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Abstract 
Children with severe aplastic anemia (SAA) face heterogeneous prognoses after immunosuppressive therapy (IST). There are 
few models that can predict the long-term outcomes of IST for these patients. The objective of this paper is to develop a more 
effective prediction model for SAA prognosis based on clinical electronic medical records from 203 children with newly diagnosed 
SAA. In the early stage, a novel model for long-term outcomes of SAA patients with IST was developed using machine-learning 
techniques. Among the indicators related to long-term efficacy, white blood cell count, lymphocyte count, absolute reticulocyte 
count, lymphocyte ratio in bone-marrow smears, C-reactive protein, and the level of IL-6, IL-8 and vitamin B12 in the early stage 
are strongly correlated with long-term efficacy (P < .05). Taken together, we analyzed the long-term outcomes of rabbit anti-
thymocyte globulin and cyclosporine therapy for children with SAA through machine-learning techniques, which may shorten the 
observation period of therapeutic effects and reduce treatment costs and time.
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1 INTRODUCTION
Patients with severe aplastic anemia (SAA) show the features 

of pancytopenia and hypocellular bone marrow. The telomere 
length and the paroxysmal nocturnal hemoglobinuria (PNH) 
population have been linked to response to immunosuppressive 
therapy (IST).1 In the absence of a leukocyte antigen-matched 
donor, SAA cases are treated by the standard combination of 
IST with anti-thymocyte globulin (ATG)/porcine anti-lympho-
cyte globulin/horse anti-lymphocyte globulin and cyclospo-
rine A (CsA). ATG is often used in our center. IST with ATG/

CsA, giving a 60% to 70% hematopoietic recovery, a 70% to 
80% long-term survival,2 an 87% to 96% overall survival rate 
for 2 years and an 84% to 92% rate for 10 years, have been 
reported.3 Hence, there is significant heterogeneity of outcome 
in the IST treatment of SAA; how to identify patients with a 
poor therapeutic effect from IST in the early stage needs further 
study and identification. As electronic health records (EHRs) 
have accumulated, machine-learning methods have been devel-
oped for building the models of classification, prediction, and 
other purposes in a series of disorders and have shown better 
performance than standard statistical models, especially in the 
scenario of rich data and abundant indicators. However, no 
such model yet exists for SAA diagnostic evaluation and ATG 
response, whether for adult or pediatric patients.

In this study, we hypothesized that a machine-learning–based 
model using more indicators before and after treatment can 
resolve clinical heterogeneity and provide superior outcome 
predictions. We aim to establish an SAA clinical dataset-based 
model to predict IST efficacy using machine-learning techniques.

2 MATERIALS AND METHODS

2.1 Patients

We analyzed the EHR data from our hospital (January 1, 
2000 to September 30, 2016). A total of 203 consecutive, newly 
diagnosed SAA patients were enrolled and assessed according 
to criteria previously reported.4,5 SAA was considered when 
the bone-marrow cellularity was less than 25%, and severe 
peripheral blood cytopenia existed in at least 2 of 3 lineages, 
namely absolute neutrophil count <0.5 × 109/L, platelet count 
<20 × 109/L, and reticulocyte count <20 × 109/L. As shown in 
Fig. 1, clinical examinations were taken at admission time (D0) 
and 40 days (D40), 3 months (M3), 6 months (M6), 9 months 
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(M9), and 12 months (M12) after treatment with ATG plus oral 
CsA. The clinical examinations included routine blood exam-
ination and bone-marrow puncture.

