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Microbiome research has generated an extensive amount of data, resulting in a wealth of publicly
accessible samples. Accurate annotation of these samples is crucial for effectively utilizing microbiome
data across scientific disciplines. However, a notable challenge arises from the lack of essential anno-
tations, particularly regarding collection location and sample biome information, which significantly
hinders environmental microbiome research. In this study, we introduce Meta-Sorter, a novel approach
utilizing neural networks and transfer learning, to enhance biome labeling for thousands of microbiome
samples in the MGnify database that have incomplete information. Our findings demonstrate that Meta-
Sorter achieved a remarkable accuracy rate of 96.7% in classifying samples among the 16,507 lacking
detailed biome annotations. Notably, Meta-Sorter provides precise classifications for representative
environmental samples that were previously ambiguously labeled as “Marine” in MGnify, thereby
elucidating their specific origins in benthic and water column environments. Moreover, Meta-Sorter
effectively distinguishes samples derived from human-environment interactions, enabling clear differ-
entiation between environmental and human-related studies. By improving the completeness of biome
label information for numerous microbial community samples, our research facilitates more accurate
knowledge discovery across diverse disciplines, with particular implications for environmental research.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the development of next-generation sequencing technol-
ogy, the annual volume of sequencing data increased promptly.
Utilizing Metagenomics Sequencing, 16S sequencing, and annota-
tion technology, we could obtain the taxonomic structure and
abundance of information about microbial communities [1]. The
analyses of these microbial data play an important role in envi-
ronmental protection [2], water pollution monitoring [3], disease
diagnosis or prevention [4,5], and other aspects, especially for
environmental scientific research. For example, investigations into
indoor microbial communities have shed light on the impact of
humaneenvironment interactions could on the taxonomic struc-
ture patterns of households [6] and newly opened hospitals [7].
ier B.V. on behalf of Chinese Soci
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Multiple public databases, such as EBI-MGnify (or MGnify) and
Qiita, have become repositories for numerous microbiome samples,
including those collected from the environment [8-11]. These da-
tabases provide automated pipelines for the analysis and archiving
of microbiome data, enabling the determination of taxonomic di-
versity and metabolic potential within these samples. The millions
of microbiome samples deposited in these public databases could
facilitate the comparison, clustering, andmining of the microbiome
data.

Accurate labeling of microbiome samples is crucial for down-
stream analysis and interpretation of the data. To achieve precise
labeling, it's essential for researchers to timely and carefully
document the location, time, and other relevant meta-data about
the collection site [12,13]. Portable and reliable instruments for
real-time measurement of recording the geographic position are
also feasible [14]. Moreover, public databases that specify strict data
submission standards will filter out inaccurately annotated micro-
biome sample submissions [8-10]. The ideal microbiome database
should prioritize comprehensive, clear, and precise annotations for
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all samples, particularly those collected from the environment.
However, the current absence of a strict and unified submission
standard, combined with the complex sources of samples during
the initial database construction, has resulted in many sample an-
notations being “rough sketches” with imprecise or non-detailed
source labels. For instance, a considerable proportion of samples
that should have been attributed to diverse microbial categories
have instead been broadly classified as “Mixed biome” without
further elaboration. These rough sketches primarily consist of three
types of improperly annotated samples: un-annotated samples
(samples annotated as “Mixed biome”), under-annotated samples
(samples with coarse annotations that could be refined), and mis-
annotated samples (samples with incorrect annotations). Since
the establishment of the database, the total sample size of MGnify
has significantly increased, leading to a rising proportion of inac-
curately annotated samples, as exemplified by un-annotated sam-
ples (Fig. 1). This trend poses serious challenges, which are listed as
follows.

Firstly, inaccurate annotations could lead to a substantial pro-
portion of microbiome samples being wasted, particularly those
labeled as “Mixed biome”, resulting in the exclusion of valuable
unannotated samples. This issue is pronounced in environmental
research focused on coral tissue, hindering the study of microbial
community dynamics and marine coral colony protection
(MGYS00003856).

Secondly, inaccurate annotations could result in the misinter-
pretation of microbiome samples or even research failures. The lack
of strict meta-data standards for data submission has led tomassive
under-annotated samples in databases. For instance, freshwater
samples coarsely labeled as “root: Environmental: Aquatic” are
probably mistakenly used as marine samples during data mining
for marine ecosystem studies. Given the limited availability of
robust data-cleaning methods, such misclassifications can yield
erroneous conclusions and ultimately compromise the validity of
the study.

