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Abstract: Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and
flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces
cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP
homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-
induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs
further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis
in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM
riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of
cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric
acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in
RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether
RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD
inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress
markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05).
Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers
(B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic
marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly
alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by
triggering ER stress and the CHOP pathway.

Keywords: riboflavin deficiency; apoptosis; endoplasmic reticulum stress; CHOP pathway

1. Introduction

Riboflavin is a precursor of flavin mononucleotide (FMN) and flavin adenine din-
ucleotide (FAD), which act as flavoprotein co-factors. Riboflavin is involved in a wide
range of biological processes, such as the antioxidant system, protein folding, oxidative
phosphorylation, fatty acid beta oxidation, and the tricarboxylic acid cycle [1–7]. Riboflavin
deficiency (RD) is prevalent globally, particularly in regions with low intakes of dairy
products and meats [8,9]. Additionally, the deficiency of this vitamin causes numerous
health problems, such as growth depression, anemia, gastrointestinal tract disorders, and
stomatitis in humans and animals, due to the impaired aforementioned biological pro-
cesses [4,10–14]. In vivo, RD also inhibits cell proliferation and triggers apoptosis [15–20].

Riboflavin is involved in newly synthesized protein folds in the ER [7], as ER oxidore-
ductase 1 (Ero1) is a FAD-dependent enzyme that catalyzes the disulfide bond formation
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of newly synthesized proteins. Furthermore, riboflavin plays an important role in main-
taining ER redox balance because of the glutathione reductase (GR) flavoprotein, which
scavenges active oxygen species (ROS) from electrons transferred in disulfide bond forma-
tion [7,21–24]. The inhibition of disulfide bond formation and the accumulation of ROS
block protein folding in the ER, which then triggers ER stress [25,26]. Theoretically, RD
impairs protein folding due to reduced flavoproteins and redox imbalance, triggering an ER
stress response. Indeed, previous studies have determined that RD markedly diminishes
GR activity and glutathione (GSH) content [3,27], and downregulates the expressions of
Ero1 and PDI [10,19,28]. Previous studies showed that RD could impair the folding and
secretion of apolipoprotein-B100 (ApoB-100) and Interleukin-2 (IL-2) in human and mouse
cells [15,17,29]. Additionally, it has been shown that RD can trigger ER stress [15,17].

Several studies indicate that RD can induce apoptosis [18–20], but the precise molecular
mechanisms involved are not completely understood. It is well established that persistent
or severe ER stress can induce apoptosis [30,31]. Previous studies have reported that RD
hampers protein folding and triggers ER stress [15,17], which may lead to apoptosis. Thus,
it was hypothesized that RD-induced apoptosis is mediated by ER stress. This remains to
be confirmed. The C/EBP homologous protein (CHOP) pathway is one of the signaling
pathways triggered by ER stress. It initiates a cascade of B-cell lymphoma 2-associated X
(BAX) activation, B-cell lymphoma 2 (BCL2) inhibition, and caspase 3 (CASP3) activation,
thus provoking cell apoptosis [32–36]. It has been shown that riboflavin depletion causes
ER stress and apoptosis, as well as the up-regulation of CHOP [15–19]. Therefore, it was
hypothesized that RD-induced apoptosis is mediated by the CHOP pathway, which remains
to be confirmed.

In this study, we hypothesize that RD induces apoptosis mediated by ER stress and the
CHOP pathway. To confirm the hypothesis, a riboflavin-deficient HepG2 cell model was
constructed to investigate the effects of RD on ER stress and cell apoptosis. Then, a HepG2
cell model of ER stress alleviation was generated by applying 4-phenyl butyric acid (4-PBA)
to explore the effects of ER stress inhibition on RD-induced cell apoptosis. Finally, a cell
model of low CHOP expression was produced by siRNA transfection to explore the effect
of CHOP interference on RD-induced apoptosis. Thus, this study systemically analyzes the
role of ER stress and the CHOP pathway in RD-induced apoptosis.

