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Multi‑muscle deep learning 
segmentation to automate 
the quantification of muscle 
fat infiltration in cervical spine 
conditions
Kenneth A. Weber II3*, Rebecca Abbott4, Vivie Bojilov3, Andrew C. Smith5, 
Marie Wasielewski4, Trevor J. Hastie6, Todd B. Parrish7, Sean Mackey3 & James M. Elliott1,2,4

Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The 
quantification of MFI requires time‑consuming and rater‑dependent manual segmentation techniques. 
A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle 
groups (left and right muscles segmented separately, 14 muscles total) from Dixon MRI scans 
(n = 17, 17 scans < 2 weeks post motor vehicle collision (MVC), and 17 scans 12 months post MVC). 
The CNN MFI measures demonstrated high test reliability and accuracy in an independent testing 
dataset (n = 18, 9 scans < 2 weeks post MVC, and 9 scans 12 months post MVC). Using the CNN in 84 
participants with scans < 2 weeks post MVC (61 females, 23 males, age = 34.2 ± 10.7 years) differences 
in MFI between the muscle groups and relationships between MFI and sex, age, and body mass index 
(BMI) were explored. Averaging across all muscles, females had significantly higher MFI than males 
(p = 0.026). The deep cervical muscles demonstrated significantly greater MFI than the more superficial 
muscles (p < 0.001), and only MFI within the deep cervical muscles was moderately correlated to 
age (r > 0.300, p ≤ 0.001). CNN’s allow for the accurate and rapid, quantitative assessment of the 
composition of the architecturally complex muscles traversing the cervical spine. Acknowledging 
the wider reports of MFI in cervical spine disorders and the time required to manually segment the 
individual muscles, this CNN may have diagnostic, prognostic, and predictive value in disorders of the 
cervical spine.

Abbreviations
CNN  Convolutional neural network
GT  Ground truth
MVC  Motor vehicle collision
MFI  Muscle fat infiltration
MFSS  Multifidus and semispinalis cervicis
LC  Longus colli and longus capitis
SSCap  Semispinalis capitis
SPCap  Splenius capitis
LS  Levator scapula
SCM  Sternocleidomastoid
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TR  Trapezius
BMI  Body mass index

Spinal conditions are a leading cause of pain and physical disability world-wide, afflicting an estimated one 
billion people across the  globe1–4. Conventional medical imaging (radiographs, computed tomography (CT), 
and magnetic resonance imaging (MRI)) provides excellent visualization of the spinal anatomy and pathology. 
However, spinal conditions often present with multi-level pathological  changes5, and incidental findings are 
frequently present even in asymptomatic  individuals6, questioning the predictive value and clinical relevance 
of conventional imaging for long-term  outcomes7–10. The recent application of artificial intelligence methods 
(e.g. convolutional neural networks (CNNs)) to image analysis is transforming medical imaging by providing 
the power to efficiently and automatically extract many quantitative metrics from images not previously pos-
sible in the typical clinical  workflow11. Using data-driven approaches, these complementary imaging metrics, 
combined with examination and imaging findings, may lead to an improved understanding of spinal disease 
and deliver more sensitive and specific measures of spinal pathology with greater diagnostic, prognostic, and 
predictive  value12,13. Artificial intelligence combined with precision medicine approaches can enable augmented 
intelligence-driven medical decision making and the personalized delivery of health  care14.

One example is the infiltration of the spinal musculature with fat, muscle fat infiltration (MFI), which has 
been consistently observed in patients with cervical spine conditions, including degenerative cervical myelopathy, 
traumatic spinal cord injury, and whiplash from a motor vehicle collision (MVC)15–17. MFI appears to be uniquely 
present in those with poor functional recovery, suggesting its presence may represent a modifiable target for 
treatment. While the pathophysiological and pathomechanical mechanisms underlying these spinal conditions 
differ, the characteristic pattern of MFI appears to occur with greatest magnitude in the deep muscular layers 
of the cervical extensors (i.e., multifidus and semispinalis cervicis (MFSS)) and cervical flexors (i.e. longus colli 
and longus capitis (LC))18–20. The ubiquitous nature of muscle compositional changes in these spinal conditions 
suggests MFI may be one common biological explanation or risk factor for persisting neck-related disability. The 
magnitude of MFI could have clinical implications for the management of the spine and recovery from persistent 
spinal disorders. For example, new evidence suggests that higher pre-surgical MFI of the LC in degenerative 
cervical myelopathy is associated with reduced post-surgical improvement in physical  function21.

Using manual methods, MFI can be quantified from conventional  (T1- and  T2-weighted) and advanced (Dixon 
and proton density fat fraction) MRI and  CT20,22,23. Manual segmentation of spinal muscles is not efficiently 
performed in a clinical environment, thereby limiting its use to research environments. Recently, we trained 
a deep-learning CNN model to perform segmentation of a single cervical spine muscle group (i.e., MFSS) in 
participants with varying levels of whiplash-related pain and disability following a  MVC24. We reported high 
accuracy and reliability of the CNN MFI measures in an independent testing dataset and demonstrated higher 
MFSS MFI in patients with persisting pain and neck-related disability at 3 months post MVC versus those par-
ticipants nominating full recovery. The CNN markedly improved the efficiency of the segmentation, reducing 
the processing time from 20 min per image to only seconds. In addition to our work, CNN’s have been used to 
automate the segmentation of the lumbar paraspinal and iliopsoas muscles from  T1-weighted and Dixon MRI 
scans,  respectively25,26. CNN’s have also been applied to other spinal structures, allowing for the automatic 
quantification of vertebrae and intervertebral disc morphology from  MRI27.