Thirdly, inaccurate annotations can cause a cascading accumu-
lation of errors when included in secondary databases that link
data from different primary databases, such as GM-repo [15]. This
leads to an increase in inaccurately annotated samples in secondary
databases, making the true origin of the samples unverifiable. With
the ever-increasing proportion of samples accumulated in the
current microbiome databases (Fig. 1), the aforementioned issues
pose a significant obstacle for microbiome research in environ-
mental scientific research. Therefore, a highly intelligent and
Fig. 1. The increasing number of all samples and those annotated as “Mixed biome” in
MGnify. The statistic of the annual amount of all samples and samples annotated as
“Mixed biome” in MGnify from 2016 to 2021. The lines show the annual amount of all
samples and samples annotated as “Mixed biome”. The pie charts show the annual
proportion of the samples annotated as “Mixed biome” in all samples.
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automatic method that could disentangle and refine the biome
information for microbiome samples is desirable.

In this study, we designed Meta-Sorter, a tool to disentangle the
biome labels for samples with inaccurate biome annotations, based
on a neural network and transfer learning. A neural network model
was first constructed based on 94,874 samples introduced into
MGnify before January 2020 (existing samples) with detailed
biome annotations and showed high robustness and accuracy, with
the average area under the receiver operating characteristic
(AUROC) curve of 0.896. This model was then applied to all existing
samples annotated as “Mixed biome” for their detailed biome
prediction, with results showing that 95.41% of samples were
consistent with their meta-data. Secondly, due to the reduced ac-
curacy of the neural network model on samples introduced into
MGnify after January 2020 (newly introduced samples), we
designed a transfer neural network model based on transfer
learning, with the classification accuracy (average AUROC) again
boosting to 0.989, and 97.62% of newly introduced samples anno-
tated as “Mixed biome” correctly predicted. Combining the results
on existing and newly introduced samples, we found that out of
16,507 samples with no detailed biome annotations, 96.65% could
be correctly classified, largely solving the missing biome labeling
problem. Finally, we assessed the practical application performance
of Meta-Sorter on several environmental concrete cases, such as
differentiating the actual sources of samples only labeled as “Ma-
rine” in MGnify into benthic and water columns and classifying
samples from studies that involved humaneenvironment in-
teractions into environment or human. Collectively, we have
designed Meta-Sorter as a highly intelligent and automatic method
that could disentangle and refine the biome information for mi-
crobial samples. Meta-Sorter is thus a useful tool for better classi-
fication and knowledge discovery from millions of microbiome
samples.

2. Material and methods

2.1. Datasets

We examined 118,592 samples from 1447 studies introduced
into MGnify before January 2020 to ab initio training the neural
network model, 25 studies annotated as “Mixed biome” before
January 2020, which included 7941 samples. 34,209 samples newly
introduced into MGnify after January 2020, which belonged to 32
studies, were applied for implementing transfer learning to the
neural network model to generate the transfer neural network
model, and we also introduced ten studies annotated as “Mixed
biome” after January 2020 which included 10,862 samples.

2.2. Process of model construction and transfer learning

Meta-Sorter is based on the ontology-aware neural network
model combined with transfer learning.

The inputting files of Meta-Sorter: the biome ontology, which is
a hierarchical structure that represents the taxonomic hierarchy of
the samples, for instance, the biome “root: Host-associated: Hu-
man: Digestive system: Large intestine: Fecal” is represented in the
ontology as layer-1 represents “root”, layer-2 represents “Host-
associated”, …, layer-6 represents “Fecal”); the taxonomic struc-
tures for microbial community samples with detailed biome in-
formation, which are generally obtained by 16S sequencing or
Metagenomics Sequencing and annotated by software, such as
QIIME [12] and KRAKEN [16].

Data processing process. First, import the microbial data (the
biome ontology and microbial taxonomic structures), establish a
mapping relationship between the taxonomic profiles and the
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phylogenetic tree, construct a regular abundance matrix, and then
standardize the abundance matrix and convert it into a relative
abundance matrix. Then, the relative abundance matrix is stan-
dardized by Z-score to become a standard abundance matrix.

