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Abstract
Adaptive resistance emerges when populations of bacteria are subjected to gradual in-

creases of antibiotics. It is characterized by a rapid emergence of resistance and fast re-

versibility to the non-resistant phenotype when the antibiotic is removed from the medium.

Recent work shows that adaptive resistance requires epigenetic inheritance and heteroge-

neity of gene expression patterns that are, in particular, associated with the production of

porins and efflux pumps. However, the precise mechanisms by which inheritance and vari-

ability govern adaptive resistance, and what processes cause its reversibility remain un-

clear. Here, using an efflux pump regulatory network (EPRN) model, we show that the

following three mechanisms are essential to obtain adaptive resistance in a bacterial popu-

lation: 1) intrinsic variability in the expression of the EPRN transcription factors; 2) epigenet-

ic inheritance of the transcription rate of EPRN associated genes; and 3) energetic cost of

the efflux pumps activity that slows down cell growth. While the first two mechanisms acting

together are responsible for the emergence and gradual increase of the resistance, the third

one accounts for its reversibility. In contrast with the standard assumption, our model pre-

dicts that adaptive resistance cannot be explained by increased mutation rates. Our results

identify the molecular mechanism of epigenetic inheritance as the main target for therapeu-

tic treatments against the emergence of adaptive resistance. Finally, our theoretical frame-

work unifies known and newly identified determinants such as the burden of efflux pumps

that underlie bacterial adaptive resistance to antibiotics.

Introduction
It has been well-established that various species of bacteria, including E. coli, S. enterica and
P. aeruginosa, exhibit resistance when they are exposed to successive steps of increasing con-
centration of antibiotics [1–9]. This procedure, repeated several times, very quickly yields pop-
ulations with high levels of resistance [1, 3–8, 9]. Another important observation is that this
resistance is highly reversible. When the antibiotic is removed from the environment, the

PLOSONE | DOI:10.1371/journal.pone.0118464 March 17, 2015 1 / 18

OPEN ACCESS

Citation: Motta SS, Cluzel P, Aldana M (2015)
Adaptive Resistance in Bacteria Requires Epigenetic
Inheritance, Genetic Noise, and Cost of Efflux
Pumps. PLoS ONE 10(3): e0118464. doi:10.1371/
journal.pone.0118464

Academic Editor: Choong-Min Ryu, KRIBB,
KOREA, REPUBLIC OF

Received: July 15, 2014

Accepted: January 18, 2015

Published: March 17, 2015

Copyright: © 2015 Motta et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: SS acknowledges the Programa de
Doctorado en Ciencias Biomedicas-UNAM, Centro
de Ciencias Genomicas-UNAM and Consejo
Nacional de Ciencia y Tecnologia-Mexico for support
though a PhD fellowship (269040/220732). MA
acknowledges Dirección General de Asuntos del
Personal Académico-UNAM financial support,
through the Programa de Apoyos para la Superación
del Personal Académico for a sabbatical fellowship,
and Fundación México in Harvard for the Antonio
Madero 2011-2012 fellowship. This work was also

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0118464&domain=pdf
http://creativecommons.org/licenses/by/4.0/


population becomes sensitive again after a few generations [1, 3–8, 9]. Although the field re-
mains significantly unexplored, this temporal ability to cope with antibiotics is often referred
to as adaptive resistance [10]. As there is no universally accepted definition of adaptive resis-
tance, we will use the one given by Fernandez & Hancock: “a temporary increase in the ability
of a bacterium to survive an antibiotic insult due to alterations in gene and/or protein expres-
sion as a result of an exposure to an environmental trigger [. . .] and usually reverts upon the
removal of the inducing condition.” [10].

Experimental observations indicate that high phenotypic variability, in an isogenic popula-
tion, can often be used as a bet-hedging strategy that permits the selection of resistant cells
even at low antibiotic concentrations [1, 3, 11]. This observation was recently corroborated by
experiments showing that variability in expression of the Mar/AcrAB efflux pump system in
E. coli is correlated with the appearance of adaptive resistance to some antibiotics such as nali-
dixic acid [1, 3, 5, 9, 10, 11].

This variability cannot be governed by mutations alone, as the survival rates observed in
these experiments are too high compared to what would be expected by mutations. For in-
stance, it is estimated that the probability to find a P. aeruginosamutant with stable resistance
to low-level Quinolone is about 1.2×10−6 to 4×10−10, whereas Adam et al. found survival rates
as large as 20% of the population after the first antibiotic exposure [1].

Moreover, the reversion rates to the sensitive phenotype are also very high. Once the bacte-
ria have become resistant, when the antibiotic is removed from the medium, a fraction as large
as 95% of the population becomes susceptible again “almost immediately” according to Adam.
et al [1], or in less than 100 generations according to George and Levy [3]. These results are in-
compatible with the hypothesis that genetic mutation is the sole cause of adaptive resistance, as
otherwise i) the emergence of the resistant phenotype would be a sudden (or step wise discon-
tinuous) event instead of appearing gradually [8]; and also ii) the resistant phenotype would
not be easily reversible. For this to happen, back mutations would be required in the originally
altered bases (or a compensatory mutation somewhere else), which is estimated to occur with
an extremely low probability (10−9 or less) [12].

It has been suggested that a combination of epigenetic processes such as methylation and
stochastic gene expression, may be driving the emergence of adaptive resistance [1, 5, 13]. Spe-
cifically, it has been proposed that DNAmethylation by the DAMmethylase could be responsi-
ble for: i) the presence and inheritance of different gene expression profiles [13–18] and ii) the
variability in expression observed for methylated genes.