As previously published,6,7 the response definitions 
included: complete response (CR); very good partial response 
(PR); PR; and no response (NR). In brief, we defined “com-
plete response” when the absolute neutrophil count was 
>1 × 109/L, the platelet count >100 × 109/L, and the hemoglo-
bin level >10.0 g/dL. We defined “very good partial response” 
(VGPR) when the absolute neutrophil count was >0.5 × 109/L, 
the platelet count >50 × 109/L, and the hemoglobin level >8 g/
dL. We defined “partial response” when the absolute neutro-
phil count was >0.5 × 109/L, the platelet count >20 × 109/L, 
and the hemoglobin level >8 g/dL. We defined “no response”, 
when the absolute neutrophil count was <0.5 × 109/L, the 
platelet count <20 × 109/L, and the hemoglobin level <8 g/dL. 
At the end of each treatment phase, the response evaluation 
was recorded. The last follow-up was conducted 1 year after 
the start of therapy. We eliminated 35 patients from the study, 
who had not completed a 12-month treatment course and 
therefore had no final efficacy evaluation. Our study has been 
approved by the Clinical Research Ethics Committee of Blood 
Diseases Hospital, Chinese Academy of Medical Sciences 
[NI2020009-EC-1].

2.2 Outcome and prediction window

Based on accepted practice, outcomes were assessed from 
follow-up data (Fig. 1) using criteria as previously reported.6,7 
To establish a 2-class machine-learning model, depending on 
whether the child was dependent on blood transfusions or not, 
the CR, VGPR, and PR in the follow-up evaluation were com-
bined with the effective marker as positive and the NR marker 
as unfavorable. The median follow-up periods for those who 
fulfilled the eligibility criteria were 48 months. We used the D0 

data in our primary analyses to build a baseline model. Then, 
the model performance was assessed to predict the outcomes 
during the different phases of treatment. We used the clinical 
data generated during the treatment course (40 days, 3 months) 
after the baseline to vary the prediction window.

2.3 Predictors

The 2009 UK Adult SAA Clinical Evaluation Guide provides 
7 efficacy-related indicators, including: age; absolute lymphocyte 
count (LYM); absolute reticulocyte count (ARC); PNH clones; 
karyotype; the severity of disease; and telomere length. We used 
the first 5 of them in our datasets as knowledge-based predic-
tors (K and K+ predictor sets, variables used in the prediction 
models). Also, we built a series of data-driven predictors (D and 
D+ predictor sets). The method of predictor selection is recursive 
feature elimination (RFE), which refers to sorting all candidate 
predictors using random forest (RF) feature importance, remov-
ing the least significant predictor at the end, re-ordering the 
remaining features, and continuously removing the least import-
ant until all features were exhausted. The number of features 
between 10 and 30 corresponding to the maximum area-under-
the-curve (AUC) was selected as the data-driven predictors.

As the treatment progressed, additional information, such 
as the amount of platelet transfusion, became available. We 
analyzed the difference between several models throughout 
the treatment course for the performance assessment. For the 
knowledge-based predictors, in the first step, we updated the 
predictors’ value by subsequence treatment phase as fixed time 
point sets of predictors (K, eg, using LYM (D40) to replace 
LYM (D0)). In the second step, we added subsequence treat-
ment phase variables and included information about variable 
timing as time-series sets of predictors (K+, eg, both LYM 
(D0) and LYM (D40) are reserved). For the data-driven pre-
dictors, in the first step, we updated the candidate predictors 

Figure 1. Time set of clinical examinations. CR = complete response, NA = not available, NR = no response, PR = partial response, VGPR = very good partial response.



182 www.blood-science.org

Chang et al

by subsequence treatment phase and used RFE to renew the 
predictors’ collection as fixed time point sets of predictors 
(D40-D, M3-D). In the second step, we added subsequence 
treatment phase variables with the variable timing data, then 
used the RFE to renew the collection of predictors as time-se-
ries sets of predictors (D40-D+, M3-D+). Table S1, http://links.
lww.com/BS/A57, shows the complete list of predictors. The 
missingness of each variable in the raw data was recorded in 
Table S2, http://links.lww.com/BS/A57. Missing laboratory 
and clinical tests were recorded as the number of individuals 
and as a percentage of the total. Efficacy assessments (clinical 
diagnoses) were considered when they were documented. We 
removed those samples and indicators which have missing val-
ues over 30%. Data missingness after cleaning for each vari-
able is shown in Table S3, http://links.lww.com/BS/A57. Then, 
missing data were inputted with mean, median, or appropriate 
default values. Ultimately, 23 and 11 variables were identified 
for the D40-D+, and M3-D+ time-series predictor sets, respec-
tively, 11 for the D0-D, D40-D, and M3-D, and 5 for the K and 
K+ predictor sets.