The modeling process of ontology-aware neural network
based on the standard abundance matrix. The neural network
(NN) consists of four modules: (1) the “base” module is to obtain
the features of the input standard abundance matrix on the low
level, (2) the “inter”module, which contains three Dense NN layers,
is to obtain the features of different hierarchy layers, (3) the “integ”
module, which contains a concatenation NN layer and a Dense NN
layer, is to integrate the features of different hierarchy layers, and
(4) the “ouput” module, which contains a Dense NN layer, is to
estimate the contribution of each source according to the inte-
grated representations of different hierarchy layers. During forward
propagation, the representation of each lower layer is integrated
into the corresponding higher layer usingmultiple “integ”modules,
which establish the initialization parameters between neural
network layers. Backward propagation involves optimizing the
parameters of the entire model. This is achieved through the uti-
lization of gradient descent coupled with the backpropagation al-
gorithm, enabling the solution of the model's parameters.

Transfer learning process. The existing model could be divided
into bottom- and top-level nodes. The bottom-level nodes have the
potential to be applied in emerging datasets, while the top-level
nodes can only be applied to the existing datasets. The transfer
learning process involves three steps for effective knowledge
transfer. Firstly, the lower-level nodes are locked to ensure their
exclusion from the transfer process, then the new community
structure is encoded and introduced, accompanied by modifica-
tions to the structure and weights between the higher-level nodes.
This process, referred to as “Transfer”, aims to facilitate the incor-
poration of microbial data from the new community. The forward
and backward algorithms are then applied iteratively to update the
parameters of higher-level nodes until convergence is achieved.
Subsequently, the optimized higher-level nodes are deployed to
analyze new datasets, referred to as the “Fast Adaptation” process.
In the final stage, the bottom-level nodes are unlocked, and the
parameters of these nodes are updated iteratively using the new
microbial data and the training of forward and backward algo-
rithms. This phase is referred to as “Fine-tuning” (See Fig. S1 for
details).

2.3. Performance measures

For the area under the receiver operating characteristic (AUROC)
curve, the area under the precisionerecall (AUPR) curve, and
Maximum F-score (F-max) computation, we set the threshold from
0 to 1 with a step size of 0.01. The result of the logical operation is 1
if the contribution of the node is greater than the threshold, else 0.
We calculated True Positive, True Negative, False Positive, and False
Negative for calculating True Positive Rate, False Positive Rate,
Precision, Recall, and F1-measure at every threshold, and then we
obtained the AUC curve and PR curve. By calculating the area under
the AUC curve as AUROC and the area under the PR curve as AUPR of
each node, F-max stands for the maximal F1-measure. Each node
represents an ecological classification of a community.

2.4. Assessments of Meta-Sorter

We accessed the neural network model by applying five-fold
cross-validation to the 118,592 samples collected from 134 bi-
omes. The neural network model with the best performance was
used for Meta-Sorter.

We accessed the transfer neural network model and the
3

independent neural network model by applying five-fold cross-
validation (80% samples as the source to construct the independent
neural network model and to implement transfer learning to the
neural network model for generating the transfer neural network
model, the rest 20% samples were used to assess the performance of
the models) to the 34,209 samples from 32 studies, the transfer
neural network model with the best performance was used for
Meta-Sorter.

3. Results and discussion

3.1. The workflow of Meta-Sorter

Meta-Sorter has a neural network model constructed based on
118,592 microbial samples from 134 biomes and their biome
ontology. Notice that in this study, the 118,592 samples with
detailed biome information used here were those deposited into
the MGnify database before January 2020 (existing samples)
(Fig. 2a and Table S1). Moreover, to adapt the neural networkmodel
to the newly introduced samples, part of which were probably from
new biomes, we introduced transfer learning (Fig. S1) to Meta-
Sorter. 34,209 newly introduced microbial samples from 35 bi-
omes (including eight new biomes) (Table S1) and their biome
ontology were applied in the transfer learning process to generate
the transfer neural network model. During the transfer learning
process, the parameters and structures of an existing neural
network model could be updated, and the resulting transfer neural
network model was suitable for newly introduced samples.
Notably, the 34,209 newly introduced samples used here for
building the transfer neural network model were those deposited
into the MGnify database after January 2020 (newly introduced
samples). With the neural network model and the transfer neural
network model, Meta-Sorter could decode the samples' biome la-
bels, which were annotated as “Mixed biome”, into detailed biome
labels (Fig. 2b). Besides, Meta-sorter could refine the biome labels
to obtain more valuable information for reference (Fig. 2c) and
correct the mis-annotated samples’ labels to avoid cascading
accumulation (Fig. 2d), as well as other applications, such as clas-
sifying the actual sources of ancient DNA.