Other cervical spine muscle groups, in addition to the MFSS, have been implicated in cervical spine condi-
tions, and the assessment of multiple muscles is desired for a comprehensive evaluation of cervical spine muscle 
 composition16. The time required for manual segmentation scales with the number and architectural complexity 
of the muscle groups being segmented, providing the motivation for developing accurate and reliable automated 
multi-muscle segmentation methods to be used beyond the research environment with a target for clinical 
implementation. Here, we trained and tested a CNN to segment seven cervical spine muscles groups (left and 
right muscles segmented separately): MFSS, LC, semispinalis capitis (SSCap), splenius capitis (SPCap), leva-
tor scapula (LS), sternocleidomastoid (SCM), and trapezius (TR) using high-resolution Dixon fat-water MRI 
(Table 1). We then explored relationships between the CNN-derived MFI measures and sex and age, known risk 
factors for chronic whiplash symptoms, as well as body mass index (BMI) in participants with a whiplash injury 
imaged within two weeks of a MVC. We hypothesized that higher levels of MFI would be associated with older 
age, female sex, and higher  BMI28–30.

Results
CNN accuracy and reliability. Training of the CNN segmentation model was completed in 100,000 itera-
tions (Supplementary Material Fig. 1), and the accuracy and reliability of the trained CNN model was evaluated 
on the independent testing dataset (n = 18). Figures 1 and 2 compare the GT segmentations to the CNN segmen-
tations from a randomly selected testing scan. The CNN accuracy for the primary measure of MFI was high; for 
all muscle groups, the absolute value of the mean bias in MFI was less than 2.0%, the MFI mean absolute error 
(MAE) was less than 2.0%, and the MFI root mean squared error (RMSE) was less than 3.0% (Table 2 and Fig. 3). 
Likewise, the reliability of the CNN MFI measures was excellent with the  ICC2,1 exceeding 0.800 for all muscle 
groups (Table 3 and Fig. 3)31. The accuracy and reliability of the secondary measure of muscle volume were gen-
erally lower than the MFI measurements (Table 2, 3, and Fig. 4). While the reliability of the MFSS, SSCap, LS, 
SCM, and TR muscle volume was good  (ICC2,1 > 0.600), the reliability of the SPCap and LC volumes were fair 
 (ICC2,1 = 0.407–0.462) to poor  (ICC2,1 = 0.207–0.395), respectively (Table 3 and Fig. 4). The mean Sørensen-Dice 
index between the CNN and GT was > 0.65 for all muscle groups except the TR (Sørensen-Dice index < 0.50). 
The volume ratios were greater than one for all muscles indicating that the CNN model generated segmentations 
of a larger volume than the GT. See Table 4 for a summary of all segmentation metrics.
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Table 1.  Muscle abbreviations.

Muscle Abbreviation Vertebral levels Label (Left/Right)

Multifidus and Semispinalis Cervicis MFSS C4–C6 2/1

Longus Colli and Longus Capitis LC C3–C6 4/3

Semispinalis Capitis SSCap C3–C5 8/7

Splenius Capitis SPCap C3–C5 6/5

Levator Scapula LS C5–C6 14/13

Sternocleidomastoid SCM C4–C6 10/9

Trapezius TR C6 12/11

Figure 1.  Multi-muscle convolutional neural network (CNN) segmentation of seven cervical spine muscle 
groups. CNN segmentation masks for the ground truth (GT) and CNN from a randomly selected testing scan 
are shown overlaid the water-only image. Axial images at the C3–C6 vertebral levels were selected to show 
changes in muscle morphometry across the cervical spine. The muscle groups segmented included the MFSS 
(left = light pink, right = aqua), LC (left = light green, right = gold), SSCap (left = orange, right = yellow), SPCap 
(left = dark pink, right = light blue), LS (left = indigo, right = dark green), SCM (left = blue, right = red), and TR 
(left = brown, right = magenta). The artifact in the left jaw is due to metal from dental work. See Fig. 2 for three-
dimensional renderings of the GT and CNN segmentations. L = left, R = right, A = anterior, P = posterior.
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Interrater reliability. Another trained independent rater segmented a subset of the dataset (n = 10) to 
assess the reliability of the manual segmentations between human raters. Interrater reliability for the MFI meas-
ures was excellent  (ICC2,1 > 0.800) for most muscles except for the left SSCap, which demonstrated good inter-
rater reliability  (ICC2,1 = 0.742) (Supplementary Table 2). Similarly, the interrater reliability of the muscle volume 
measures was excellent  (ICC2,1 > 0.800) for most muscle groups with only a few exceptions. The left and right 
LC and right LS demonstrated good interrater reliability  (ICC2,1 > 0.600). The left and right TR muscle, however, 
demonstrated poor interrater reliability  (ICC2,1 < 0.300) (Supplementary Table 2, Supplementary Figs. 2,  3).

MFI characterization. Next, we assessed MFI between the muscle groups and the relationship of MFI to 
sex, age, and BMI in participants within two weeks of experiencing a whiplash injury from a MVC (See Sup-
plementary Table 3 for sample characteristics). A repeated measures ANCOVA controlling for BMI and age 
demonstrated a significant within subject effect of the muscle group on MFI  (F(4.5,361.8) = 2.791, p = 0.021) and a 
between-subject effect of sex on MFI  (F(1,80) = 5.160, p = 0.026). MFI between each muscle group was positively 
correlated (Supplementary Fig. 4). Paired t-tests demonstrated significant differences in MFI between each mus-
cle group with the deep cervical muscles (MFSS, LC, and SSCap) having greater MFI than the more superficial 
muscles (Fig. 5A). When averaging across all muscle groups, female participants had significantly higher MFI 
than male participants (1.8% ± 0.8% higher MFI in females, p = 0.026). Sex differences within each muscle groups 
were assessed with a one-way ANCOVA controlling for age and BMI. Females had significantly higher MFI than 
males in the SSCap, SPCap, and TR (Supplementary Table 3 and Fig. 5B). Two-tailed partial correlations control-
ling for sex and BMI demonstrated that age and MFI were moderately correlated (r > 0.300) in the deep cervical 
muscles (MFSS, LC, SSCap), while age and MFI were only weakly correlated (r < 0.300) in the more superficial 
muscles. Finally, BMI was only weakly correlated (r < 0.300) with MFI across the muscle groups after controlling 
for sex and age (Fig. 6).