The activity of the DAMmethylase gene has been found correlated with the emergence of
adaptive resistance. In fact, high expression of the DAMmethylase gene, increases the survival
rate by a factor of five in cells treated with nalidixic acid [1]. Furthermore, this heightened re-
sistance is consistent with a two fold increase in the expression of efflux pumps [1]. Therefore,
DNAmethylation affecting the activity of efflux pumps, could be a very likely explanation of
the increased resistance observed experimentally, along with the fact that it will produce
enough heterogeneity in the population for antibiotic selection to act on [1, 13, 15, 16].

In the light of these experimental observations, we propose a theoretical model to quantita-
tively determine what specific elements are essential for the emergence of reversible resistance.
One key hypothesis of the model is that the Efflux Pump Regulatory Network (EPRN from
now on) is a target of epigenetic modifications. Specifically, these modifications will produce
variability in the gene expression patterns of the EPRN transcription factors. After cell division,
such gene expression patterns will be inherited from mother to daughter and will consequently
impose correlations in the dynamics of the EPRN across generations. Our results indicate that
this mechanism is central for the emergence of adaptive resistance.

A Unified Model of Adaptive Antibiotic Resistance
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Our model also predicts that epigenetic variability and mother-daughter correlations are
not sufficient to explain reversibility of resistance. Here, we demonstrate that reversibility is a
consequence of a trade-off between the benefit of efflux pumps, keeping the antibiotic below le-
thal levels, and a cost associated with their activity, as they are known to pump out essential
metabolites and therefore slow down cell growth [18].

Our theoretical framework aims at identifying and deciphering the role of each phenomeno-
logical observation in the emergence of adaptive resistance in order to provide a comprehensive
and quantitative picture of this reversible phenomenon.

Results

Single Cell Efflux Pump Model.
There are several EPRNs present in bacteria, and most of them share a number of prototypic
characteristics that make them qualitatively similar to each other. We have constructed a sin-
gle-cell model based on the acrAB-tolC system present in Escherichia coli, since it has been his-
torically the most widely studied and well characterized system [19–28]. Fig. 1A shows a
complete version of the acrAB-tolC regulatory network of Escherichia coli according to refer-
ence [9], whereas Fig. 1B shows a simplified version of it. This simplified version includes the
main components of the acrAB-tolC system which are present not only in E. coli but also in
other gram negative bacteria [9]. Note that the network depicted in Fig. 1B can be embedded
into the larger network shown in Fig. 1A. For the reduced network we have chosen only the
most dynamically important elements. This choice was not arbitrary but based on extensive
numerical simulations that identified the essential components of the network, and eliminated
the ones that did not provide additional information or present significant changes in the dy-
namics when removed (see S1 Text and S1 Fig.). For instance, we found that AcrR only reduces
the expression of AcrA and AcrB linearly, and its role could be accounted for, by just changing
the transcription rate of the AcrAB operon. This result is in agreement with previous research
that indicates that AcrR only fine-tunes the expression of AcrAB to prevent unwanted expres-
sion [29], a scenario that becomes irrelevant when the antibiotic is introduced. All the results
presented in this work were obtained with the simplified network. Nonetheless, the simplified
network gives essentially the same results as the more complete version of this system (see
S1 Fig.). Therefore, without loss of generality or biological realism, we use generic names such
as Activator, Repressor, etc., to refer to the components of the network under study instead of
marA ormarR, etc. It is worth mentioning that the acrAB-tolC system responds to several anti-
biotics and also to non-lethal chemicals (such as salicylate), some of which were used in the
adaptive resistance experiments mentioned earlier [20–22]. We will use the terms antibiotic
and inducer indistinctly to refer to any chemical that promotes the activation of the EPRN.

The main idea behind the dynamics of the EPRN is the following. Two transcription factors
are present: an activator and a repressor, both belonging to the same operon (hereafter referred
to as the EPRN-operon). They auto-regulate their own transcription by binding to the EPRN-
operon promoter region. In the absence of antibiotic the EPRN-operon is expressed at low lev-
els [22, 23]. This is because the repressor molecule has a higher binding affinity (at least four
times) than the activator [24, 25] and therefore the operon transcription is mainly restrained
[26]. When the antibiotic enters the cell, usually via membrane porins, it binds tightly to the
aforementioned repressor molecule, inactivating it. This new repressor-inducer conformation
is now unable to bind to the EPRN-operon promoter region, allowing the activator to be tran-
scribed. Since the activator promotes its own expression, it increases its concentration rapidly,
boosting the production of efflux pumps; at the same time it represses the expression of mem-
brane porins which reduces the intake of antibiotics [24, 27, 28].

A Unified Model of Adaptive Antibiotic Resistance
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We use a system of stochastic differential equations (see Supporting Information) to model
the single-cell dynamics of the EPRN shown in Fig. 1B. Validation and parameter calibration
for this system were done by comparing our simulations with experimental data from E. coli
wild-type cells and ΔtolC mutant strains [30] (see S1 Text, S1 and S2 Tables and S2 and S3
Figs.). The efflux of antibiotics depends on two main parameters: the transcription rate β0 of
the EPRN operon, which ultimately affects the amount of available pumps, and the pump effi-
ciency εI that controls how much antibiotic the pumps can expel at a certain time. We will see
later that by introducing cell-to-cell variability and mother-daughter correlations in these two
parameters, highly resistant populations can arise.

Importantly, due to the large size of the parameter space, we do not perform an exhaustive
parameter search to determine the complete regions over which our results hold. Rather, in
S1 Table we present a set of parameters that qualitatively reproduce the experimental observa-
tions. Nonetheless, in the Supporting Information we provide a sampling of a wide region of
the parameter space for which our results hold (see S1 Text and S4 and S5 Figs.).