2.4 Machine-learning algorithms

A knowledge-based model was first developed as a bench-
mark model. The predictor variables in K and K+ were involved. 
The same method was then used to build the model based on 
D0-D, D40-D, M3-D, D40-D+, and M3-D+ predictor sets. To 
avoid the bias as a result of classifier selection, we used 4 clas-
sifiers with different mathematical principles, namely logistic 
regression (LR), multilayer perceptron (MLP), support vector 
machine (SVM), and RF. These methods were used because they 
have been successfully applied to medical data sets for disease 
classification, and their characteristics have been previously 
described in detail.8 The liblinear solver was used to optimize 
functions of LR. The MLP contained 2 hidden layers with 50 
and 20 neurons, respectively, and each layer led to a reduced 
neuron number. The radial basis functions were used as ker-
nel parameters of SVM model construction. After extensively 
searching the parameter space for the RF classifiers, we adjusted 
the hyperparameters.

Overall, 20 data-driven models (5 sets of predictors and 4 
modeling techniques) and 20 knowledge-based models (3 fixed 
time point data, 2 time-series data, and 4 modeling techniques) 
were identified for the different analyses. Then, the evalua-
tion efficacy of the final follow-up was explored for the given 
models.

2.5 Evaluation methodology and metrics

For the cohort, owing to the small number of samples in this 
cohort and a large number of clinical indicators, we referred 
to the literature for similar situations and used a conservative 
holdout method.9 We randomly chose 75% samples as a train-
ing set and the remaining 25% as a testing set. We repeated 
this 50 times and reported the F1 score value and the sensi-
tivity, specificity, precision and recall of each of the 4 different 
classifiers. Table S4, http://links.lww.com/BS/A57, presents the 
50-fold retention results for each predictor set and each clas-
sifier. Smaller cohorts showed higher variance because each 
sample had a more significant relative impact on classification 
performance. Table S5, http://links.lww.com/BS/A57, shows 
the common predictors for all 50 training iterations. Our find-
ings were reported following the guidelines for the biomedical 
research-related machine-learning predictive models and the 
Transparent Reporting of Multivariable Predictive Models for 
Individual Prognosis or Diagnosis (TRIPOD). We used Python 
3.6 and R version 3.2 for all statistical analyses and presented 
the workflow in Fig. 2.

3. RESULTS

3.1 Basic statistics

The clinical characteristics of the cohort are presented in 
Table S2, http://links.lww.com/BS/A57. As the treatment pro-
gressed, the condition of some patients improved, so there was 
no need for a partial examination; this resulted in missing data 
after 6 months. Thus, only the first 3 months of early treatment 
data were included in this analysis. As expected, the missing 
data of each indicator made up less than 30% after the data 
were cleaned (Table S3, http://links.lww.com/BS/A57).

After cleaning the data, we obtained 185, 161, and 92 
patients and 74, 63, and 35 predictors at the 3 fixed time points 
(D0, D40, and M3). Meanwhile, we took the intersection of the 
patients at each fixed time point and obtained 2 time-series data 
sets: the D40+ dataset with 151 patients and 137 features and 
the M3+ dataset with 76 patients and 169 features. The average 
age of all patients in the cohort was 7.13 years (median, 6.5; std, 
4.103; min, 1; max, 18). There was no significant difference in 
age or gender between the 2 groups (Table S1, http://links.lww.
com/BS/A57).