Discussion
We trained and tested a CNN model for segmentation of seven cervical spine muscle groups (left and right 
muscles segmented separately) using high-resolution fat-water Dixon MRI in participants within 2 weeks of 
a MVC-related whiplash injury. We demonstrate the feasibility of developing a CNN model for a complex, 

Figure 2.  Three-dimensional renderings of the cervical spine muscle segmentations. The ground truth (GT) 
and convolutional neural network (CNN) segmentations from a randomly selected testing scan are shown as 
three-dimensional renderings. The muscle groups segmented included the MFSS (left = light pink, right = aqua), 
LC (left = light green, right = gold), SSCap (left = orange, right = yellow), SPCap (left = dark pink, right = light 
blue), LS (left = indigo, right = dark green), SCM (left = blue, right = red), and TR (left = brown, right = magenta). 
See Fig. 1 for the two-dimensional segmentation masks of the GT and CNN overlaid the water-only image. 
L = left, R = right, A = anterior, P = posterior, S = superior, I = inferior.
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multi-muscle segmentation task: 14 muscles total. The trained CNN model was highly efficient – segmenting an 
image, and all muscles within that image, in less than 30 s compared to 4 to 8 h with manual segmentation. Across 
all muscle groups, we report high accuracy (mean bias < 2.0%) and high reliability  (ICC2,1 > 0.800) for the CNN 
MFI measures compared to manual segmentation. Using the CNN measures, we identified higher MFI in females 
than males, and we also identified significant positive correlations between age (controlling for sex and BMI) 
and MFI, which was most pronounced (r > 0.300) for the deep cervical muscles: MFSS, LC, and SSCap. Overall, 
the CNN model permits the automatic extraction of accurate and reliable measures of muscle composition. The 
use of these measures as secondary markers in clinical trials, may lead to an improved understanding of spinal 
disease, delivering more sensitive and specific measures of spinal pathology, where the slow progression, often 
masked by age-related changes, pose a major roadblock to measuring therapeutic success. Such work could also 
advance the management of spinal conditions by encouraging efficiencies and innovation in clinical assessment 
and therapy development because the measures may detect change earlier than clinical endpoints (more sensitive) 
and are independent of assessor variability (more objective). Furthermore, these measures may aid in augmented 
intelligence-driven clinical decision making, allowing the clinician to better risk- and treatment-stratify patients 
using this information along with other clinical markers and  endpoints14.

In the cervical spine, MFI has been reported to be present in greater magnitude in the deeper muscles 
surrounding the vertebrae, compared to the more superficial  muscles18,20. We also found this to be true for 
our CNN MFI measurements supporting these previous findings. Prior research as well as our current study 
highlight the difficulty in determining whether elevated MFI is due to a pathological process or more part of 
normal aging, as age and MFI have been demonstrated to be  associated29,32–34. For this study, the imaging data 
were from a parent study of individuals with neck pain due to a whiplash injury from a MVC, and thus aging as 
well as musculoskeletal trauma may have contributed to the MFI expressions in our cohort. We demonstrated 
higher MFI in females than males, which is consistent with previous findings in the lumbar spine musculature 
in  asymptomatic33 and  symptomatic30 participants. The effect of sex was present even when controlling for age 
and BMI. BMI, however, is only a rough estimate of body composition, and more accurate measures of body 
fat percentage (e.g., skinfold testing or bioimpedance) and physical function could help better understand the 
relationship between sex and  MFI35. Sex and age are potential confounds when studying MFI. The inclusion of a 
sufficient number of male and female participants without whiplash symptoms following a MVC or an uninjured 
pain-free cohort is necessary to determine the nature of MFI expression and whether the magnitude is influenced 
by disorder severity, age, or sex.

While the accuracy and reliability of the CNN MFI measures were high for all muscle groups, the accuracy 
and reliability of the muscle volumes were generally lower, especially for the SPCap and LC, which had fair to 

Table 2.  CNN MFI and volume accuracy. Bland-Altman plots and Pearson correlations were used to assess 
the accuracy of the convolutional neural network (CNN) model compared to the ground truth (GT) for muscle 
fat infiltration (MFI) and muscle volume measures on the testing dataset (n = 18) (Fig. 3, 4). Mean = mean 
CNN measure ± 1 standard error. Bias = mean difference between CNN and GT. LA = limits of agreement. 
MAE = mean absolute error. RMSE = root mean squared error.

Muscle

MFI (%) Volume (ml)

Mean Bias 95% LA MAE RMSE r2 Mean Bias 95% LA MAE RMSE r2

MFSS

Left 16.8 ± 1.0 1.3 −2.6–5.1 1.7 2.3 0.782 17.5 ± 1.0 1.1 −4.8–7.1 2.7 3.2 0.654

Right 16.4 ± 1.2 1.6 −1.1–4.3 1.8 2.1 0.928 18.8 ± 1.1 3.0 −1.0–7.1 3.2 3.7 0.804