Population model: Variability and inheritance.
The population consists of a set of replicating cells, each one represented by a copy of the sys-
tem of equations governing the dynamics of the EPRN (formally presented in the SI). Each cell
runs internally its own system of equations independently from other cells. These cells will
grow or die depending on their internal concentration of nutrients and
antibiotics, respectively.

Cell-to-cell variability is implemented by slightly changing the two parameters that most af-
fect the capability of the pumps to reduce the internal concentration of antibiotics. One such
parameter is the efficiency εI of the efflux pumps. A high efficiency will correspond to a de-
creased toxicity of the antibiotic, which is due to pumps operating more rapidly or with greater

Fig 1. Efflux Pump Regulatory Network. Arrows indicate positive regulation. Blunt arrows indicate repression. A) Literature base reconstruction of the
AcrAB-TolC efflux pump regulatory network of Escherichia coli as reported on [9]. B) Simplified version of the AcrAB-TolC efflux pump regulatory network
(EPRN). The activator (Act) and repressor (Rep) are two Transcriptional Factors that belong to the same transcriptional unit (EPRN operon, indicated by the
dashed line). When the repressor occupies its DNA binding site, the expression of the operon is restrained. Nonetheless, when the antibiotic (or inducer, Ind)
enters the cell, it inactivates the repressor by binding to it, allowing the operon to be actively transcribed, promoting the production of pumps and decreasing
the synthesis of porins (this last process is known to occur through an intermediary). Both food and inducer are expelled by the efflux pump system. In the
population model, a reduction in food concentration implies an increase in the division time.

doi:10.1371/journal.pone.0118464.g001
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specificity. We assume that changes in εI are caused by genetic mutations. However, since mu-
tations alone cannot account for the rapid emergence of adaptive resistance [1, 3, 4, 6], we also
implement variability in the transcription rate β0 of the EPRN operon. As stated in the intro-
duction, we assume that cell-to-cell variations of this parameter are caused by epigenetic pro-
cesses, most likely methylation [1, 14–17].

It is known that different methylation patterns can produce different transcription rates by
changing the DNA binding affinity of some transcription factors [14–17]. We found 12 DAM
methylation sites (GATC) in the regulatory operon of the AcrAB-TolC efflux pump system in
E. coli (see SI). Each site can be in two states: either it is methylated or it is not. Therefore, there
are 212 = 4086 possible methylation patterns in this operon. As there are several possible pat-
terns, we will assume that β0 (the transcription rate) changes as a continuous variable. Howev-
er, this assumption is not crucial. In fact, even if only 1% of these 212 possible methylation
patterns were attainable and capable of producing different transcription rates, we would still
have about 40 different patterns. We will see later that even under this scenario in which the
values of β0 are discrete and finite, the same qualitative results are obtained. (See the section en-
titled “Emergence of the highly resistant phenotype” below.) Cells with different values of β0
will produce pumps at different rates, which in turn affect their survival. Variability in the pop-
ulation is then introduced by selecting, for each cell, the parameters β0 and εI from Gaussian
distributions G(μβ, σβ) and G(με, σε), respectively (in each case μ is the mean and σ2 is the vari-
ance). On the other hand, inheritance is implemented by correlating the mean values of these
Gaussians across generations.

To illustrate the inheritance mechanism in our model, let us consider the ith cell at genera-
tion t, which has a transcription rate β0 (i, t). Then, the transcription rates β0(i1, t + 1) and
β0(i2, t + 1) of its two daughter cells i1 and i2 at generation t + 1 will be drawn from the Gauss-
ian G(β0(i, t), σβ), which has average μβ = β0(i, t). In other words, at each generation and for
each cell, β0 is drawn from a Gaussian distribution G (μβ, σβ) whose average μβ is the value of
β0 previously owned by the corresponding mother. This mechanism, which clearly correlates
the parameters β0 along cell lineages, models the fact that methylation patterns that affect gene
expression can be inherited with certain variability [14–17].

Inheritance in the pump efficiency εI is implemented in an analogous way, but using the
corresponding Gaussian distribution G (με, σε). However, since we are assuming that changes
in β0 are epigenetic whereas those in εI are genetic, the time-scales at which significant modifi-
cations in these parameters occur, are very different. For it is known that phenotypic modifica-
tions due to epigenetic changes happen at rates at least one order of magnitude faster than
those due to genetic changes [31]. Therefore, we have set σβ = 20σε in all our simulations, with
σβ = 0.1 and σε = 0.005. Among the implications of using such small variances are that the
changes in gene expression and pump efficiency between mother and daughter cells occur
gradually. We also implemented for σβ a uniform distribution between 0 and 10, which allows
abrupt changes in gene expression between the mother and daughter cells. However, when this
type of abrupt changes are allowed in σβ, adaptive resistance is not observed (see S1 Text and
S6 Fig.). We do not know, based on experimental measurements, which of the two mechanisms
mentioned above (i.e. uniform vs Gaussian randomness) is more compatible with the effect
caused by methylation. But, as we will see in the next section, our model predicts that when
Gaussian distributions with small variances are used, adaptive resistance emerges, which is not
the case for uniform distributions (see S1 Text and S6 Fig.). Additionally, we also tested σβ =
Cσε where 10� C� 50 with no significant changes in the results.

In order to quantify the effect that each type of inheritance has on the emergence of the re-
sistance phenotype, we implemented four different scenarios:

A Unified Model of Adaptive Antibiotic Resistance
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1. Control simulation: There is no inheritance, only variability. The distributions G (μβ, σβ)
and G (με, σε) remain the same for all the cells in the population and
throughout generations.

2. Genetic inheritance: Mother-daughter correlations are implemented only in the pump effi-
ciency εI but not in the transcription rate β0.