2. Materials and Methods
2.1. Cell Culture and Experimental Protocols

HepG2 cells were purchased from the American Type Culture Collection (Manassas,
VA, USA). The riboflavin-free medium was customized from Thermo Fisher Scientific
(Waltham, MA, USA). The RD group medium consisted of the Rf medium + 5% fetal
bovine serum (FBS, Gibco) + 4 mM L-glutamine (Solarbio, Beijing, China) + 1 mM sodium
pyruvate (Solarbio) + 1% penicillin /streptomycin (Procell, Wuhan, China). The control
(CON) medium was consistent with the RD medium; however, it was supplemented with
1000 nM riboflavin (Sigma Aldrich, St. Louis, MO, USA). The FBS contained 91.0 nM
riboflavin determined by a high-performance liquid chromatography procedure, according
to the method previously described [11,37]. The riboflavin concentration in the RD and
CON mediums containing 4.55 and 1005 nM were formulated. Then, HepG2 cells were
seeded at a density of 1 × 105 cells /mL in 6-well plates and randomly assigned to 2 groups
(n = 6 /per group), which were cultured in the 2 mediums mentioned above: the RD
and CON groups. Following the completion of the incubation period, the cells were
collected for subsequent ER stress and apoptosis analyses, and this was a preliminary study.
Subsequently, to explore whether RD-induced apoptosis was mediated by ER stress, we
constructed a cell model of the inhibition of ER stress. 4-phenyl butyric acid (4-PBA), an
ER stress inhibitor, was purchased from Solarbio. It was added into the Rf medium at
dosages of 0, 0.5, 2.5, and 5 mM. The cells were cultured in the above medium for 4 d
for the ER stress-suppression assay and were subjected to subsequent apoptosis analyses.
Finally, to explore whether ER stress-regulated apoptosis induced by RD was via targeted



Nutrients 2022, 14, 3356 3 of 17

CHOP, we constructed a cell model of CHOP knockdown. Small, interfering RNA (siRNA)
targeting human CHOP and a siRNA-negative control (NC) were designed and synthesized
by Sangon Biotech (Shanghai, China). RNA-silencing sequences are listed in Table 1. The
cells were passaged and cultured for 24 h, reaching a cell density of 40~50%. Next, the
cells were transfected with siRNA using the Lipo8000TM transfection reagent (Beyotime
Biotechnology, Shanghai, China), following the manufacturer’s instructions. The HepG2
cells were cultivated for an additional 3 d and then used for subsequent experiments.

Table 1. siRNA primer sequence.

siRNA Sense Antisense

CHOP 5′-GAACAGGAGAAUGAAAGGAAATT-3′ 5′-UUUCCUUUCAUUCUCCUGUUCTT-3′

NC 5′-UUCUCCGAACGUGUCACGUTT-3′ 5′-ACGUGACACGUUCGGAGAATT-3′

Abbreviations: NC, negative control.

2.2. Cell Structure and Microstructure Observations

The cultured 4 d cellular microstructure was examined by transmission electron
microscopy (TEM, Hitachi, Tokyo, Japan), for the preparation of the electron microscopy
sample. The cells were then washed with 0.1 M phosphate buffer 3 times, fixed in 1% osmic
acid at 4 ◦C for 2 h, and embedded in agarose. Subsequently, the cells were dehydrated with
alcohol gradient, embedded in Epon-Araldite 812 (Spi-Chem, West Chester, PA, USA) resin
for penetration, placed in a model for polymerization, sectioned with an ultramicrotome
(Leica, Vienna, Austria), and counterstained with 3% uranyl acetate and 2.7% lead citrate.
Finally, these cell sections were observed under a TEM.

2.3. Cell Number and Viability

The cells were detached from 6-well plates by using trypsin (Solarbio) and collected
by centrifugation at 1000× g rpm for 5 min, and resuspended in a complete medium. The
cells were counted using an Auto Cellometer Mini (Nexcelom Bioscience, Lawrence, MA,
USA). The cells were seeded into 96-well plates at a density of 1 × 104 cells per well. The
relative cell activity was determined by the cell counting kit 8 assay (Beijing Lan Y Science &
Technology, Beijing, China). The plates were incubated at 37 ◦C for 10 min. The absorbance
of every well was determined at a wavelength of 450 nm.

2.4. GR Activity and GSH Content

The cells were collected using cell scratchers and broken by ultrasonic methods with
PBS. After the mixture was centrifuged at 12,000× g for 10 min at 4 ◦C, the supernatant was
collected for the following assay. The products of GR activity (A062-1) and GSH content
(A006-2) were purchased from Nanjing Jiancheng Technology Co. Ltd. (Nanjing, China).
Detection was performed according to the kit instructions.