3.2. The neural network model decoded the biome information for
un-annotated samples accurately

The neural network model worked well on different layers of
the biome ontology. To disentangle the samples annotated as
“Mixed biome”, we need a prediction model that covers as many
biomes as possible. Here, we chose 118,592 samples (Table S1),
which included 134 biomes and were deposited into the MGnify
database before January 2020 (existing samples) to generate a
neural network model. The neural network model's benchmark
revealed that the average AUROC, AUPR, and F-max are 0.89, 0.76,
and 0.73, respectively. Though the average AUROC on each layer of
the biome ontology decreased slightly as the layer increased, the
prediction accuracy on each layer exceeded 0.99, indicating the
robustness of the neural network model (Fig. 3a). Therefore, the
neural network model worked well on classifying the existing
samples annotated in detail and covered a comprehensive set of
biomes, making it feasible to decode the biome labels for samples
without detailed biome information.

Meta-sorter based on the neural network model decoded the
samples’ biome labels annotated as “Mixed biome” into detailed
biome labels. We assessed the performance of Meta-Sorter on
predicting the detailed source biome for samples annotated as
“Mixed biome”. We examined 7941 existing samples from 25
studies annotated as “Mixed biome” and utilized the neural



Fig. 2. The rationale and applications of Meta-Sorter. a, The process of model construction and transfer learning of Meta-Sorter. Two input files, biome ontology and samples'
taxonomic structures with detailed biome information, are required in model construction and transfer learning. The yellow box shows that the neural network model was
constructed based on 118,592 existing samples with detailed information on 134 biomes and their biome ontology. The blue box shows that the transfer neural network model was
constructed using 34,209 newly introduced samples from 35 biomes (including 3083 samples from eight newly introduced biomes) and transfer learning to the existing neural
network model. bed, The applications of Meta-Sorter. Meta-Sorter decoded the samples' biome labels annotated as “Mixed biome” into detailed biome labels (b). Meta-sorter
refined the biome labels in more detail to obtain more valuable information for reference (c). Meta-Sorter corrected the mis-annotated samples' labels to avoid cascading accu-
mulation (d).
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network model to predict their actual sources (manually curated
documented source biome labels as reported in the literature)
(Tables S2 and S3). By comparing with the actual sources of these
samples, we found that a high proportion of biomes predicted by
the neural network model were consistent with the actual sources,
up to 95.41% of the prediction results of the chosen samples were in
line with the original reference information (Fig. 3b). Moreover,
4

since the neural network model covered comprehensive biomes, it
can be applied to disentangle the biome information for samples of
a wide range.

Case studies on decoded samples from “Mixed biome”.We then
focused our examination and in-depth analysis on several repre-
sentative environmental sets of samples. McCall et al. [17] collected
microbial samples from different rooms in four human



Fig. 3. The neural network model benchmark and the decoding accuracy of the “Mixed
biome” labels. a, 118,592 existing samples were randomly divided into training subsets
(80%, 94,874 samples) and testing subsets (20%, 23,718 samples). The source biome
annotation for samples of the testing subset was predicted by the neural network
model. The boxplots represent AUROC, AUPR, and F-max of the neural network model
for source biome annotation, categorized by different layers of the biome ontology. The
percentages above the boxplots represent the prediction accuracy for each layer of the
biome ontology. b, 7941 existing samples annotated as “Mixed biomes”were predicted
by the neural network model of Meta-Sorter, of which 7232 samples had reference
information in the original literature. Results were based on manually comparing the
predicted labels with reference information in the original literature, marked as
consistent predicted if the predicted labels were consistent with reference informa-
tion, and marked as wrongly predicted if not consistent.

