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Abstract

Background—Whole-pelvis radiation therapy is common practice in the post-surgical treatment 

of cervical and endometrial cancer. Gastrointestinal mucositis is an adverse side effect of radiation 

therapy, and is a primary concern in patient management. We investigate whether proteomic 

information obtained from blood samples drawn from patients scheduled to receive radiation 

therapy for gynecological cancers could be used to predict which patients are most susceptible to 

radiation-induced gastrointestinal mucositis, in order to improve the individualization of radiation 

therapy.

Methods—We use 132 proteins measured on 17 gynecological cancer patients in a convex-hull-

based, selective-voting ensemble classifier to classify each patient into one of two classes: patients 

who would not (class 1) or would (class 2) develop gastrointestinal mucositis. We employ 20 

repetitions of 10-fold cross-validation to measure classification accuracy.
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Supplementary Information
(1) Excel file with de-identified samples from 17 subjects, each record containing a subject’s ID number, GM outcome (negative 
coded as 1, positive coded as 2), age, BMI, and normalized two-replicate-average spectral counts for 132 proteins. (2) Excel file of 
raw spectral counts for each of two technical replicates for 132 proteins on 17 subjects.
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Results—We achieved a 95% confidence interval on average prediction accuracy of (0.711, 

0.771) using pre-radiation proteomic profiles to predict which patients would experience 

gastrointestinal mucositis. Pathway analysis of the 12 most prominent proteins indicated that they 

could be assembled into a single interaction network with direct associations. The function 

associated with the highest number of these 12 proteins was cell-to-cell signaling and interaction.

Conclusions—Pre-radiation proteomic profiles have the potential to classify cervical/

endometrial cancer patients with high accuracy as to their susceptibility to gastrointestinal 

mucositis following radiation therapy. Further study of the network of 12 identified proteins is 

warranted with a larger patient sample to confirm that these proteins are predictive of 

gastrointestinal mucositis in this patient population.
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Introduction

In the current management of cervical cancer, all patients classified as stage IIb and above 

receive chemoradiation therapy. Roughly 50% of patients who are IIa and below also 

receive radiation. In most circumstances the radiation is given to the whole pelvis. For 

treatment of endometrial cancer, patients with positive pelvic lymph nodes are generally 

given pelvic radiation. Gastrointestinal mucositis (GM) is a common adverse side effect of 

radiation therapy, and is a primary concern in patient management. In this study, we 

investigate whether proteomic information obtained from blood samples drawn from 

patients scheduled to receive radiation therapy for gynecological cancers could be used to 

predict which patients might be most susceptible to radiation-induced GM. Successful 

prediction would suggest that patient management could potentially be improved by 

augmenting the use of conventional prognostic criteria with proteomic profiles for improved 

individualization of radiation therapy.

Advancements in biotechnology in recent years have increased the availability of high-

dimensional data (e.g., genomic, proteomic, metabolomic) for biomedical decision making. 

For such data to be informative for patient care, it must be transformed from simply a mass 

of raw data on each patient to a higher level of relevant information. Statistical learning 

techniques have been used to develop computational algorithms that can process such high-

dimensional data to classify unknown tissue or blood samples through supervised training 

on samples of known class [1]. The goal of these algorithms is to improve the assignment of 

therapies to patients in the treatment of disease, either by maximizing efficacy for the 

intended beneficial effect or by minimizing the risk of adverse side effects. In particular, we 

have recently developed a classification algorithm based on selective voting in convex-hull 

ensembles that improves classification accuracy in two-class problems having high-

dimensional predictors [2].

Previously, we successfully used surface-enhanced laser desorption/ionization (SELDI) 

mass spectrometry (MS) to develop classification methods from patient serum with high 

sensitivity and specificity [3]. In this study we utilize liquid chromatography-tandem mass 
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spectrometry (LC-MS/MS) to generate serum protein profiles for cervical/endometrial 

cancer patients scheduled to receive radiation therapy. We use our selective voting algorithm 

to predict the occurrence of GM following radiation treatment in these patients based on 

their pre-radiation proteomic profiles.

Materials and Methods

Clinical study

The clinical study was approved by the Institutional Review Board of the University of 

Arkansas for Medical Sciences (UAMS) under Protocol Number 113376. The study 

population consisted of subjects eighteen years of age and older who were treated for 

gynecological cancers in the Women’s Oncology Clinic at UAMS, and who were candidates 

for whole-pelvis radiation therapy following surgery. Recruitment occurred over a three-

year period. There were no exclusions based on racial or ethnic backgrounds. Because of the 

minimal risk associated with the blood draw, subjects were not excluded based on medical 

criteria. Informed consent was obtained from all participants. Each participant had one 7.5 

ml blood sample taken either at initial consultation in the clinic or at the pre-op consultation. 