2.5. Cell Apoptosis

Cell apoptosis was determined by the Annexin V/PI apoptosis detection kit (Solarbio).
Annexin V can bind to phosphatidylserine on the surfaces of HepG2 apoptotic cells and
is detected with a flow cytometer in the FITC channel, as a marker for apoptosis. PI can
enter the dying or dead cells and is detected with a flow cytometer in PE channel, as a
marker for cell death. The cells were segregated into four quadrants: Annexin V−/PI−
(viable cells), Annexin V+/PI− (early apoptotic cells), Annexin V−/PI+ (necrotic cells),
and Annexin V+/PI+ (late apoptotic cells). HepG2 cells were digested with trypsinization
(Procell), centrifuged at 1000× g rpm for 5 min, and then collected. Subsequently, the cells
were washed and resuspended in pre-cooled PBS and centrifuged for recollection. This
elution step was repeated twice. Then, the cells were resuspended in 1 × binding buffer
and incubated with Annexin V and PI staining solution at room temperature for 5 min.
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Cellular apoptosis was assessed via flow cytometry (Mindray, Shenzhen, China). Analysis
was performed using Flow Jo software version 9.3 (Tree Star, Ashland, OR, USA) [38–40].

2.6. RNA Analysis and Real-Time PCR

The RNA extraction obtained from HepG2 cells was accomplished using 1 mL of
Trizol (Beijing Lan Y Science & Technology) per well in 6-well plates. Reverse transcription
was performed using the PrimeScriptTMRT Master Mix kit (TaKaRa, Otsu, Japan); real-time
PCR was conducted using the TB Green® Premix Ex TaqTM II kit (TaKaRa, Otsu, Japan)
and tested with the ABI 7500 Real-Time PCR System. The mRNA expressions of the target
genes included CHOP, 78 kDa glucose-regulated protein (GRP78), activating transcription factor
6 (ATF6), protein disulfide isomerase family A member 6 (PDIA6), BAX, BCL2, and CASP3.
Primers were designed with Primer Premier 6 (Premier Biosoft, CA, USA) and the primer
sequences are illustrated in Table 2. The results were normalized to the β-actin gene
expression, and the mRNA expression was calibrated with the CON value. Fluorescence
results were calculated in relation to the β-actin CT value using the 2∆∆CT method [41–43].

Table 2. Primers used for the target and reference genes.

Genes Forward Reverse

CHOP 5′-ACCAAGGGAGAACCAGGAAACG-3′ 5′-TCACCATTCGGTCAATCAGAGC-3′

GRP78 5′-CGGGCAAAGATGTCAGGAAAG-3′ 5′-TTCTGGACGGGCTTCATAGTAGAC-3′

ATF6 5′-AGCGGAGCCACTGAAGGAAGATA-3′ 5′-GCGTTGGTACTGTCTGAATAATGATGG-3′

PDIA6 5′-GGAGGTCAGTATGGTGTTCAGGGAT-3′ 5′-CTGCCACCTTGGTAATCTTCTGGTC-3′

BAX 5′-GGCCCACCAGCTCTGAGCAGA-3′ 5′-GCCACGTGGGCGGTCCCAAAGT-3′

BCL2 5′-GTGGAGGAGCTCTTCAGGGA-3′ 5′-AGGCACCCAGGGTGAGCAA-3′

CASP3 5′-TCTGACTGGAAAGCCGAAACT-3′ 5′-AGTGACTGGATGAACCATGAC-3′

β-actin 5′-AATCGTGCGTGACATTAAGGAGAAG-3′ 5′-CAGGAAGGAAGGCTGGAAGAGTG-3′

Abbreviations: CHOP, C/EBP homologous protein; GRP78, 78 kDa glucose-regulated protein; ATF6, activating
transcription factor 6; PDIA6, protein disulfide isomerase family A member 6; BAX, BCL2-associated X, apoptosis
regulator; BCL2, B-cell lymphoma 2, apoptosis regulator; CASP3, Caspase 3.