N. Wang, T. Wang and K. Ning Environmental Science and Ecotechnology 17 (2024) 100304
environments with different urbanization levels and recorded
meta-data to explore the role of microbiome structure in urbani-
zation and migration. Despite the high quality and research value,
uploaded samples were classified as “Mixed biome” in MGnify, and
the users needed to access more channels to obtain the samples’
meta-data for re-analysis, causing inconvenient access to these
samples or even study failure.

We used Meta-Sorter based on the neural network model to
disentangle the detailed biome for samples in this built-
environment study. By comparing the prediction results
(Table S4) with their actual biomes [17,18], we found that despite
the presence of non-negligible differences, the categories of the
sample sources were substantially consistent (Fig. 4a, b), which
showed the prediction results by Meta-Sorter were rational and
Fig. 4. Comparison of predicted sources and actual sources for samples in the case
study on microbial communities in a built environment for decoding samples from
“Mixed biome”. a, The composition of actual sources and their proportion (%): build
environment (32.08), human-skin (28.91), human-associated (9.71), human-oral
(9.54), human-gut (9.02), host-associated (7.46), and misc. environment (3.29). b,
The composition of predicted sources and their proportion (%): environmental (33.67),
skin (29.9), digestive system (18.47), host-associated (11.67), respiratory system (3.57),
human (2.10), reproductive system (0.31), and engineered (0.28).
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included interesting details listed below.
Firstly, the original descriptions lacked refinement and accuracy,

while Meta-Sorter provided more detailed and concrete annota-
tions. The samples predicted as “Root: Environmental: Aquatic”
accounted for the highest proportion of those predicted as “Root:
Environmental”, and the original description of these samples was
“indoor genome”, which belonged to “root: Environmental”.
Recognizing this issue, the researchers in this study used a Bayesian
approach called SourceTracker [19] to estimate the source envi-
ronments for each group of samples, with results showing that
water source, such as domestic water, was the source of a large
proportion of the microorganisms, which was highly consistent
with Meta-sorter's results and further validated our model.

Secondly, Meta-Sorter predicted more samples from “Root:
Host-associated: Human: Digestive system” and fewer samples
from “Root: Host-associated: Human: Respiratory system”, the
most notable variation in prediction results. This finding was
reasonable and reliable since oral is a component of the respiratory
and digestive systems of humans, and the samples collected from
these sites have a high degree of consistency.

More importantly, Meta-Sorter could assign samples to biome
labels intelligently and automatically, with the biome labels pre-
dicted by Meta-Sorter not included in the manually pre-defined set
of biome labels used by SourceTracker. For example, Meta-Sorter
identified a fraction of samples sourced from the “root: Host-
associated: Human: Reproductive system”, which was not
included in the original sample description but was reasonable
based on the literature indicating some samples were collected
from bathroom floors and walls using sterile swabs [18]. This
demonstrates Meta-Sorter's potential to identify human interfer-
ence in environmental studies, enhancing the reliability of results.

3.3. Transfer learning enabled the decoding of the biome
information for newly introduced un-annotated samples

The limitation of applying the neural network model on newly
introduced microbial samples. Though the neural network could
perform exceptionally well on disentangling the biome information
for un-annotated samples, it should be admitted that all these un-
annotated samples were already in the database (existing samples),
and their detailed biome information was already known by the
neural network model. As the microbial samples in the database
accumulated, it would be intriguing if Meta-Sorter could be used to
disentangle the biome information for these newly introduced
samples. However, the neural networkmodel was only aware of the
existing biome information, which was insufficient for such a
purpose.

We observed that numerous microbial samples were newly
introduced into MGnify after January 2020 (newly introduced
samples) (Fig. 1), we then examined if the neural network model of
Meta-Sorter could be utilized to predict the actual sources for these
samples. Here, we have collected 32 newly introduced studies,
which included 34,209 samples annotated with detailed informa-
tion and 10,862 samples from ten studies annotated as “Mixed
biome”. Meta-Sorter based on the neural network model has been
applied to the 34,209 samples annotated with detailed information
and compared with the independent neural network model, which
was constructed solely on these 34,209 samples. The average
AUROC of the neural network model is 0.872 while the indepen-
dent neural network model is 0.989 (PWilcox ¼ 2.22�10�16; Fig. 5a),
a pivotal reason for which was that the distribution between
existing samples and newly introduced samples had significant
differences (Fig. 5b). This phenomenon restricted the applicability
of existing neural networkmodel on the newly introduced samples.