Treatment to the whole pelvis included 4500 cGy delivered to standard fields via a 4-field 

technique with the exception of one patient who received a 2-field technique (AP, PA). 

Brachytherapy was employed in about two-thirds of the patients, and about one-half had 

chemoradiation therapy.

Study participants were required to complete three written questionnaires during the course 

of the study. These questionnaires asked for information on the frequency and severity of 

bowel movements, both before whole-pelvis radiation treatment began and subsequent to 

radiation treatment, to provide information for the diagnosis and grading of GM. The first 

questionnaire was completed when the subject consented to participate, the second 

approximately 4 to 8 weeks after radiation treatment began, and the third approximately 3 

months after the second questionnaire. All three questionnaires were intended to be 

completed during regularly scheduled visits as part of the standard of care; however, in a 

few cases telephone follow-up was required for the third questionnaire. In all, twenty-three 

subjects were recruited to the study, of which seventeen completed all three GM 

questionnaires. GM was graded according to the NCI common terminology criteria for 

adverse events (CTCAE) [4]. All subjects had grade 0 (no GM) prior to radiation treatment. 

In this study, both Grades 1 and 2 were used as toxicity cutoffs for defining acute and 

chronic gastrointestinal mucositis. Grades 3 and 4 were not observed.

In addition to the proteomic profile derived from a subject’s blood sample, the following 

information was recorded for each participant: age, smoking status, body mass index (BMI), 

cancer diagnosis and stage, GM diagnosis and grade assessed upon completion of the third 

of three questionnaires by the participant, and medical history (prior surgery, other medical 

problems, medications).

Kodell et al. Page 3

J Proteomics Bioinform. Author manuscript; available in PMC 2015 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proteomic data

At a regularly scheduled clinic visit (initial consultation or pre-op consultation), one vial of 

blood was obtained from each prospective participant either in the clinic or at a blood-draw 

station. A 7.5-ml sample was collected in a serum separator tube (SST) containing a 

polymer gel and clot activator for the preparation of a serum. The vial was transported to the 

proteomics laboratory where the blood in the SST tube was allowed to clot for 15 minutes 

and then centrifuged for 10 minutes at 1500 xg. The serum from the SST was then aliquoted 

into cryovials and immediately frozen at −70°C. Samples were thawed only once prior to 

processing for MS analysis.

To facilitate detection of lower abundance proteins, prior to LC-MS/MS analysis, a 10 μL 

aliquot of each serum sample was applied to a Pierce Top 12 Abundant Protein Depletion 

spin column (Thermo Scientific) to remove high-abundance proteins according to the 

manufacturer’s instructions. The spin column filtrates were lyophilized using a VirTis 

Advantage EL freeze dryer (SP Scientific), suspended in 100 μL of water, and desalted 

using Zeba spin columns (7K MWCO, Thermo Scientific) equilibrated with 100 mM 

ammonium bicarbonate. Solution digests were carried out in 100 mM ammonium 

bicarbonate (Sigma-Aldrich), following reduction in 10 mM Tris[2-carboxyethyl]phosphine 

(Pierce) and alkylation in 50 mM iodoacetamide (Sigma-Aldrich), by addition of 100 ng 

porcine trypsin (Promega) and incubation at 37°C for 12–16 hours. Peptide products were 

then acidified in 0.1% formic acid (Fluka). Tryptic peptides were separated by reverse phase 

Jupiter Proteo resin (Phenomenex) on a 100 × 0.075 mm column using a nanoAcquity 

UPLC system (Waters). Peptides were eluted using an 80 min gradient from 97:3 to 35:65 

buffer A: B ratio. [Buffer A = 0.1% formic acid, 0.05% acetonitrile; buffer B = 0.1% formic 

acid, 75% acetonitrile.]. Eluted peptides were ionized by electrospray (1.8 kV) followed by 