We performed a statistical test of the examination indicators 
between the 2 groups with different curative effects. The lym-
phocyte-related indicators in the bone-marrow examination 
were significantly different at all times (P < .01). In the admis-
sion examination before the start of treatment, we observed a 
significant difference (Tables S1, S6, http://links.lww.com/BS/
A57, P < .01) for a set of indicators, such as erythrocyte count, 

Figure 2. Workflow of data processing in our study. EHR = electronic health 
record.
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erythroid ratio, morphology in bone-marrow smears, granu-
locyte ratio, lymphocyte ratio, colony forming unit erythroid, 
burst forming unit erythroid in bone marrow, absolute LYM, 
c-reactive protein (CRP), interleukin-2 (IL-2), IL-6, IL-8, and 
vitamin B12 in peripheral blood. Among these factors, the CRP, 
vitamin B12, IL-8, and IL-6 were new prognostic factors for IST 
treatment.

3.2 Predictors related to prognosis and importance 
evaluation

The AUC value tended to be stable between 10 and 30 pre-
dictors as the number of retained predictors increased. The AUC 
value decreased significantly when it was below 10 predictors in 
the RFE with RF. So, the predictors set with the most significant 
AUC value were taken as data-driven predictors (Table S4, http://
links.lww.com/BS/A57). Using fixed time predictors (D0, D40, 
and M3), the maximum AUC was above 0.75. Applying D40+ 
and M3+ to the same method increased the maximum AUC to 
over 0.85 and 0.95, respectively (Fig. 3). Using time-series pre-
dictors (D40+ and M3+), a slightly higher AUC was detected in 

all models, especially for the M3+ predictors. Predictors from 
a later time point resulted in higher AUC values for all models.

We calculated the relative feature importance by analyzing 
the feature’s contribution in each tree in the RF model and then 
took the average. The calculation method of the contribution 
was applied using the Gini coefficient. We calculated the relative 
importance of all data-driven model features, and all considered 
predictors without RFE selection (Table S7, http://links.lww.
com/BS/A57). For instance, when RF was used in the D0 set, the 
lymphatic system proportion in bone-marrow smears, comple-
ment C3, red blood cell count, hemoglobin, and CRP were the 
top predictors with a higher importance score. With the D40+ 
set, RF ranked the MONO in the first stage of treatment as 
a critical predictor, followed by the laboratory test results and 
the RBC transfusions during treatment. Finally, when M3+ vari-
ables were used, both the bone-marrow smear and the treat-
ment approach were shown to be more critical in predicting 
the outcome, together with biochemical tests and laboratory 
test results. In contrast, bone-marrow smear results remained 
among the top few predictors.

3.3 Modeling analysis data of long-term outcome

To develop a clinically applicable tool predicting the long-
term response probability of SAA patients benefitting from IST 
treatment before the start of the treatment process, we used the 
nomogram to develop a predictive model, based on the clinical 
covariates (Fig.  4A). Predictive factors, including the lymphatic 
system proportion in bone-marrow smears, C3, RBC, hemoglo-
bin, CRP, serum iron, white blood cell count, CD3+CD8+T cell 
count, direct bilirubin, folic acid and erythrocyte colony forming 
units from admission medical examination, were selected using the 
data-driven RFE method in Table S7, http://links.lww.com/BS/A57. 
The forest plots are presented in Fig. 4B, and calibration curves in 
Fig. 4C. A close link existed between predicted and ideal standard 
lines, indicating a good predictive ability for our nomogram.

Figure 3. AUC scores of recursive feature elimination. AUC = 
area-under-the-curve.