3. Epigenetic inheritance: Mother-daughter correlations are implemented only in the tran-
scription rate β0 but not in the pump efficiency εI.

4. Mixed inheritance: Mother-daughter correlations are implemented in both the transcription
rate β0 and the pump efficiency εI.

Population model: Cell duplication and death.
The synthesis and functioning of efflux pumps are associated with an energetic cost that must
be taken into account. First, the pumps are very unspecific on its substrates [21, 32, 33]. Thus,
in addition to antibiotics, they expel metabolites necessary for cell growth and division [34].
For instance, the acrAB-tolC efflux pump, is known to recognize a broad spectrum of chemi-
cals. It also has a biased affinity towards phenolic rings, which are not only constituents of in-
ducers of the system such as salicylic acid, but also of amino acids such as tyrosine [32, 35].
Second, the synthesis of the pumps themselves (large protein complexes) and their functioning
consume energy [9, 32, 35]. Therefore, it is reasonable to assume that the production and func-
tioning of the pumps will slow down cell growth. This assumption is supported by experimen-
tal observations indicating that over-expression of efflux pumps is correlated with both high
levels of resistance and decreased growth [18, 36, 37]. In our model we set this cost by making
the internal concentration of nutrient in each cell depend inversely on the amount of pumps
(see Eq. (6) in S1 Text). The net result is a slowdown of the cell division rate, because a mini-
mum internal nutrient concentration is required for division to happen. Thus, when the inter-
nal concentration of nutrients reaches a certain threshold (θF), the cell divides consuming the
nutrient load, F. The two daughter cells start anew with a food load F = 0 and will have to accu-
mulate resources again in order to divide. Clearly, the division time (the time it takes to reach
the threshold θF) depends on the amount of pumps, which in turn depends on the transcrip-
tion rate β0 and the concentration of inducer (see S1 Text and S7 Fig.).

We have also included cell death in our population model. In order for the cell to survive,
the efflux pumps need to keep the internal antibiotic concentration below the lethal level θI.
Whenever this threshold is reached, the cell dies and it is removed from the population.

Emergence of the highly resistant phenotype.
Fig. 2 shows typical tracking plots of the activator concentration for the four scenarios men-
tioned above (control, genetic inheritance, etc.). As in the experiments reported in Refs. [1, 3,
6–8, 37], we subject the population to successive antibiotic shocks, each one gradually increas-
ing the external concentration of antibiotic by an amount ΔIn. Thus, afterM shocks the exter-
nal antibiotic concentration will be Iext ¼ SM

n¼1DIn. After each antibiotic shock, indicated by
downward arrows in Fig. 2, many cells die and only few cells survive. We let the few surviving
cells grow and divide in the new antibiotic concentration until the population reaches a size
N = 5000, at which point another antibiotic shock is applied (further increasing the external
antibiotic concentration). As can be observed in Fig. 2, only when epigenetic inheritance is
present the population is able to endure successive increments of antibiotic, reaching very high
levels of resistance. By contrast when epigenetic inheritance is not present, every cell in the

A Unified Model of Adaptive Antibiotic Resistance

PLOS ONE | DOI:10.1371/journal.pone.0118464 March 17, 2015 6 / 18



population dies after the first shock. The above results show that in our model variability alone
is not enough for the emergence of adaptive resistance (Fig. 2D). Analogously, genetic inheri-
tance, which essentially consists of mother-daughter correlations occurring at long time scales,
cannot give rise by itself to adaptive resistance either (Fig. 2C).

For such adaptive resistance to emerge, short-termmother-daughter correlations in the tran-
scription rate β0 of the EPRN operon need to be implemented in the model. Note that when both
genetic and epigenetic inheritance are present (Fig. 2B) the population tolerates a higher number of
antibiotic shocks in the same time interval than when only epigenetic inheritance is present.
Fig. 2A also shows that the more resistant the cells become, the slower their division rates get. In-
deed, the time it takes for the population to reach a size of N = 5000 in order to apply the next anti-
biotic shock, (indicated by the separation of the arrows), becomes longer as the population survives
in higher antibiotic concentrations (this effect can also be seen in S7 Fig.). It is important to men-
tion that if the antibiotic shocks occur at high frequencies (for instance less than 10 generations

Fig 2. Emergence of the high resistance phenotype. This figure shows tracking plots of populations
growing in successively increasing concentrations of antibiotic. For each cell the concentration of Activator is
plotted at constant time intervals (dots). The arrows indicate the times at which antibiotic shocks were
applied, which happened every time the population reached a maximum size of N = 5000. The four panels
correspond to the four different inheritance scenarios mentioned in the main text. (A) Only epigenetic
inheritance is implemented. (B) Mixed Inheritance. (C) Only genetic inheritance and (D) control (no
inheritance). The inset in (A) shows a zoomed in representation of the tracking plot, where one cell lineage is
followed as it goes through several cell divisions and deaths. Since dead cells are removed immediately from
the population, their expression is no longer visible and their curves terminate abruptly (causing a step-like
structure). Note that high levels of resistance can be achieved only when there is epigenetic inheritance (A
and B). Otherwise, the entire population dies after the first shock (C and D). The unit of time corresponds to
one cell cycle for β0 = 1 and with no antibiotic (see S6 Fig.).

doi:10.1371/journal.pone.0118464.g002
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between two successive shocks), or if each antibiotic shock is much more intense (e.g. twice or
more) than the previous one, we observe no surviving cells whatsoever in any of the four scenarios.

It is also worth noting that if a discrete distribution for β0 with 40 different values is used in-
stead of a continuous Gaussian, the same qualitative results are obtained, as can be seen in
S8 Fig. Therefore, adaptive resistance occurs even in the presence of moderate variability in
gene expression, as long as there are mother-daughter correlations in such variability.