2.7. Western Blot Analysis

Western Blot analysis was performed, as previously described [44]. The cell proteins
were extracted using a RIPA extraction buffer (Solarbio); approximately 30 mg of protein
samples were separated on 4~20% Bis-Tris SurePAGETM gels (Genscript, Nanjing, China)
and electro-transferred to PVDF membranes (Pall, Pensacola, FL, USA). Subsequently, the
membranes were blocked with 5% nonfat skimmed milk (BD Difco, Sparks, MD, USA) for
1 h at room temperature and incubated overnight at 4 ◦C with primary antibodies against
CHOP (1:1000, ABclonal, Wuhan, China), 78 kDa glucose-regulated protein (GRP78, 1:1000,
CST, Framingham, MA, USA), activating transcription factor 6 (ATF6, 1:1000, CST), protein
disulfide isomerase family A member 6 (PDIA6, 1:1000, ABclonal), BAX (1:1000, ABclonal),
BCL2 (1:1000, ABclonal), CASP3 (1:1000, CST), and β-tubulin (1:5000, Huaxingbio, Beijing,
China). After washing with 1 × TBST three times, the membranes were incubated at room
temperature for 1 h with appropriate secondary antibodies (1:5000 dilution, goat anti-rabbit,
Solarbio; 1:5000 dilution, goat anti-mouse, Solarbio). Subsequently, the blot bands were
visualized with an ECL reagent (Beijing Lan Y Science & Technology). Then, the optical
densities of the blot bands were analyzed using Tanon Gis 1D software (Tanon Sciences &
Technology, Beijing, China). Finally, the protein expression was normalized by β-tubulin
and calibrated with the CON value.

2.8. Data and Statistical Analyses

The data were analyzed using the two-tailed Student’s t-test or one-way ANOVA using
SAS 9.4 (SAS Institute Inc, Cary, NC, USA). All the data were expressed as means ± standard
deviation (SD) and presented using GraphPad Prism Version 9.3 (GraphPad, La Jolla, CA,
USA). p < 0.05 was considered statistically significant.
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3. Results
3.1. RD Inhibited the Cell Proliferation of HepG2cells and Decreased Relative Cell Viability

The cell number in the RD group was significantly lower than that in the CON group
at 2, 3, 4, and 5 d (Figure 1A), indicating that RD inhibited cell proliferation of HepG2 cells.
Moreover, a negative growth appeared in the RD group for 5 d (Figure 1A). Compared to
the CON group, RD significantly reduced the relative cell viability with time and gradually
decreased from 94.5% on day 1 to 38.5% on day 5 (Figure 1B).
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Figure 1. Riboflavin deficiency (RD) decreases cell numbers and relative cell viability. (A) Cell
numbers in the RD and control (CON) groups vary over time. (B) Relative cell viability in the RD and
CON groups vary over time. Values are expressed as means ± SD. ** indicates that the differences
are significant at p < 0.01; *** indicates that the differences are significant at p < 0.001. Each treatment
was performed in six replicates (n = 6).

3.2. RD Inhibited GR Activity and Decreased GSH Content

In this experiment, the cellular GR activity and GSH content were analyzed to explore
the effects of RD on the redox equilibrium in the ER of HepG2 cells. The results show that
the GR activity and GSH content in the RD group are approximately three times lower than
those in the CON group (Figure 2A,B), indicating that RD disrupts ER redox homeostasis.
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3.3. RD-Induced ER Stress and Apoptosis

The TEM results show that RD significantly increases the swelling of ER lumens
(Figure 3A). In comparison to the CON group, the diameter of the ER lumen expanded
1.88-fold in the RD group (Figure 3B), while its area enlarged 4.93-fold (Figure 3C). Addition-
ally, ruptured mitochondria cristae in RD cells were also observed. The cell apoptosis rate
significantly increased on the third day of riboflavin depletion than that of the riboflavin-
sufficient group (Figure 4A,B). Moreover, the total cell apoptosis rate (early apoptosis rate +
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late apoptosis rate) increased from 3.44% to 26.2% after riboflavin depletion from days two
to five (Figure 4A,B).
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HepG2 cells were cultured in the RD medium for 4 d, where mediators of ER stress-
induced apoptosis were detected, such as CHOP, GRP78, ATF6, CASP3, and BAX. The
above-described mRNA expressions were significantly upregulated, and the expression of
the antiapoptotic gene BCL2 was significantly downregulated in the RD group compared
to the CON group (Figure 5A). The protein expression of CHOP, GRP78, and ATF6 was
2~3 fold, and CASP3 presented a 1.32-fold-higher expression in the RD group than in
the CON group (Figure 5B). The mRNA and protein expressions of PDIA6 decreased
in riboflavin-depleted cells compared to riboflavin-sufficient cells (Figure 5A,B). Taken
together, these results indicate that RD can affect protein folding, trigger ER stress, and
eventually induce cellular apoptosis.
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3.4. 4-PBA Attenuated ER Stress and Apoptosis Induced by RD