LC

Left 13.7 ± 1.0 1.3 −0.4–2.9 1.3 1.5 0.965 8.4 ± 0.4 3.0 0.4–5.5 3..0 3.2 0.393

Right 13.3 ± 1.0 0.8 −1.2–2.7 1.0 1.2 0.944 7.3 ± 0.4 1.8 −0.7–4.3 1.8 2.2 0.437

SSCap

Left 14.9 ± 1.0 0.1 −4.2–4.5 1.7 2.2 0.897 14.2 ± 1.0 2.6 −3.0–8.2 3.1 3.8 0.655

Right 14.5 ± 1.0 1.0 −3.6–5.6 1.9 2.5 0.825 13.9 ± 1.0 2.1 −3.3–7.5 2.8 3.4 0.730

SPCap

Left 8.8 ± 1.0 0.2 −1.8–2.3 0.9 1.1 0.942 7.9 ± 0.4 1.0 −2.9–4.9 1.8 2.2 0.269

Right 10.1 ± 1.0 1.1 −2.1–4.3 1.5 1.9 0.853 9.5 ± 0.5 2.2 −1.5–6.0 2.4 2.9 0.373

LS

Left 6.7 ± 0.6 −0.1 −1.3–1.1 0.5 0.6 0.963 7.6 ± 0.7 0.5 −4.3–5.3 1.9 2.4 0.488

Right 7.4 ± 0.7 −0.1 −1.2–1.0 0.4 0.6 0.974 7.6 ± 0.7 0.5 −3.1–4.0 1.4 1.8 0.644

SCM

Left 9.0 ± 0.9 0.4 −2.5–3.3 1.1 1.5 0.905 16.9 ± 1.1 3.2 −2.0–8.5 3.7 4.2 0.677

Right 9.2 ± 0.9 0.1 −1.8–2.1 0.8 1.0 0.961 16.3 ± 1.2 1.6 −3.6–6.8 2.3 3.0 0.727

TR

Left 8.0 ± 0.8 −0.2 −2.2–1.8 0.8 1.0 0.922 3.9 ± 0.5 −0.9 −5.4–3.6 2.0 2.4 0.476

Right 7.8 ± 0.8 −0.4 −2.6–1.7 0.7 1.1 0.925 3.7 ± 0.6 −0.8 −4.6–3.1 1.6 2.1 0.612



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16567  | https://doi.org/10.1038/s41598-021-95972-x

www.nature.com/scientificreports/

Figure 3.  Reliability and accuracy of the convolutional neural network (CNN) muscle fat infiltration (MFI) 
measures on the testing dataset (n = 18). Correlation and Bland-Altman plots are shown for MFI for each of the 
muscle groups. In the correlation plots, the dashed black line represents the best fit line, and the linear regression 
coefficient (β) of the ground truth (GT) on CNN (intercept = 0) is also provided (solid black line), which can be 
used to correct the CNN measurement bias. In the Bland-Altman plots, the dashed black and gray lines indicate 
the mean difference (i.e., bias) ± 1.96 × standard deviation (i.e., 95% limits of agreement). See Table 3 for the 
intraclass correlation coefficients  (ICC2,1).
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poor reliability, respectively. The lower reliability of the muscle volumes was not unexpected, and several impor-
tant limitations regarding the volume measurements should be noted. First, we chose not to segment the full 
length of each muscle group, and instead, limited the segmentations to the axial slices that cross the vertebral 
levels listed in Table 1 for each muscle group. This was to standardize the segmentation process because some 
muscles become difficult to differentiate close to their attachments and some muscles originated from outside the 
field of view (e.g. trapezius). Second, the axial slices do not cross most muscles perpendicularly, meaning that the 
area on an axial slice may not represent a true cross-sectional area of the muscle at that level. This is a common 
limitation for imaging studies that report cross-sectional area and is a good argument for reporting full volume 
instead, if  possible23. While the CNN model only trained on the segmentations restricted to the pre-determined 
vertebral levels, the CNN model output was not restricted to these vertebral levels, and additional slices not 
included in the GT segmentations appear to have been included in the segmentations output by the CNN model. 
This is demonstrated by the volume ratio being greater than one for all muscle groups and a positive mean bias 
for muscle volume for all muscles except the TR, indicating that the CNN muscle segmentations produced a 
systematically greater volume than the GT. Despite the low CNN reliability for the volume measures, the mean 
bias in the muscle segmentations was less than 5 ml for all muscle groups, which is relatively low.

Despite advancements in MRI technology (e.g., improved image resolution and contrast), manual segmenta-
tion of the cervical spine muscles requires a high-level of knowledge in cervical spine anatomy and a substantial 
amount of time (i.e., 4 to 8 h per scan in this study). Due to the high-level of expertise and time requirements, 
we only trained and tested the CNN model using segmentations from one rater, which were then reviewed by an 
additional independent rater. This raises concern that the CNN model may be biased to a single rater’s interpreta-
tion of the anatomy. To mitigate this concern, in a subset of the dataset, we assessed the interrater reliability of 
manual segmentation with a third human rater, and we demonstrated excellent to good reliability for the MFI 
and volume measures of all muscles groups besides the TR muscle volume measures, which had poor reliability. 
Factors contributing to differences in segmentations between raters include the complex three-dimensional 
muscle and bone architecture as well as challenges in visualizing borders between adjacent muscle groups. The 
complexity of the TR muscular architecture likely led to the poor interrater reliability values for the TR muscle 
volume. The upper TR muscle fibers are primarily vertical near its cranial attachment, but fan out at the lower 
vertical levels, becoming almost parallel to the axial slices. Despite receiving similar instruction and training, the 
two raters may have used slightly different techniques to segment this  muscle23. Caution should be used when 
interpreting the TR muscle measures as the segmentations likely do not generalize to all raters or participants.