Reversibility.
So far, the difference between genetic and epigenetic inheritance consists on one hand, in the time
scales at which these two processes produce phenotypic changes in the population, and on the
other hand in the parameters they affect. Genetic inheritance affects the pump efficiency εIwhereas
epigenetic inheritance affects the transcription rate β0. Another important difference is that changes
caused by genetic mutations are very unlikely to be reversible whereas epigenetic changes are much
more likely to be reversible [31, 38]. To test if our model can reproduce the experimentally observed
reversibility, we replicate the simulations described in the previous section (where levels of resis-
tance are ramped higher) for the mixed scenario. But now, after several rounds of selection, we re-
move the external antibiotic and allow the cells to grow and divide without stress. (The antibiotic is
removed by setting Iext = 0 in Eq.(5) of the SI.) Fig. 3A shows that the concentration of the activator
abruptly decreases when the antibiotic is removed (indicated by a big black arrow), eventually
reaching its basal level of expression. Fig. 3B shows the size of the population as a function of time
across the successive antibiotic shocks, and then in the free medium. The population size decreases
exponentially each time an antibiotic shock is applied. However, after some time, the surviving cells
grow and divide restoring the population size to the maximum size N = 5000. Note that when the
antibiotic is removed the population growth returns to its wild-type behavior. These results are
qualitatively similar to those observed experimentally [1, 3–8, 9]. However, this fact does not neces-
sarily mean that the cells return to their wild type levels of susceptibility. For the cells that have re-
versed back to a sensitive phenotype could still have very high values of transcription rate, β0, and
this high rate would imply that as soon as the antibiotic is applied again, the activator and the efflux
pumps will be produced rapidly and at high concentrations. At this stage, most of the cells would
be able to survive easily almost any antibiotic shock making the system non-reversible.

The only way for the population to truly reverse to its wild-type condition and become sus-
ceptible again is to return to their initial distribution G (μβ, σβ), which is centered at low values
of β0. We expect this to happen because cells with a small β0 duplicate faster than cells with
large β0 (see S1 Text and S7 Fig.). Since the values of β0 are correlated across generations, cells
with faster division rates (low β0) will eventually dominate the population, shifting the distribu-
tion G (μβ, σβ) towards the low β0 region. Indeed, the population average μβ = hβ0i of the tran-
scription rate as a function of time is reported in Fig. 3C. Note that μβ increases as the
antibiotic concentration is ramped higher. Then, when the external antibiotic is removed the
average transcription rate across the population μβ decreases gradually, reaching the same
value as in the original wild-type population. The lower panels in Fig. 3C show the distribution
G (μβ, σβ) at three different time points throughout the simulation. We start with a distribution
centered at low values of β0 (μβ � 0.5). Then, after several rounds of selection the distribution
G (μβ, σβ) is shifted to relatively high numbers (μβ� 10). But then again, when the antibiotic is
removed, the distribution eventually returns to its initial configuration.

Genetic Assimilation.
In our model the time-scale to produce a phenotypic change due to genetic mutations is one
order of magnitude larger than that needed to produce a phenotypic change due to epigenetic

A Unified Model of Adaptive Antibiotic Resistance
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Fig 3. Reversibility of the resistance phenotype. (A) This tracking plot shows that the expression of the
activator increases while the antibiotic shocks are applied as in Fig. 2. Then, when the antibiotic is removed
(indicated by the tilted black arrow), the expression of the activator decreases abruptly and eventually
reaches its basal level. (B) Size of the population as a function of time for the same simulation as in A. After
each antibiotic shock (small black arrows) the population size decreases exponentially and the recovery time
becomes longer with each shock. After the antibiotic is removed (tilted black arrow) the population comes
back again to its wild-type (WT) growth rate. To carry out the simulations in the antibiotic-free phase, every
time the population reached the maximum size N = 5000, we took a random sample of 10% of the cells and
made them grow without antibiotic, until the population reached again this maximum size, and so on. (C)
Average transcription rate μβ = hβ0i in the population as a function of time. Note that the average increases
while the shocks are applied and then gradually comes back to small values when the antibiotic is removed.
Error bars indicate the standard deviation. It can be observed that the standard deviation increases with the
antibiotic stress. The panels below show the full distribution G (μβ, σβ) at three different times: before any
antibiotic is introduced (circle); after several antibiotic shocks (star); after a long period of time without
antibiotic (line). Time is measured generations, being one generation the time it takes for a cell with β0 = 1 to
reach θF starting from F = 0.

doi:10.1371/journal.pone.0118464.g003
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modifications. Thus, to observe any significant increase in resistance produced by changes in
the pump efficiency we need to run the simulation for a longer time. Interestingly, by doing
this we obtain a nonreversible resistance, first driven by our mechanism of epigenetic inheri-
tance (which is reversible), and then fixed by genetic variation and inheritance of the pump ef-
ficiency. To observe this phenomenon, which can be considered analogous to genetic
assimilation [39, 40, 41], we performed numerical experiments similar to the ones presented in
the previous sections, where the population is first induced withM antibiotic shocks. The dif-
ference now is that we will let the population be in contact with the antibiotic for a very long
time before removing it. To measure the level of resistance of the population throughout this
process we define the Resistance Index (RI) as the maximum concentration of antibiotic that
the population can endure with at least 10% of survival. (A similar measure was used in [3].)
Fig. 4 reports the evolution of the RI for different populations subjected to a different number
M of antibiotic shocks. In each case, the arrows indicate the time at which the antibiotic is re-
moved. The results depicted in Fig. 4 show that the final stationary value of the resistance
index (the one reached when the antibiotic is removed) depends on how long the population
remains in contact with the antibiotic. The blue curve deserves special attention. In this case,
M = 15 antibiotic shocks were applied, with the last shock occurring at the time indicated by
the blue star. After this, the antibiotic concentration was kept constant until the time indicated
by the blue arrow, at which the antibiotic was removed. Note that the RI keeps increasing even
during the interval of steady antibiotic concentration. Note also that the final RI stationary
value reached after the antibiotic is removed is five times larger for the blue curve than for all
the other curves. It is worth noting that the black curve, corresponding to a control population
growing in the absence of antibiotic, remains close to the initial low basal level throughout the
entire simulation. Therefore, in our model antibiotic resistance occurs only as a response to the
selective pressure imposed by the antibiotic and not by random genetic drift.