To investigate whether RD-induced apoptosis was mediated by ER stress, 4-PBA was
utilized to alleviate ER stress. The results show that the administration of -PBA significantly
increases cell numbers and relative cell viability both in the RD and CON groups. Following
treatment with 5 mM 4-PBA, the cell number slightly increased by 24% and the relative
cell viability slightly increased by 14% in the CON group, while those values increased
considerably, by 189% and 68%, in the RD group, respectively (Figure 6A,B). The cell
number of the RD group following treatment with 2.5 mM 4-PBA was already equal to the
CON group (Figure 6A). Moreover, when riboflavin-depleted cells were treated with 5 mM
4-PBA, the relative cell viability slightly improved, but remained significantly lower than
that in the CON group (93.7% vs. 100%) (Figure 6B).

As shown in (Figure 6C,D), 4-PBA administration did not affect the cell apoptosis
rate in the riboflavin-sufficient cells. However, the administration of 5 mM 4-PBA could
alleviate apoptosis induced by RD, and there was no difference in the early and late
apoptosis rates between the RD and CON groups (Figure 6C,D). Moreover, the results
show that 4-PBA treatment decreases the mRNA and protein expressions of ER stress
markers (ATF6, GRP78, and CHOP) and proapoptotic markers (BAX and CASP3), while
upregulating the antiapoptotic gene and protein expressions (BCL2) in the RD group
(Figure 7A,C) compared to the untreated group. In contrast, 4-PBA administration did not
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affect the apoptosis-related gene and protein expressions in the CON group, which further
validates the notion that 4-PBA treatment did not affect apoptosis in the CON cells. These
results indicate that 4-PBA attenuates RD-induced apoptosis in HepG2 cells by inhibiting
ER stress, implying that RD promotes apoptosis is mainly mediated by ER stress.
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riboflavin-deficient cells. (C) Effect of RD on cell apoptosis following treatment with 4-PBA (5 mM)
in HepG2 cells. (D) Results of cell apoptosis analysis. Different letters indicate significant differences
(p < 0.05). Each treatment is performed in six replicates (n = 6).
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Figure 7. Expression analysis of ER stress- and apoptosis-related genes and proteins in riboflavin-
deficient cells treated with 4-PBA. (A) Results of 4-PBA treatment on the mRNA expression of
riboflavin-deficient cells. Representative real-time PCR of ATF6, GRP78, CHOP, BAX, BCL2, BAX /BCL2,
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and CASP3 are depicted. Each treatment is performed in six replicates (n = 6). (B) Effect of RD on
protein expression following treatment with 4-PBA (5 mM) in HepG2 cells. (C) Western blot analysis
is performed. Representative Western blots of ATF6, GRP78, CHOP, BAX, BCL2, BAX /BCL2, and
CASP3 are illustrated. Different letters indicate significant differences (p < 0.05). Each treatment is
performed in three to four replicates (n = 3~4).