The challenge of differentiating between adjacent muscles drove our previous decision to combine the multi-
fidus and semispinalis cervicis (MFSS)23. The MFSS are both deep extensor muscles with similar actions. These 
muscle groups have many vertebral attachments and multiple layered fiber bundles that make boundaries chal-
lenging to differentiate. Similar reasoning was used for the grouping the longus colli and longus capitis (LC). In 

Table 3.  CNN MFI and volume reliability. Intraclass correlation coefficients  (ICC2,1, two-way random, 
absolute agreement, single measure) were used to assess the reliability of the convolutional neural network 
(CNN) model compared to the ground truth (GT) for the muscle fat infiltration (MFI) and muscle volume 
measures on the testing dataset (n = 18). CI = confidence interval. p = F-test with true value of 0.

Muscle

MFI (%) Volume (ml)

ICC2,1 95% CI p ICC2,1 95% CI p

MFSS

Left 0.847 0.541–0.946  < 0.001 0.781 0.510–0.911  < 0.001

Right 0.902 0.280–0.974  < 0.001 0.733 −0.056–0.927  < 0.001

LC

Left 0.941 0.214–0.987  < 0.001 0.207 −0.074–0.583 0.003

Right 0.957 0.804–0.987  < 0.001 0.395 −0.112–0.751 0.001

SSCap

Left 0.910 0.777–0.966  < 0.001 0.699 0.129–0.895  < 0.001

Right 0.870 0.675–0.950  < 0.001 0.765 0.313–0.917  < 0.001

SPCap

Left 0.971 0.925–0.989  < 0.001 0.462 0.044–0.752 0.014

Right 0.898 0.668–0.965  < 0.001 0.407 −0.099–0.747 0.003

LS

Left 0.975 0.934–0.990  < 0.001 0.699 0.363–0.875  < 0.001

Right 0.985 0.960–0.994  < 0.001 0.800 0.550–0.919  < 0.001

SCM

Left 0.937 0.844–0.976  < 0.001 0.635 −0.047–0.881  < 0.001

Right 0.972 0.927–0.989  < 0.001 0.806 0.489–0.928  < 0.001

TR

Left 0.958 0.893–0.984  < 0.001 0.629 0.258–0.841 0.001

Right 0.954 0.882–0.983  < 0.001 0.742 0.438–0.894  < 0.001
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Figure 4.  Reliability and accuracy of the convolutional neural network (CNN) muscle volumes on the testing 
dataset (n = 18). Correlation and Bland-Altman plots are shown for volume for each of the muscle groups. In 
the correlation plots, the dashed black line represents the best fit line, and the linear regression coefficient (β) of 
the ground truth (GT) on CNN (intercept = 0) is also provided (solid black line), which can be used to correct 
the CNN measurement bias. In the Bland-Altman plots, the dashed black and gray lines indicate the mean 
difference (i.e., bias) ± 1.96 × standard deviation (i.e., 95% limits of agreement). See Table 3 for the intraclass 
correlation coefficients  (ICC2,1).
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comparison to our previous CNN model for the MFSS, which used two-dimensional convolutional layers, here 
three-dimensional convolutional layers were employed. The choice of the three-dimensional model was due to 
the increased complexity of the muscle architecture, particularly of the superficial muscles, where the shape and 
spatial relationship of the muscles varies substantially along the superior-inferior axis. The three-dimensional 
model includes this additional spatial information, possibly allowing the model to better learn the complex 
three-dimensional architecture of the muscles, leading to improved performance.

In our previous CNN model, we trained the model using just the water-only images and limited the measure 
to the  MFSS24. Here, we chose to train on the in-phase and out-of-phase images for two reasons. First, using 
the corresponding pairs of images generated from the Dixon sequence (e.g., fat-only and water-only images or 
in-phase and out-of-phase images), provides complementary information, which may have helped better define 
the muscle  boundaries36. Second, the in-phase and out-of-phase images were used over the water-only and fat-
only images due to the presence of the fat-water swapping artifact, which appears frequently in Dixon imaging 
(≈10% of the fat-water imaging scans)37,38. The fat-water swapping artifact results from misclassification of the fat 
and water signal in areas of magnetic field inhomogeneities, resulting in regions where fat-only and water-only 
images contain water-only and fat-only voxels, respectively. This artifact is not present in the in-phase and out-
of-phase magnitude images. The use of both image contrasts does increase the number of features leading to a 
larger network size, higher model complexity, and increased computational costs. While we did not test whether 
the use of both the in-phase and out-of-phase images improves the segmentation performance, it is plausible 
as the images contain unique tissue contrast. Outputting the in-phase and out-of-phase images is an option 
on most scanners but may not be the default setting. With three-dimensional models, especially multi-modal 
models, memory does become an issue, limiting the batch size for training to only three datasets in this study. 
We are currently exploring the trade-off between the spatial window size and model performance to reduce the 
memory demands without sacrificing accuracy.

Here we employed the dense V-Net, a fully CNN model, to perform multi-muscle segmentation. We chose 
the dense V-Net because this model demonstrated state-of-the-art performance in a multi-organ segmentation 
task using abdominal CT  images39. U-Net is another commonly used fully CNN segmentation model with both 
two-dimensional and three-dimensional architectures and structural similarities to V-Net40,41. U-Net has demon-
strated high performance for lung segmentation from radiographs and bone segmentation from MRI in addition 
to many other  tasks42,43. In this study, we did not compare different CNN architectures, but the results of a recent 
segmentation challenge showed similar performance between three-dimensional V-Net and three-dimensional 
U-Net models for a knee cartilage MRI segmentation  task44. The application of CNN’s and deep learning into 
medical imaging analysis has been a major advancement in the field, leading to significant gains in segmenta-
tion performance across multiple medical imaging applications (for a comprehensive review see Hesamian et al. 
(2019))45. New architectures are continuing to be developed, leading to further improvements in segmentation 
performance over the V-Net and U-Net  architectures46. Examples include recurrent neural networks, such as long 

Table 4.  CNN segmentation performance metrics. The convolutional neural network (CNN) 
segmentation performance was further assessed on the testing dataset (n = 18) using the Sørensen-Dice index 
(Dice), Jaccard index (JI), conformity coefficient (CC), true positive rate (TPR), true negative rate (TNR), 
positive predictive value (PPV), and volume ratio (VR). Metrics shown = mean ± 1 standard error.