It is important to mention that the increase in the basal level of the RI shown in Fig. 4A
when the population is kept in a high antibiotic concentration for a long time is non reversible.
Indeed, Fig. 4D shows the evolution across generations of the average pump efficiency με and
the average transcription rate μβ for the population corresponding to the blue curve of Fig. 4A.
From Fig. 4D it is apparent that μβ increases only when antibiotic shocks are applied, namely,
when the antibiotic concentration in the environment also increases. However, as soon as the
antibiotic concentration is kept constant, even at a high value, the average transcription rate μβ
starts decreasing and reaches its initial low value at the end of the simulation. Contrary to this,
the average pump efficiency με keeps rising as long as there is antibiotic in the environment,
reaching a steady value only when the antibiotic is removed. Thus, exposing the population to
a high antibiotic concentration for a long time produces a non-reversible shift in the pump effi-
ciency distribution P(ε), permanently increasing the level of resistance of the population.

It is also important to emphasize the difference between the survival rate (SR) and the resis-
tance index RI. The former is defined as the fraction of cells that survive an induction, and this
fraction ranges from 0 (if no cell survives) to 1 (if all cells survive). On the other hand, the RI is
the value of the antibiotic concentration at which the SR is 0.1 (i.e., the concentration of the an-
tibiotic at which only 10% of the cells survive). Therefore, the RI does not have to be between
0 and 1. Actually, its value depends on the units used to measure the antibiotic concentration
(in our case we use arbitrary units) and the capability of the population to resist the antibiotic.
This capability, in turn, depends on the way β0 and εI are distributed across the population. In
each cell, these parameters determine the fixed points of the system (only one fixed point exists
for a given combination of β0 and εI in the range of concentrations explored in this work, see
S1 Text and S9 Fig.). The results presented in Fig. 4 indicate that the permanent change in the
RI observed after a long induction time is not due to transitions between fixed points, but to
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Fig 4. Genetic Assimilation occurs at longer time scales. (A) Resistance Index (RI) as a function of time for populations induced withM antibiotic shocks.
The different curves correspond to different values ofM, except by the black one which corresponds to a control population growing with no antibiotic. (B)
Blow up showing the first 500 generations. For each curve, the corresponding arrow indicates the time at which the antibiotic is removed. In the case of the
blue curve, the asterisk indicates the time at which the last antibiotic shock is applied, after which the antibiotic concentration is kept constant. (C) Blow up of
the last part of the simulation showing the point at which the antibiotic is removed from the population corresponding to the blue curve. It can be observed that
in this case the final stationary value of the RI is about five times higher than that of the control population. (D) Evolution of the average transcription rate μβ
and the average pump efficiency με for the population corresponding to the blue curve. Notice that as soon as the antibiotic concentration is kept constant, μβ
starts decreasing whereas με keeps rising until the antibiotic is completely removed. This shows that the evolutionary process does not reach a stationary
state (or fixed point) in the presence of antibiotic.

doi:10.1371/journal.pone.0118464.g004
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the fact that the unique fixed point of each cell moves throughout the evolution of
the population.

Discussion
Adaptive resistance in bacteria is observed after subjecting a population to gradual increments
of antibiotic concentration. Regardless of the level of resistance reached through this process,
(which can be very high), the resistance disappears after a few generations in the absence of an-
tibiotic. Previous studies have independently identified epigenetic inheritance and phenotypic
heterogeneity as important components involved in the emergence of adaptive resistance [1, 3,
4, 6, 7, 8, 11], but their role has never been evaluated quantitatively. Additionally, the molecular
origin of reversibility observed in adaptive resistance has remained unclear.

In this study we present a theoretical framework that identifies the essential mechanisms for
the emergence, evolution and reversibility of adaptive resistance. We constructed a single-cell
dynamic model of a prototypic efflux pump regulatory network (EPRN) that incorporates the
most updated information available in the literature. We calibrated this model with experimen-
tal observations for wild type and mutant E. coli strains. We then grew a population of such sin-
gle cells with growth dynamics obeying simple rules such as division, death, variability and
inheritance of gene expression patterns. For each cell in the population we compute their
EPRN temporal dynamics. Through this model we demonstrate that heterogeneity and moth-
er-daughter correlations affecting transcription rates, specifically those of the EPRNmain regu-
lators, can explain the gradual amplification of the multidrug resistant phenotype. By contrast,
mother-daughter correlations implemented in the pump efficiency, and developing at longer
timescales, were not sufficient to make the population adapt and survive to successive antibiot-
ic shocks (but had a role in fixing resistance when the population had contact with antibiotics
for a very long time). We also found that introducing a cost associated with the functioning of
the EPRN was enough to explain the observed reversibility to the susceptible (non-
resistant) phenotype.