However, as more and more samples annotated as “Mixed



Fig. 5. The benchmark of different models and the heterogeneity of existing samples
and newly introduced samples. a, Comparison of different models in source biome
annotation for newly introduced samples. 34,209 newly introduced samples with
detailed biome information were randomly divided into training subset (80%, 27,355
samples) and testing subset (20%, 6854 samples), the samples of testing subset were
predicted by NN model, independent NN model, and transfer NN model, respectively.
The boxplots represent the AUROC, AUPR, and F-max of the three neural-network
models used for source biome annotation. NS, not significant; ***P < 0.005; Mann-
Whitney-Wilcoxon test. b, The different distribution of existing samples and newly
introduced samples. The confidence level is 95%. NN, neural network.
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biome” would be introduced into public databases like MGnify
(Fig.1), it's desirable to find out a solution for exceeding the effect of
the heterogeneity of datasets and disentangling the biome infor-
mation of those samples in “Mixed biome”. To solve this problem,
we introduced transfer learning to update the existing neural
network model and generated a transfer neural network model
which could be utilized for disentangling the biome information for
these newly introduced microbial samples, which were annotated
as “Mixed biome” (Fig. 2a and Fig. S1). The average AUROC of the
transfer neural network model was 0.989, outperformed the neural
network model (PWilcox ¼ 2.22�10�16), and was as good as the in-
dependent neural network model (PWilcox ¼ 0.7), with the consis-
tent results of AUPR and F-max (Fig. 5a). This result indicated that
transfer learning could efficiently exceed the limitation for the
application of neural network model caused by heterogeneity be-
tween the existing samples and the newly introduced samples.

Transfer learning enhanced the adaptability of the neural
network model to the newly introduced biome. In addition to the
newly introduced samples, which only include the existing biomes,
there are a considerable number of newly introduced biomes,
despite the obvious fact that the neural network model was not
suitable for classifying these samples from new biomes. The first
and foremost reason is that remodeling in each newly introduced
biome is unrealistic due to the enormous computing resources and
time required. There's another reason if the amount of data newly
added to the database in a certain year is rather small or when the
researchers aim to excavate specialized data (e.g., marine microbial
data mining), the independent neural network model cannot be
adequately trained due to the limited size of the dataset. In these
contexts, a transfer learning scheme is suitable since less time and
computing resources are required to generate a reliable transfer
neural network model. Therefore, we applied transfer learning to
adapt the neural network model to 34,209 newly introduced
samples from 35 biomes (including 3083 samples from eight newly
introduced biomes) to generate the transfer neural network model
(Fig. 2a, 6a, and Fig. S1).

We assessed the AUROC and AUPR of the transfer neural
network model predicting the newly introduced biomes and found
that the transfer neural network model worked well on those bi-
omes (Fig. 6b and c). Plenty of cases support the superiority of the
transfer neural network model. For example, we noticed a new
biome out of the 35 biomes, which were annotated as “root: Host-
associated: Birds: Digestive system: Ceca”. However, only “root:
6

Host-associated” was introduced in the neural network model,
which was obviously not suitable for those newly introduced bi-
omes, while by implementing transfer learning to the neural
network model with samples in the new biome, the transfer neural
network model had high prediction accuracy (AUROC ¼ 0.999 and
AUPR ¼ 0.868) on the biome. In short, transfer learning enhanced
the adaptability of the neural network model to the newly intro-
duced biomes, and the robustness of the model has been improved.

Prediction of the detailed source biome for samples annotated
as “Mixed biome” from newly introduced studies. Apart from
samples with detailed biome labels, there were a proportion of
newly introduced samples without biome information and anno-
tated as “Mixed biome”. Due to differences among existing and
newly introduced samples, the neural network model may not be
appropriate for decoding their biome labels. Therefore, we assessed
the accuracy of Meta-Sorter based on the transfer neural network
model on predicting the detailed source biome for newly intro-
duced samples annotated as “Mixed biome”. We chose 10,862
newly introduced samples from ten studies annotated as “Mixed
biome” (Table S2), and utilized the transfer neural network model
to disentangle the detailed biomes for these samples, then
compared them with their actual sources from the original litera-
ture (Table S5). We found that 97.62% of these samples were
assigned to detailed biomes, consistent with their actual sources
(Fig. 7a), indicating that the transfer neural network model could
effectively disentangle the biome information for those samples
without detailed annotations.