3.5. Knockdown of CHOP Attenuated RD-Induced ER Stress and Apoptosis

Since CHOP is a key stress-associated protein regulating ER stress-mediated apopto-
sis [45–47], we examined whether RD-induced ER stress-mediated apoptosis was regulated
by CHOP more extensively. Following the CHOP knockdown, the cell number markedly
increased in the RD group. In contrast, CHOP siRNA did not affect the cell number of the
riboflavin-sufficient group. Similarly, compared to the RD-blank control (BC) or RD-NC
group, the relative cell viability in the RD-si group also markedly increased, but was still sig-
nificantly lower than that of the CON-BC and CON-NC groups (Figure 8A,B). As presented
in Figure 8B, the apoptosis rate of riboflavin-sufficient cells slightly decreased from 6.0% to
4.2% after CHOP siRNA transfection. However, the total cell apoptosis rate of riboflavin-
deficient cells following siRNA transfection dramatically decreased by 58.1% compared
to the RD-BC group, which was not different for the CON-BC and CON-NC groups
(Figure 8C,D). Consistent with the apoptosis-rate results, the gene and protein expressions
of CASP3 and BAX decreased, and the BCL2 gene and protein expression increased in the
RD-transfected group, compared to the RD-BC or RD-NC groups (Figure 9A,C). However,
these genes and proteins presented no significant change in CON cells. These data suggest
that RD-induced ER stress-mediated apoptosis via the CHOP pathway.
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Figure 8. CHOP interference can resist RD-induced cell apoptosis. Effect of CHOP interference on cell
number (A) and relative cell viability (B) in riboflavin-deficient cells. Each treatment is performed
in six replicates (n = 6). (C) Effect of RD on cell apoptosis following treatment with CHOP siRNA in
HepG2 cells. (D) Results of cell apoptosis analysis. Different letters indicate significant differences
(p < 0.05). Each treatment is performed in three to six replicates (n = 3~6).
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Figure 9. Gene and protein expression analysis of apoptosis-related effects in riboflavin-deficient
cells treated with CHOP siRNA. (A) Results of CHOP siRNA on the mRNA expression of riboflavin-
deficient cells. Representative real-time PCR of CHOP, CASP3, BAX, BCL2, and BAX /BCL2 are
presented. Each treatment is performed in five replicates (n = 5). (B) Results of CHOP siRNA on
protein expression of riboflavin-deficient cells. (C) Western blot analysis is performed. Representative
Western blot of CHOP, CASP3, BAX, BCL2, and BAX /BCL2 are presented. Different letters indicate
significant differences (p < 0.05). Each treatment is performed in four or six replicates (n = 4 or 6).

4. Discussion

Riboflavin is involved in energy metabolism [48], fat metabolism [49,50], and antiox-
idative effects [5,51]. As a precursor of FMN and FAD, riboflavin has been reported to
participate in protein folding through Ero1 and GR [7]. A deficiency in riboflavin decreased
the expressions of Ero1 and PDI [19,29] and reduced GR activity and GSH content [3,19,27],
which could hamper the occurrence of correct protein-folding activity in the ER. It has
been reported that IL-2 and ApoB-100 appeared as unfolded/misfolded in the case of
RD [15,17,29]. Unfolded/misfolded proteins induce ER stress through an unfolded-protein
response [52]. The depletion of riboflavin caused ER stress [15,17,18] and increased the ER
stress-maker (CHOP) expression [16–18]. It has been well established that persistent and
prolonged ER stress can trigger apoptosis [32,53], and the transcription factor CHOP is a
major regulator of ER stress-induced apoptosis [54,55]. Indeed, the depletion of riboflavin-
induced cell apoptosis in both chicken embryos [19] and cells [15–18]. Therefore, we
hypothesized that RD-induced apoptosis is mediated by ER stress and the CHOP pathway.
In the present study, we performed experiments to test this hypothesis.

HepG2 cells have a high demand for riboflavin, and an RD model was previously
successfully established in this cell line [16]. Thus, HepG2 cells were used for constructing
an experimental RD model to identify the effects of RD on ER stress and apoptosis. In
line with the results obtained from a previous study, RD inhibited cell proliferation and
cell viability [19], as well as decreased flavoprotein GR activity and GSH content [3,19,27].
Apoptosis is one of the main factors that affects cell proliferation. In that regard, the
appearance of dilated ER indicated direct morphological evidence of RD-induced ER stress,
and an increased rate of apoptosis was detected in the RD group. ATF6 is one of the ER
stress-sensor proteins, regulated by GRP78, and activates the downstream gene CHOP
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to trigger apoptosis [32,56]. In the present study, RD increased the expression levels of a
series of ER stress factors (ATF6, GRP78, and CHOP) and proapoptotic factors (BAX and
CASP3). It decreased the expression of the antiapoptotic factor (BCL2), while the levels of
these markers were attenuated by riboflavin-sufficient cells. These results are consistent
with the typical features of ER stress and apoptosis. Thus, these results are in line with
those obtained from previous studies, which further demonstrates that RD can induce ER
stress and apoptosis [15–19].

