per-
formance, respectively. As evaluated by R2, the top-ranked WASE model exceeded the linear regression baseline by 13.3%. 

Fig. 10. The Taylor diagram displays the standard deviations, root mean square error, and correlation coefficient between observed and predicted 
streamflow for the proposed eleven models and three catchments. Borkena (a), Gummera (b), Sore (c), and the average for all catchments (d). 
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➢ The vegetation index input scenario consistently performed well in all catchments, with a top-ranked BMASE model average R2 

performance of 0.68%. This result suggests VI’s potential for data-driven streamflow modelling, especially for non-gauged 
catchments with no meteorological time series. However, future studies should optimize this finding by employing other unique 
data assimilation strategies.  

➢ XGB, CNN-GRU, and LSTM demonstrated the highest performance of the eight evaluated base models. This study also reveals that 
one of LSTM’s significant limitations is its performance reduction in the absence of feature selection criteria. In contrast, XGB 
proved its superior performance after managing redundant inputs internally. In addition, even if some base models demonstrated 
superior performance in a catchment, this performance is not transferable to other catchments. In contrast, super ensemble models 
demonstrated stable performance across all catchments and input scenarios.  

➢ After modelling with five input scenarios, the highest average catchment performance score is registered with the ground data 
input scenario, excluding the sore watershed with only one ground station continuous rainfall time series (WASE, 0.779% R2), 
followed by the selected input scenario (WASE, 0.77% R2), fused inputs (XGB, 0.75% R2), remote sensing precipitation (ETRSE and 
LSTM, 0.71% R2), and vegetation index’s input scenario (BMASE, 0.683% R2). For the non-gauged catchments with no or poor 
meteorological datasets similar to sore catchment, the input fusion scenario substantially increases R2 performance from 0.44% 
(MLP model) to 0.77% (WASE model). These results highlight the potential of remote sensing data assimilation into streamflow 
forecasting and notably benefit the catchments like Sore watershed. 

The Tylor diagram in Fig. 10 (a), (b), and (c) also further highlights the performance of the eleven models in three sub-catchments 
(Borkena (a), Gummera (b), Sore (c)) with two-dimensional scale; correlation coefficient and root mean square error on radial axis and 
the standard deviation on the polar axis. That represents the statistical similarity between the actual and predicted time series. In this 
graph, the model with the highest performance will be near the observed streamflow with a sign (★). Hence, as we depict the graph 
closely, the symbol with the red signs, mostly the super ensemble models, exhibited the highest performance, specifically in Fig. 10 (d), 
which shows the average performance for all catchments. 

The insightful findings of this study direct future research should broaden the horizon to various ensemble learning approaches, 
including other remote sensing-based input data assimilation mechanisms. Moreover, incorporating vegetation index variables in data- 
driven streamflow modelling requires more attention from academia. Finally, we recommend the scientific community to further 
optimize the proposed methods with multiple feature selection criteria, additional meta and base learner models, and various agro- 
climatic catchment conditions. Our future work will focus on comparing this super-ensemble learning with different physical hy-
drological models. 
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