Muscle Dice JI CC TPR TNR PPV VR

MFSS

Left 0.79 ± 0.01 0.65 ± 0.01 0.45 ± 0.04 0.83 ± 0.02 1.00 ± 0.00 0.76 ± 0.02 1.10 ± 0.05

Right 0.78 ± 0.01 0.64 ± 0.01 0.44 ± 0.02 0.86 ± 0.01 1.00 ± 0.00 0.72 ± 0.01 1.21 ± 0.04

LC

Left 0.70 ± 0.01 0.54 ± 0.02 0.11 ± 0.05 0.89 ± 0.02 1.00 ± 0.00 0.58 ± 0.02 1.58 ± 0.07

Right 0.71 ± 0.01 0.56 ± 0.01 0.18 ± 0.05 0.84 ± 0.02 1.00 ± 0.00 0.63 ± 0.02 1.36 ± 0.06

SSCap

Left 0.73 ± 0.01 0.58 ± 0.02 0.24 ± 0.05 0.83 ± 0.02 1.00 ± 0.00 0.66 ± 0.02 1.29 ± 0.07

Right 0.74 ± 0.01 0.59 ± 0.02 0.28 ± 0.05 0.83 ± 0.02 1.00 ± 0.00 0.68 ± 0.03 1.26 ± 0.07

SPCap

Left 0.68 ± 0.02 0.52 ± 0.02 0.02 ± 0.08 0.75 ± 0.03 1.00 ± 0.00 0.64 ± 0.02 1.20 ± 0.07

Right 0.67 ± 0.01 0.51 ± 0.01 0.01 ± 0.05 0.79 ± 0.02 1.00 ± 0.00 0.60 ± 0.02 1.37 ± 0.08

LS

Left 0.76 ± 0.01 0.62 ± 0.02 0.36 ± 0.04 0.86 ± 0.02 1.00 ± 0.00 0.69 ± 0.02 1.26 ± 0.05

Right 0.76 ± 0.01 0.62 ± 0.02 0.36 ± 0.04 0.80 ± 0.02 1.00 ± 0.00 0.73 ± 0.02 1.11 ± 0.05

SCM

Left 0.73 ± 0.02 0.58 ± 0.02 0.20 ± 0.11 0.77 ± 0.03 1.00 ± 0.00 0.71 ± 0.03 1.15 ± 0.09

Right 0.74 ± 0.02 0.59 ± 0.02 0.26 ± 0.08 0.78 ± 0.03 1.00 ± 0.00 0.72 ± 0.03 1.12 ± 0.07

TR

Left 0.41 ± 0.04 0.27 ± 0.03 −2.01 ± 0.40 0.49 ± 0.06 0.94 ± 0.06 0.46 ± 0.03 1.09 ± 0.17

Right 0.45 ± 0.04 0.30 ± 0.03 −2.40 ± 0.83 0.46 ± 0.05 1.00 ± 0.00 0.50 ± 0.05 1.07 ± 0.18
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short-term memory networks, and ensembles of neural  networks47,48. Adopting these more advanced networks 
would likely improve the accuracy and reliability of the cervical spine muscle segmentations reported in this 
study as well as the resulting MFI measures.

We present these findings from the perspective of cervical spine conditions; however, we are actively working 
to expand this technology to the entire musculoskeletal system. A major barrier in developing the CNN models 
is the availability of large, diverse annotated datasets for training. The use of images from the same site, sequence, 
and imaging parameters likely reduces the generalizability of the trained CNN model and is a recognized limita-
tion in this study. We are currently building a global coalition of musculoskeletal clinicians and researchers to 
pool clinical- and research-based imaging datasets to develop a large multi-site and multi-cultural annotated 
musculoskeletal imaging database for research purposes. Using this database, we aim to develop models that 
generalize to images of varying resolution, field-of-view, orientation, and image contrast (multi-modality and 
multi-scale) to establish normative reference values to inform clinical care on a patient-by-patient  basis49,50. 
Fortunately, many past examples of open imaging databases for organizing and sharing imaging datasets exist 
to guide this process (e.g., OpenNeuro)51. Efficiently generating the annotated datasets with sufficient accuracy 
remains the greatest hurdle. We are currently exploring ways to employ crowd sourcing strategies and gamify the 
segmentation task, with the goal of developing a web-based educational platform targeted to health professional 
trainees to learn musculoskeletal anatomy interactively.

Based on our findings, we now have the technology to automate the segmentation of multiple muscles of the 
cervical spine, permitting the quantitative comprehensive assessment of cervical spine muscle composition. Our 
success in the cervical spine, with its architecturally complex anatomy, suggests that effectively extending these 
methods to other body regions is possible, and we have efforts underway in the lumbar spine, foot, leg, hip, and 
shoulder using both CT and MRI. The integration of the CNN models into the conventional clinical workflow 