A cell model of the inhibition of ER stress was constructed by an ER inhibitor to explore
whether RD-induced apoptosis was mediated by ER stress. 4-PBA, a molecular chemical
chaperone, attenuates ER stress in multiple cell types [57,58]. Theoretically, if ER stress is
responsible for RD-induced apoptosis, then cell apoptosis could be suppressed in the RD
group after blocking ER stress. As expected, the addition of 4-PBA inhibited RD-induced
ER stress, indicated by the decreased expressions of ATF6, GRP78, and CHOP, which is
in line with the results obtained from previous studies [59–61]. In the riboflavin-depleted
cells, 4-PBA treatment decreased the rate of apoptosis, decreased the expressions of BAX
and CASP3, and increased the BCL2 expression, which could block RD-induced apoptosis,
while the state of apoptosis was stable without treating 4-PBA. We also observed that
there was no significant effect on apoptosis treated by 4-PBA, and no ER stress occurred
in riboflavin-sufficient cells. Our data show that 4-PBA abolishes unfolded/misfolded
protein-induced ER stress and apoptosis, and thus substantially increases relative cell
viability and promotes cell proliferation in riboflavin-deficient cells. Moreover, riboflavin-
sufficient cells treated with 4-PBA could slightly promote protein folding, cell viability, and
cell proliferation. These results are in accordance with the feature of ER stress-induced
apoptosis [60,61]. These results determine that the inhibition of ER stress may prevent
RD-induced apoptosis by suppressing proapoptotic pathways, which could demonstrate
RD-induced apoptosis mainly mediated by ER stress.

CHOP is an ER-stress hallmark and an inducer of ER stress-induced apoptosis [45–47].
A previous study revealed that CHOP overexpression could promote apoptosis [62], while
CHOP knockout decreased cell apoptosis [63]. There is some evidence that CHOP promotes
apoptosis by inhibiting BCL2 and activating BAX and CASP3 [33,35]. The present study
demonstrated that the 4 d depletion of riboflavin-induced apoptosis was mediated by ER
stress. Theoretically, if the CHOP pathway was responsible for RD-induced apoptosis, then
cell apoptosis could be suppressed in the RD group following CHOP knockdown. We thus
used siRNA to knockdown CHOP to probe whether RD-induced apoptosis was regulated
by CHOP. The gene and protein expressions of CHOP decreased, as expected from the
siRNA transfection. For the RD-group cells, our results show that CHOP knockdown
decreases the rate of apoptosis, inhibits BAX and CASP3, and activates BCL2, which could
block RD-induced apoptosis, while maintaining the apoptosis state without transfecting
CHOP siRNA. The relative cell viability considerably increased in RD cells by CHOP
siRNA-inhibited apoptosis, and recovered cell numbers without presenting a difference
in the CON cells. The results show a significantly reduced early apoptosis rate and a
significantly increased relative cell viability in the CON cells after being transfected with
CHOP siRNA, but the magnitude of this effect is much smaller than in the RD cells. These
results are in accordance with the feature of CHOP-mediated apoptosis [63]. These results
determine that the inhibition of CHOP may prevent RD-induced apoptosis by blocking
the activation of proapoptotic pathways, demonstrating that RD induces apoptosis in a
CHOP-dependent manner.

Additionally, these interesting results determine that, regardless of ER stress inhi-
bition or CHOP knockdown, the relative cell viability in the riboflavin-depleted cells is
consistently less than that in the riboflavin-sufficient cells. We analyzed three possible
explanations for this result:

1. Even though apoptosis was inhibited by CHOP interference, unfolded/misfolded
proteins were still retained in the ER, and ER stress persisted in the riboflavin-
depleted cells.
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2. Riboflavin depletion resulted in the low expression of flavoproteins, leading to
metabolic disorders.

3. Mitochondrial damage of RD-group cells was observed in TEM (Figure 3A), which
may inhibit cell viability. Indeed, previous studies have determined that cell viability
could be influenced by ER stress [64,65] and mitochondrial damage [66,67].

5. Conclusions

In summary, in the present study, we investigated how riboflavin deficiency for 4 d in-
duced apoptosis in HepG2 cells. The results demonstrate that RD induces apoptosis through
the ER stress pathway. Specifically, RD hinders the correct folding of proteins to trigger ER
stress, resulting in the activation of the CHOP pathway and subsequent apoptosis.
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