Combined the results on existing and newly introduced sam-
ples, we found that Meta-Sorter based on the neural network
model and transfer neural network model could largely solve the
missing biome labeling problem: 16,507 samples out of 18,803 total
samples had reference information in the original literature, of
which 96.65% (15,954 samples) could be consistently predicted by
Meta-Sorter (Fig. 7b). This demonstrated the effectiveness of Meta-
Sorter.

3.4. Meta-Sorter refined the biome annotation for under-annotated
and mis-annotated samples

In addition to decoding samples labeled as “Mixed biome”,
Meta-Sorter can also classify data too high in the classification hi-
erarchy to be refined. In an environmental study, “anchialine
metagenome raw sequence reads” (MGYS00005510), researchers
collected benthic and water column samples from nine anchialine
habitats in the Hawaiian Archipelago and identified environmental
factors driving microbial diversity [20]. Despite the arduous
sample-collecting procedure and genomes information extremely
exploitable for microbiomes and metagenomics researchers, all
samples were labeled as “Root: Environmental: Aquatic”, and even
the sample descriptions lacked precise site information.We utilized
Meta-Sorter based on transfer learning to refine the label of 250
samples (Table S6) in this study, with results showing as follows:

Firstly, Meta-Sorter successfully deciphered the sample infor-
mation for more refined classification labels. 85.6% of the predicted
results from Meta-Sorter reached the classification of layer-5 or
layer-6 (Fig. 8a), while the original classification label for all sam-
ples was “root: Environmental: Aquatic”, which may provide added
offer additional information to other researchers whenmining data
at finer classification levels.

Secondly, Meta-Sorter's rational results indicated extra clues for
this study. The sampling environment is anchialine open pools or
ponds and caves, which are part of the marine/anchialine
ecosystem, whereas Meta-Sorter predicted that 90% of the samples
would be classified as “root: Environmental: Aquatic: Marine”. The
original work has divided the samples into water columns and



Fig. 6. The robust adaptation of Meta-Sorter to the newly introduced samples. a, The left panel shows the partial representation of the biome ontology of existing samples used to
construct the neural network model, and the right panel shows the partial representation of the biome ontology of the newly introduced samples used for transfer learning to
generate the transfer neural network model. The existing samples included 118,592 samples from 134 biomes, and the newly introduced samples included 34,209 samples from 35
biomes (including eight newly introduced biomes, e.g., bird-related biomes). bec, The AUROC (b) and AUPR (c) assessments of Meta-Sorter on representative newly introduced
biomes.
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benthic categories, and Meta-Sorter predicted that 26% of the
samples correspond to the “water column” and 25% correspond to
the “benthic” categories (Fig. 8a). Collectively, the aforementioned
results demonstrate the validity of our predictions.

Interestingly, Meta-Sorter provided insights into the similarities
between water columns and benthic communities. A significant
proportion of predictions (39%) belong to “root: Environmental:
Aquatic: Marine: Intertidal zone”, which denotes the area above
water level at low tide and underwater at high tide. This high
variability in environment and biome is attributed to the neritic,
deep zones, and seabed biomes [21,22]. In the NMDS analysis, the
researchers found that both water columns and benthic commu-
nities had higher numbers of shared communities and limited
variation in structure at the same sampling site (Fig. 8b). This was
7

most likely due to the substantial proportion of samples from the
“intertidal zone” in both taxa. Further analysis by excluding or
categorizing this sample part may yield additional insights.