Figure 4. Modeling analysis based on the predictor of admission medical examination. (A) a plotted Nomogram; (B) forest plot data; (C) calibration plot curve. 
CI = confidence interval.
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3.4 Prognostic models with time-series data-driven 
indicators

The AUC values from the 50-fold holdout results are given 
in Tables S4 and S8, http://links.lww.com/BS/A57, and receiver 
operating characteristic (ROC) curves in Fig. 5A. When com-
pared with the knowledge-based models, all data-driven pre-
dictor models exhibited an increased value of AUC. Also, all 
time-series predictors models showed a rise compared with 
fixed time models’ performance. When adding a feature called 
“Proportion of lymphocytes in bone-marrow smear (LPRms),” 
which is significantly associated with long-term efficacy to 
knowledge-based predictor sets, we observed the increased AUC 
and other performance of all models (Fig.  5B and Table S9, 
http://links.lww.com/BS/A57). The performance improvement 
of the model obtained by adding other indicators proved that 
there were still other indicators containing valid information 
that had not been used. A data-driven approach can help us 
discover more clinical indicators related to long-term outcomes 
such as LPRms.

The best predictive models were built with the M3+ predic-
tors set. Except for the SVM classifier, their AUC values were 
over 0.96, and the F1-score was over 0.85. LR with the M3+ 
indicator set had a higher AUC than the RF, but the F1-score 
and specificity of the RF performed better, and our model (RF 
with M3+ predictors) showed an AUC of 0.962 using the vali-
dation set. The model’s excellent accuracy, sensitivity, and pre-
cision were detected in derivation/validation sets. Therefore, RF 
with M3+ predictors was the most valuable for clinical applica-
tion. Its accuracy, sensitivity, and precision were more significant 
than 0.9, and the specificity was 0.82.

Using time-series data-driven predictors, the classifiers of the 
different algorithms had a good performance (AUC ≥ 0.85) on 
the 40th day of treatment. With the acquisition of new clinical 

examination data at the 3rd month of treatment, they made a 
more accurate prediction of long-term efficacy (AUC ≥ 0.95) and 
better than the current efficiency evaluation method (efficacy 
record in Table S4, http://links.lww.com/BS/A57, and Fig. 4).

4. DISCUSSION
In this article, we have aimed to establish a set of longitudal 

EMR data-based models to predict the treatment efficiency of 
SAA cases using machine learning. The model was studied by 
traditional statistical methods and Local Interpretable Model-
Agnostic Explanations (LIME). The significant results included 
the following: i) a clinically usable long-term response predic-
tion model in advance of treatment; ii) as the course of treatment 
progressed, a data-driven model of the continuously updated 
indicators to achieve better prediction performance and provide 
a reference for the next stage of the treatment plan; iii) based on 
classic statistics and machine-learning methods, some previously 
unreported indicators related to the prognosis of children with 
SAA were discovered, such as CRP, vitamin B12, IL-6, and IL-8.

We comprehensively analyzed the general situation, 
bone-marrow results, and hematology-related tests in SAA chil-
dren receiving IST and put forward some prognostic factors in 
this treatment. Some have been widely reported in adult SAA, 
and some have been rarely studied in childhood SAA. Some 
results were similar to those already reported, while others were 
different. It was found that specific parameters were better pre-
dictors of prognosis, such as sex, age, and higher absolute neu-
trophil count.10–12 In the adult, the 2009 UK Adult SAA Clinical 
Evaluation Guide provided 7 efficacy-related indicators, includ-
ing age, absolute lymphocyte count, ARC, PNH clones, karyo-
type, the severity of disease, and telomere length. In our study, 
age was not different between the 2 groups, indicating that age 

Figure 5. ROC data of the model. (A) the validation set; (B) the K & K+ predictor set with LPRms. LPRms = proportion of lymphocytes in bone-marrow smear. 
FPR = false positive rate, ROC = receiver operating characteristic, TPR = true positive rate.
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was not an efficacy indicator for children. However, a short 
granulocyte telomere for pediatric acquired aplastic anemia 
patients resistant to IST has been reported.13 However, only 14 
cases were enrolled, and statistical analysis was not performed. 
The multivariate analyses of some studies of pediatric SAA sug-
gested that the “male” factor may be an efficient predictor of 
good response.3