Figure 5.  Muscle fat infiltration (MFI) of each muscle was calculated from the convolutional neural network 
(CNN) segmentations in 84 participants from the first time point (< 2 weeks following a motor vehicle collision, 
61 females, 23 males, age = 34.2 ± 10.7 years). The left and right MFI measures for each muscle group were 
averaged for these analyses. (A) Between muscle group comparison of MFI. Each muscle group had significantly 
different MFI (paired t-tests) with the deep cervical extensors and flexors having higher MFI than the more 
superficial layers. (B) MFI by sex for each muscle group. When averaging across all muscle groups, female 
participants had significantly greater MFI than male participants (1.8% ± 0.8% higher MFI in females, p = 0.026). 
Females had significantly higher MFI than males in the SSCap, SPCap, and TR (one-way ANCOVA controlling 
for age and BMI). Estimated marginal means are shown. See Table 2 and Supplementary Table 3 for additional 
information. Error bars = 1 standard error. *p < 0.05, **p < 0.01, ***p < 0.001.
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as a postprocessing step should be straightforward, and in the not-too-distant future, these methods could 
provide clinicians with quantitative metrics of muscle characteristics extracted from the images obtained in a 
conventional musculoskeletal imaging series. Finally, these muscle measures would complement the examina-
tion and standard imaging findings and may provide increased diagnostic, prognostic, and predictive informa-
tion to better inform the assessment and management of a wide variety of musculoskeletal and neuromuscular 

Figure 6.  Relationship between muscle fat infiltration (MFI), age, and body mass index (BMI) across the 
muscle groups. Partial correlations (Pearson’s r) were performed to identify linear relationships between MFI 
and age or MFI and BMI in 84 participants from the first time point (< 2 weeks following a motor vehicle 
collision, 61 females, 23 males, age = 34.2 ± 10.7 years) after controlling for sex and BMI or sex and age, 
respectively. The left and right MFI measures for each muscle group were averaged for this analysis. For MFI and 
age, the residuals of MFI are plotted on the residuals of age after controlling for sex and BMI. For MFI and BMI, 
the residuals of MFI are plotted on the residuals of BMI after controlling for sex and age. Moderate correlations 
(r > 0.300) were only present between MFI and age for the deep cervical muscles (MFSS, LC, and SSCap).
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conditions. Relating these findings to clinical examinations across a patient population with varying levels of 
pain and disability is required before definitive conclusions can be made. This is well underway.

Methods
Participants. MRI datasets from 84 participants (61 females, 23 males, age = 34.2 ± 10.7 years) were obtained 
from a prospective observational longitudinal study exploring recovery from whiplash (ClinicalTrials.gov Iden-
tifier: NCT02157038). Datasets from the first (< 2 weeks post MVC) and fourth (12 months post MVC) study 
time points were used in the present study. Inclusion criteria included age 18 to 65 years, Quebec Task Force 
whiplash grades of II to III, and < 1 week post MVC with a primary complaint of neck pain. Exclusion criteria 
included a history of a previous MVC, spinal fracture, previous spinal surgery, previous diagnosis of cervical 
or lumbar radiculopathy, history of neurological or metabolic disorders, and contraindications to MRI. The 
study was approved by Northwestern University’s Institutional Review Board. All applicable institutional and 
governmental regulations concerning the ethical use of human volunteers were followed during the course of 
this research according to the Declaration of Helsinki, and written informed consent was obtained from every 
participant. Prior to working with the datasets, identifying personal information was removed.

Image acquisition. A 3.0  T Siemens (Munich, Germany) Prisma scanner equipped with a 64-chan-
nel head/neck coil was used to acquire high-resolution three-dimensional fat-water images of the cervical 
and upper thoracic spine with a dual-echo gradient-echo FLASH sequence (2-point Dixon, TR = 7.05  ms, 
 TE1 = 2.46 ms,  TE2 = 3.69 ms, flip angle = 12°, bandwidth = 510 Hz/pixel, field-of-view = 190 mm × 320 mm, slab 
oversampling of 20% with 40 partitions to prevent aliasing in the anterior-posterior direction, in-plane resolu-
tion = 0.7 mm × 0.7 mm, slice thickness = 3.0 mm, number of averages = 6, acquisition time = 4 min 5 s)52. Fat 
and water have different chemical structures and precessional frequencies that differentially influence the local 
magnetic field. Images can be acquired when the fat and water signals are in-phase (IP = W + F) and out-of-phase 
(OOP = W – F). The in-phase and out-of-phase images can be combined to create images with fat-only signal 
(F = (IP – OOP) / 2) and water-only signal (W = (IP + OOP) / 2). As the images are acquired simultaneously in 
the same sequence and space, the images require no coregistration.

Muscle segmentation. The muscle groups of interest included the left and right multifidus and semispi-
nalis cervicis (MFSS), longus colli and longus capitis (LC), semispinalis capitis (SSCap), splenius capitis (SPCap), 
levator scapula (LS), sternocleidomastoid (SCM), and trapezius (TR). Each muscle was segmented manually 
by tracing their muscle borders on consecutive axial slices using methods previously  described23. The muscle 
groups were segmented with separate labels for the left and right muscles at predetermined cervical levels where 
each muscle group is consistently present and can be accurately segmented. A mid-sagittal slice was used to 
identify the axial slices corresponding to each vertebral level (Table 1). The segmentation masks contained the 
background (label = 0) and each muscle labeled with an integer value (labels = 1–14). A single rater (VB) blinded 
to any demographic or clinical information segmented the 14 muscles of interest from 52 cervical spine Dixon 
scans. The segmentations were then reviewed by an additional independent, blinded rater (KW). Time required 
to segment a single Dixon scan ranged from 4 to 8 h. These segmentations were used as the ground truth (GT) 
for training and testing the CNN model. To assess interrater reliability, a third independent rater (RA), seg-
mented a randomly selected subset of the Dixon scans (n = 10). All raters were doctoral level health professionals 
(physical therapy (RA) and chiropractic (VB and KW)) with extensive training in cervical spine anatomy and 
musculoskeletal imaging. The raters were permitted to use the fat, water, in-phase, and out-of-phase images to 
guide the segmentations.