Finally, Meta-Sorter's predictions may indicate biome migration
or labeling errors due to human factors. 1% of the predictions were
identified as “host-associated” and 9% as non-marine environ-
ments, such as “Freshwater Lake” and “Non-marine Saline and
Alkaline”, which can be partially attributed to the sampling sites.
Furthermore, the biomes predicted as the label “host-associated”
and other environments may have some tendency to have inhabi-
ted both ecological niches, indicating community migration be-
tween diverse environments and hosts [23]. In addition, there is a
non-negligible possibility that this inconsistency is due to human
factors such as contamination of the samples resulting in labeling



Fig. 7. The accuracy of Meta-Sorter on decoding samples annotated as “Mixed biome”.
a, 10,862 newly introduced samples annotated as “Mixed biomes” were predicted by
the transfer neural network model of Meta-Sorter, of which 9275 samples had refer-
ence information in the original literature. We manually compared the predicted labels
with reference information in the original literature and marked them as consistent
predicted if the predicted labels were consistent with reference information, while
marked as wrongly predicted if not consistent. b, The general prediction accuracy of
Meta-Sorter on the samples in “Mixed biome”, including those from both existing
samples and newly introduced samples. Meta-Sorter predicted 18,803 samples an-
notated as “Mixed biome” based on the neural network model and the transfer neural
network model, of which 16,507 samples had reference information in the original
literature.

Fig. 8. Meta-Sorter refined the source labels of representative samples from a case
study on marine samples. a, The detailed biome contribution predicted by Meta-Sorter.
The results were manually divided into three sources: water column, intertidal zone,
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errors, highlighting Meta-sorter's potential to resolve the mis-
annotation problems.

It has become an increasingly difficult problem for data mining
from publicly available microbiome samples in environmental
scientific research, largely due to three kinds of inaccurately an-
notated samples (un-annotated, under-annotated, and mis-
annotated samples), which has led to the inability for biomarker
discovery or even cascading accumulation of errors. In this study,
we have designed Meta-Sorter, a neural network and transfer-
learning-enabled AI method for improving the biome labeling of
thousands of microbial community samples with inaccurate biome
information. By establishing a comprehensive neural network
model and introducing a transfer neural network model, the
problems caused by inaccurately annotated samples were largely
solved. Results have shown that out of 16,507 samples with no
detailed biome annotations, 15,954 (96.65%) could be consistently
predicted, largely solving the biome labeling problem for inaccu-
rately annotated samples. Interestingly, Meta-Sorter was able to
assign samples to biome labels in a highly intelligent and automatic
manner, providing insights beyond the original literature. In addi-
tion to environmental scientific research, Meta-Sorter has a broad
spectrum of applications, such as indicating the potential of mi-
crobial community migration, disentangling the hidden informa-
tion of ancient microbial community samples, and detecting
sample contamination.

Meta-Sorter could be further improved when more microbial
community samples and their meta-data are accumulated. With
the accumulation of samples from more diverse biomes, Meta-
Sorter's model could include more biome information for more
accurate biome labeling. Additionally, for under- and mis-
annotated samples, mining Meta-Sorter's results might reveal
intricate but important connections among samples. Finally, the
idea of Meta-Sorter using both neural networks and transfer
learning for sample annotation might be expanded to other do-
mains of biological data mining in a wide range of contexts, such as
gene mining.
and sediment. More detailed sources and proportions were as well as shown under the
three sources. b, The distribution of the samples with the predicted three-category
source labels (water column, sediment, and intertidal zone) as the samples' actual
sources (ANOSIM, R ¼ 0.059, P ¼ 0.001). The box plot showed the distribution of
samples on the x-axis, demonstrating substantial differences between the water col-
umn and sediment sample. **** PWilcoxon < 0.0001.
4. Conclusions

Our proposed Meta-Sorter has made advancements in
improving the completeness of biome label information for tens of
8
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thousands of microbial community samples. This has solved the
problem of the cascading accumulation of errors, facilitating a wide
range of applications, including sample classification, source
tracking, and novel knowledge discovery from millions of micro-
biome samples. Although this AI approach effectively improves
microbial community labeling, we acknowledged that hundreds of
samples still require improvement. To ensure the continuous
optimization of accurate annotation for microbiome samples, it is
essential to employ additional effective strategies. These strategies
may include establishing standardized protocols for sample
collection and labeling, implementing positioningmethods, such as
Global Positioning System, for quality control of geographic loca-
tion labeling, incorporating supplementary meta-data information,
and developing strict and uniform database data submission
standards. In conclusion, our AI-assisted approach has improved
the accuracy of microbial community labeling, resulting in a sig-
nificant improvement in discovering microbiome knowledge in
multiple disciplines, particularly in environmental scientific
research.
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