Nevertheless, there was no significant difference in our sta-
tistical result. In this and our previous study, the higher abso-
lute neutrophil count, platelet count, and PNH-clone negativity 
might be good predictive factors of response.14 The LYM and 
ARC were also important, but the “Proportion of lymphocytes 
in bone-marrow smears (LPRms)” was significantly associ-
ated with long-term efficacy and probably more effective. The 
CD3+CD8+ T cell proportion for bone marrow also served 
as a predictor of IST response, which was in line with a previ-
ous study.15 Gupta et al16 detected high levels of IL-6/IL-8 for 
childhood aplastic anemia patients and a correlation between 
increased levels and disease severity. Even though no statistical 
difference was detected for the levels between responders and 
non-responders,16 we, by contrast, observed a significant differ-
ence. This might be related to the low number of cases in the 
Gupta study. Compared with the children in the positive group, 
the serum level of CRP was higher in the opposing group, which 
indicated that infection of children with SAA before treatment 
was associated with a treatment effect; IL-6/IL-8 and CRP all 
reflected the activation status of white blood cells and the occur-
rence of infection, suggesting that infection was a factor respon-
sible for poor ATG treatment efficacy. In addition, the serum 
level of vitamin B12 in SAA children increased, although there 
was a statistical difference of level between positive and negative 
groups. It may be related to reduced bone-marrow hematopoie-
sis and surplus hematopoietic materials in patients with aplastic 
anemia.

Longitudal clinical detection after treatment is essential for 
the prediction of treatment efficiency. First, time-series predic-
tors were more effective than fixed time predictors based on 
the AUC values at D40 or M3. More accurate results could 
be obtained by combining previous data in clinical treatment. 
Models based on data from a fixed day, no matter whether D0, 
D40, or M3, never performed better than that from D0&D40 or 
D0&D40&M3. Second, the most recent data could bring a bet-
ter predictive model, consistent with other similar research.4 The 
effect of prediction at M3 was better than that of 40D. Third, 
for SAA in children and treatment with ATG, the predictive effi-
ciency had already been high to 0.85 at 40D+ and extended to 
0.96 when adding 3rd month data. Overall, models for different 
post-treatment time points could be combined to improve the 
clinical treatment plan and, in the end, potentially shorten the 
treatment efficiency observation period and save time and cost 
for treatment.

The amount of indicator detected clinically was also essen-
tial for prediction. When considering too few indicators, such 
as fewer than 10 for SAA or with indicators in clinical guide-
lines, the performance will not be as good or stable as expected. 
The AUC value of knowledge-based features was smaller than 
that of the knowledge-based features plus lymphatics, showing 
the necessity of adding more essential indicators. In our data-
driven models, we utilized about 10 indicators and obtained 
stable results with high performance. It is necessary to mention 
that the indicators obtained by feature ranking were consistent 
with those based on the data-driven models, but they were not 
the same. Markers with high correlation would not be selected 
as the most predictive indicators owing to their possible cor-
relation with other predictive indicators. Meanwhile, predictive 
indicators with lower correlation ranking might be related to 
long-term treatment efficacy. Indicators which correlated highly 
with treatment response and used in predictive models could 
bring a greater understanding of the pathology of SAA.

This study has some inherent limitations. First, the number 
of patients for experimental and ineffective treatments was 
imbalanced in our dataset. To reduce the over-fitting caused by 
the imbalance of positive/negative cases and enhance the mod-
el’s generalization ability, we adopted the SMOTE algorithm. 
SMOTE was applied to the random over-sampling. Second, all 
the data came from one hospital, which might introduce bias. 
So, more tests are needed from other sources. Future work will 
include testing data from different hospitals and improving 
models for clinical application through the ensemble-learning 
method.

In summary, we used machine-learning methods to predict 
long-term outcomes after rabbit ATG and cyclosporine ther-
apy for childhood SAA. Considering that there are currently no 
publicly acceptable efficiency prediction models for this con-
dition, we hope that our models can shorten the observation 
period of therapeutic effects while saving time and treatment 
costs.
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