Data augmentation. Data augmentation was used to increase the variability in the training dataset. First, 
the images were split into training and testing datasets. The training dataset consisted of images from 17 par-
ticipants (14 females, 3 males, age = 33.7 ± 11.4 years) with 17 scans from the first study time point and 17 scans 
from the fourth study time point (34 training scans total). The testing dataset consisted of images from 18 
participants (11 females, 7 males, age = 31.7 ± 9.6 years) with 9 scans from the first time point and 9 scans from 
the fourth time point (18 testing scans total). Participants in the testing dataset were independent from the par-
ticipants in the training dataset. From the training dataset, 2,000 augmented images were generated by applying 
a series of random mirroring (left-right flip), elastic deformation (number of control points = 3, sigma = 10), ani-
sotropic spatial scaling (percentage =  ± 2.5), and rotation (left-right axis rotation =  ± 2.5°, anterior-posterior axis 
rotation =  ± 2.5°, superior-inferior axis rotation =  ± 5.0°). The non-augmented (i.e., raw) training images (n = 34) 
were used to assess the model performance across the training iterations using the Sørensen-Dice index (i.e., 
validation dataset). Data augmentation and training and testing the CNN model were performed using NiftyNet 
(Version 0.6.0), an open-source deep-learning platform built on TensorFlow (Version 1.15) in Python (Version 
3.6) and designed specifically for medical imaging  analysis53.

Dense V‑Net. CNNs are a class of deep neural networks that preserve spatial information in the network 
architecture and can learn patterns within images. Here we used the dense V-Net, a fully CNN model designed 
for segmentation  tasks39. The dense V-Net consists of batch-wise spatial dropout, dense features stacks, V-Net 
downsampling and upsampling subnetworks, and dilated  convolutions54–56. Skip connections in the V-Net archi-
tecture forward higher resolution information to the final segmentation. To limit bias towards predicting the 
image background, a loss function based on the Sørensen-Dice index (Dice Hinge) was employed and mini-
mized. The output after soft-max transformation is probabilistic segmentation masks for each muscle with the 
same dimensions as the input volume.
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Training. Each dataset was first resampled to 0.7  mm × 0.7  mm × 3.0  mm resolution and zero padded 
(90 × 60 × 8 voxels). A three-dimensional dense V-Net model was trained using the in-phase and out-of-phase 
images of the augmented training dataset (spatial window = 360 × 240 × 32 voxels, learning rate = 0.001, activa-
tion function = ReLu, optimizer = Adam, loss function = Dice Hinge, regularization = ℓ2, decay = 0.00001, sam-
ples per volume = 3, batch size = 3, window sampling = uniform). Prior to training, histogram standardization 
and label normalization were performed. The dense V-Net model was initialized with random weights, and 
training was completed once the Sørensen-Dice index plateaued on the validation dataset.

Performance. Performance of the CNN model was assessed using the  Sørensen-Dice index  (Dice), Jac-
card index (JI), conformity coefficient (CC), true positive rate (TPR), true negative rate (TNR), positive predic-
tive value (PPV), and volume ratio (VR) measures (Supplementary Table 1)57. Percent muscle fat infiltration 
(MFI) and muscle volume (ml) were measured using the segmentation masks from the GT and the CNN model 
for each muscle. MFI was calculated as the mean fat-only signal within a muscle divided by the sum of the mean 
fat-only signal and the mean water-only signal within a muscle multiplied by 100:

Accuracy and reliability between the GT and the CNN model were assessed using Bland-Altman plots, 
Pearson correlations, and intraclass correlation coefficients  (ICC2,1). The reliability between the two manual 
raters was also similarly calculated to assess interrater reliability between two human raters. For reliability and 
accuracy, MFI was considered the primary measure, while volume was used as a secondary measure to further 
assess the CNN segmentations.

MFI assessment and characterization. Next, we used the trained CNN model to automatically segment 
the datasets of 84 participants from the first study time point (< 2 weeks following MVC, 61 females, 23 males, 
age = 34.2 ± 10.7 years) to examine differences in MFI between the muscle groups and then explore the relation-
ship between MFI and sex, age, and BMI. The MFI of each muscle was calculated from the CNN segmentations, 
and then the left and right MFI measures for each muscle group were averaged to limit the number of compari-
sons and because we had no a priori hypotheses regarding left-right differences in MFI. A repeated measures 
ANCOVA with a within-subject variable of the muscle group, a between-subject factor of sex, and covariates of 
BMI and age was performed. This was followed by two-tailed paired t-tests to assess differences in MFI between 
the muscle groups, and pair-plots were generated to assess correlations in MFI between each muscle group. To 
identify sex differences in MFI for each muscle group, a one-way ANCOVA (i.e., multiple linear regression) 
was performed with a fixed factor of sex and covariates of age and BMI. Two-tailed partial Pearson correlations 
were performed to identify linear relationships between MFI and age or MFI and BMI while correcting for sex 
and BMI or sex and age, respectively. As these analyses were exploratory and aimed at further characterizing 
the MFI measures, no corrections for multiple comparisons were performed. Since the muscle groups were 
segmented at specific vertebral levels rather than across the entire superior-inferior extent of the muscle, the 
muscle volume measures obtained from the CNN model were not expected to represent an accurate measure of 
muscle size, and therefore, a more in-depth analysis of muscle volumes was not performed. Statistical analyses 
were performed using IBM SPSS Statistics (Version 27.0, Armonk, NY, USA), and an α < 0.05 was considered 
statistically significant.

Data availability
The de-identified datasets used in this study are available from the corresponding author upon reasonable request. 
The CNN segmentation model was developed using open-source Python packages (Tensorflow and NiftyNet). We 
are making the code and model openly available for transparency, replication, reproduction, and further research 
in more diverse samples. These will be made available on GitHub (https:// github. com/ kenne thawe berii/). We will 
also release code to segment and compute volume and MFI from a cervical spine Dixon fat-water imaging scan.
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