A previous report [11] proposed that adaptive resistance developed as a consequence of het-
erogeneity in gene expression because cells that randomly have a high production of efflux
pumps survive, and those that did not, die. Through our model, we were able to show that al-
though heterogeneity in gene expression is necessary, it is not sufficient to explain the emer-
gence of resistance, nor its gradual response, as epigenetic inheritance of gene expression
patterns is also necessary. Epigenetic modifications can change gene expression patterns at
short time scales, providing a mechanism by which cells can adapt to changing environments
quickly. At the same time, it allows for enough flexibility: if the environment returns to its earli-
er state, a population whose fitness is compromised by the new gene expression patterns can
return to its previous state in a short time.

Based on several experimental observations, another report [1] suggested that DNA methyl-
ation is a plausible mechanism driving this epigenetic inheritance. Methylation can indeed pro-
duce both the heterogeneity and epigenetic inheritance of gene expression patterns required
for adaptive resistance to occur. Our results support this idea and specifically identify the
regulatory regions of the main regulators of the EPRN as the most probable targets for the
methylation process, as amplification of the antibiotic resistance do not occur without the
mother-daughter correlations in gene transcription rates (see Fig. 2). Consequently, the process
of DNAmethylation in bacteria is potentially an important target for the development of thera-
peutic treatments in preventing the emergence of adaptive resistance.

It is important to stress that variability in gene expression is known to be essential for adap-
tive resistance to occur [11]. So, our model incorporates this variability with the additional
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feature that it has to be inherited. Whether or not this variability is caused by methylation is
not the central point. Nonetheless we propose DNA methylation of the marRAB operon as the
possible cause of this variability because: (i) it can be inherited; (ii) mutant cells in which meth-
ylation is lacking are much more susceptible to antibiotics [1]; (iii) it provides the necessary
variability in short periods of time required for adaptive resistance to emerge [1]. However, re-
gardless of the precise mechanism behind this variability, the important point in our model is
the existence of inheritable variability that can be quickly developed. For our results show that
some heritable mechanism modifying the transcription rates of an efflux pump regulatory net-
work must be present in order to observe adaptive resistance.

Another interesting observation is the emergence of a stable form of resistance when the
population is left in a medium with high concentrations of antibiotic for very long times. In
our model this non-reversible resistance is produced by changes effectively improving the
pump efficiency εI, meaning that the pumps become better at distinguishing antibiotics from
nutrients, so that they can pump out the former at a higher rate than the latter. Although these
genetic modifications are rare and insufficient to save the population initially, they become im-
portant at longer times, transforming into an alternate source of resistance without adverse ef-
fects. Therefore, this heritable trait will, at longer time scales, permanently increase the basal
levels of resistance of the population when it is under selective pressure (see Fig. 4A). In our
model genetic changes at each generation are small and increase the pump efficiency gradually
(Fig. 4D). In reality, genetic changes, although rare, may produce abrupt changes in the level of
resistance of the population. The important point is that the fast epigenetic changes occurring
in the transcription rate allow the population to survive long enough as to develop more stable
and efficient forms of resistance. This behavior is consistent with experimental observations,
showing that bacterial populations that have been continuously exposed to antibiotics are per-
manently much more resistant than populations that have been not [1].

We have based our simulations on the regulatory scheme of the widely known acrAB-tolC
efflux pump system, for which many of the kinetic parameters are still unknown. In our study,
we aimed to identify the essential mechanisms that could explain and reproduce adaptive resis-
tance and our results hold in a significant region of the parameter space and not only for the
particular values presented in S1 Table (see S4 and S5 Figs.). However, performing a deep
search in the parameter space of the equations could reveal important constraints; such as the
timescales at which epigenetic inheritance or genetic mutations must occur; or even the
amount of pumps that the cell needs to produce (which is to our current knowledge an un-
known variable). We also explored alternative mechanisms that could yield resistance, such as
uneven pump distribution in each cell division (one daughter cells takes the majority of the
pumps) and increased mutation rates (which increases the variability σε in the efficiency of the
efflux pumps). The results, presented in the SI (see S1 Text, S10 and S11 Figs.) show that nei-
ther of these two mechanisms is able to produce adaptive resistance.

Our model provides an explanation for the emergence of adaptive resistance based on the
cost and benefit of the biological characteristics of an efflux pump system. It does not only pre-
dict the behavior of populations subjected to different antibiotic shocks and at different time,
but also a number of different phenomena observed experimentally in bacterial populations,
such as phenotypic reversibility, genetic assimilation, and even the survival rates of populations
that have been pre-induced with non-lethal antibiotic concentrations (see S1 Text and S12 Fig.).

Supporting Information
S1 Fig. Comparison between the complete vs the simplified EPRNmodels. Expression of
the nodes corresponding to the activator (MarA in the complete network and Activator in the
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simplified network) and the pumps (AcrAB-TolC in the complete network and Pumps in the
simplified network). Two external inducer concentrations are presented (I = 0 black curves,
and I = 7 red curves) as well as two different values of the transcription rate β0, (β0 = 0 and β0 =
5). It can be observed that the curves for the complete and simplified networks are extremely
similar in all cases.
(TIF)

S2 Fig. Dynamical behavior of the SC-EPRN.We report the ratio ГX = Xa/Xw of expression
levels of the network element X with antibiotic (Xa) and without antibiotic (Xw). Black bars in-
dicate an increase in concentration in the antibiotic medium (Гx > 1) whereas red bars indicate
lower expression when the antibiotic is present (Гx < 1). It can be observed that the presence of
antibiotic triggers an overexpression of the activator operon (A and R), a reduction of the por-
ins (Q), an increase in the production of pumps (P), and a reduction in the active form of the
repressor (R�), as it has been reported in [1].
(TIF)

S3 Fig. Behavior of the SC-EPRN for wild-type and mutant strains. The plot shows the con-
centration of the activator A as a function of time for wild type (P+, black circles) and pump de-
ficient (P−, red squares) strains. Approximately, a twofold increase in the concentration of the
activator in the mutant versus the wild type strains is observed in our simulations, which corre-
spond to the experiments reported in [2]. In fact, this twofold increase was used to calibrate
some of the parameters in the numerical simulation.
(TIF)

S4 Fig. Parameters producing equivalent dynamics. By moving the values of the degradation
rates γA and γR of the activator and the repressor, respectively, along the curve, we obtain the
same qualitative results for the induction experiments as the one shown in Fig. 2 of the main
text. The triangles show the particular values used to generate the plots in S4 Fig. The numbers
between parentheses indicate the average increase of the antibiotic between two successive
shocks. These results suggest that the conclusions of our model hold for a wide region in the
parameter space and not just for the one particular point reported in S1 Table.
(TIF)

S5 Fig. Adaptive resistance for equivalent parameters. Tracking plots for the activator corre-
sponding to the 1st (A), 2nd (B), 3rd (C) and 5th (D) points in S3 Fig. Note that these plots are
qualitatively similar to the one shown in the main text (Fig. 2), even though the plots here were
obtain with different parameter values changing in almost one order of magnitude.
(TIF)

S6 Fig. Uniform distribution for β0 with no correlations. This plot shows the size of the pop-
ulation as a function of time for the case in which the value of β0 for each cell in the population
and for each generation is taken randomly with uniform probability from the interval [0, 10].
The upper arrow indicates the time at which the first antibiotic shock is applied, whereas the
lower arrow indicates the application of the second antibiotic shock. Note that in this case in
which there is no mother-daughter correlation in the value of β0, the population is not able to
survive the second antibiotic induction, even though there is a relatively high variability in
the population.
(TIF)

S7 Fig. Division time as a function of the transcription rate β0 for different antibiotic con-
centrations. Each point is the average division time over 1000 cell division events (The average
is necessary because of the presence of noise.) The black curve corresponds to cells growing in
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an antibiotic-free environment, while the red and green curves correspond to cells growing in
antibiotic concentrations [Iext] = 1 and [Iext] = 3, respectively. Note that the division time in-
creases with both the concentration of external inducer Iext and the transcription rate (β0).
(TIF)

S8 Fig. Discrete distribution for β0. Tracking plot for the activator in the case in which β0
takes 40 different discrete values (which represent about 1% of the theoretically possible 212 dif-
ferent methylation patterns). In this case, in each replication the daughter cells can either ac-
quire the same value of β0 than the mother with probability 0.5, of any of the two adjacent
values with the same probability 0.25. The inset shows the distribution P(β) at the beginning of
the simulation (blue histogram) and after several antibiotic shocks (red histogram). Note that
the behavior of the system is essentially the same as in Fig. 2 of the main text, which indicates
that a large number of methylation patterns is not necessary to obtain adaptive
antibiotic resistance.
(TIF)

S9 Fig. Fixed Points of the EPRN. A) Fixed point of the activator as a function of β0 for a
fixed concentration of external inducer. B)-D) Stream plots on the Activator-Repressor plane
for different values of β0 showing that there is only one fixed point in the range of parameters
explored in this work.
(TIF)

S10 Fig. Changing the epigenetic/genetic variability rate. (A) Increased mutation rates. Pop-
ulation size for a mixed model where the genetic variability was made equal to that of the epige-
netic variability, σε = σβ = 1. We can observe that the population can endure a lot more
antibiotic shocks (occurring at each peak) than the mixed model where the variance in the
pump efficiency was much lower 20σε = σβ (see Fig. 3B). Also, cell death is significantly re-
duced (approx 15% after the first induction), which is at odds with the behavior observed ex-
perimentally, where cell death is much higher [4, 5]. (B) Inverted time-scales. Population size
for a mixed model where the genetic variability was interchanged with the epigenetic variabili-
ty; σε = 0.1 and σβ = 0.005. We can observe that the population dies immediately after the first
antibiotic shock, which supports the idea that mutations alone cannot explain adaptive resis-
tance. Time is measured in generations.
(TIF)

S11 Fig. Uneven pump segregation and persistent cells. Plot of the population size as a func-
tion of time when random pump segregation is implemented without genetic or epigenetic in-
heritance. Each antibiotic shock is indicated by a change in color and by an arrow. Note that
after the first shock just a few cells survive. These surviving cells are highly resistant because
they can survive further antibiotic shocks. However, these cells cannot divide (the population
size remains constant). This behavior is similar to the one observed experimentally in persis-
tent cells [6].
(TIF)

S12 Fig. Pre-induction increases survival rates. Survival ratio SR as a function of the antibiot-
ic shock concentration Iext for different pre-induction levels: Ipre = 0 (i.e. no pre-induction,
black curve), Ipre = 0.25 (red curve), and Ipre = 0.5 (green curve). Note that the survival ratio in-
creases with the pre-induction concentration Ipre.
(TIF)

S1 Table. Parameters for the single cell and population models. Values of the parameters
that were used in the numerical simulations of both the single-cell and population models. The
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second column shows the values used to obtain the results presented in the main text, while the
third column shows the values used for the alternative scenarios (presented in the SI). In the
latter case the values that are different from those in the original model are shaded in gray.
(DOC)

S2 Table. Meaning and interpretation of parameters. This table lists all the parameters of the
model and gives their biological interpretation.
(DOC)

S3 Table. Parameters for the complete network. Values of the parameters used for the nu-
merical simulations of the complete Mar system depicted in Fig. 1A of the main text.
(DOC)

S1 Text. Supporting Information for the main text and supplementary figures.
(DOC)
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