MS/MS analysis using collision induced dissociation on an LTQ Orbitrap Velos mass 

spectrometer (Thermo). MS data were acquired using the FTMS analyzer in profile mode at 

a resolution of 60,000 over a range of 375 to 1500 m/z. MS/MS data were acquired for the 

top 15 peaks from each MS scan using the ion trap analyzer in centroid mode and normal 

mass range with normalized collision energy of 35.0. Proteins are identified from MS/MS 

spectra by database searching using the Mascot search engine (Matrix Science) with a 

peptide mass tolerance of 2 ppm, fragment mass tolerance of ± 0.5 Da, a maximum of 2 

missed tryptic cleavages, and fixed carbamidomethylation of cysteine modification and 

variable deamidation and oxidation modifications. The Mascot results are uploaded into 

Scaffold 4 (Proteome Software) for viewing the proteins and peptide information. A 1% 

FDR is used as the cutoff value, and spectral counts are exported into an Excel spreadsheet. 

Two independent LC-MS/MS analyses were performed for each depleted serum sample. 

Ingenuity Pathway Analysis [5] was used to obtain disease associations of groups of proteins 

and their associated pathway interactions.

To develop predictors for the classification algorithm, the average of the two technical 

replicates was used to represent each protein in each sample. These averages were 

normalized according to the method of Byrum et al. [6] prior to modeling. In all, 235 

proteins were identified in at least one of the 23 samples. For predictive modeling, it was 
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decided to keep only the proteins for which at least 12 subjects had a non-zero average 

normalized value, which resulted in 132 proteins in the prediction set.

Prediction algorithm

The selective-voting algorithm of Kodell et al. [2], with default settings, was used to predict, 

based on pre-radiation proteomic profiles, which subjects would experience radiation-

induced GM and which would not. This algorithm is based on an ensemble of classifiers, 

where each member of the ensemble is defined by two class-specific convex hulls 

constructed from a pair of predictors measured on subjects in a training set. Here, subjects 

with grade-0 GM have been designated as class 1 (negative) and subjects with either acute 

or chronic grade-1 or grade-2 GM have been designated as class 2 (positive), and a pair of 

predictors is a pair of averages of normalized protein values.

To implement the algorithm, all possible pairs of proteins are initially considered, i.e., 132C2 

= 8646 pairs in this case. From these 8646 pairs, the m (m = 100 by default) best pairs in 

terms of highest values of R2 in a two-variable regression model fitted to the training 

samples are retained. For each retained pair of proteins, the k sample points in the training 

set may be represented by a two-dimensional plot in which separate convex hulls are formed 

for class-1 and class-2 samples. These convex hulls are trimmed to achieve complete 

separation. Then the ensemble member represented by a protein pair is considered to cast a 

vote to classify a sample, whether training sample or test sample, in class j (j=1 or 2) if that 

sample falls within the trimmed convex hull for class j. The ensemble member abstains from 

voting on samples that fall outside both trimmed convex hulls. Thus, a member of the 

ensemble votes to classify each subject into one of the two classes, or can abstain from 

voting on selective subjects. A simple majority vote by the members who do vote 

determines a subject’s classification. This algorithm performs as well as, or better than, a 

number of well-known classification procedures [2]. Its two-dimensional geometry exploits 

second-order interactions among predictors while being robust to the curse of dimensionality 

in that the training set needs to be populated with training-set points in only two dimensions 

at a time. Thus, datasets with small sample sizes but large dimensions can be handled 

without dimension-reducing transformations, so that identities of individual predictors 

(proteins) are naturally retained.

The cohort of seventeen subjects who completed all three GM questionnaires was used to 

assess the predictive ability of the proteomic profiles. The goal was to estimate the ability to 

predict the outcomes of samples not included in the dataset that was used to train the 

selective-voting ensemble. For this purpose, 10-fold cross-validation (CV) was employed. 

With 10-fold CV, a data set of n samples (here, n = 17) is randomly divided into 10 subsets 

each having (approximately) n/10 samples. For each subset, a classifier is trained on the 

remaining observations (the training set), and the trained classifier is then used to classify 

the samples in the subset (the test set). The combined value of the prediction accuracy or 

other performance index over the 10 test sets is the cross-validated estimate of that index. 

Twenty repetitions of 10-fold CV were performed based on different random permutations 

of the 17 samples in the data set. Because n = 17, in each repetition there were seven subsets 

of two samples each and three subsets of one sample each.
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A number of different indices may be used to assess a classifier’s performance. For 

problems having a dichotomous outcome variable like the present study, the sensitivity 

(SEN: proportion of correct predictions among true positives), specificity (SPC: proportion 

of correct predictions among true negatives), positive predictive value (PPV: proportion of 

correct predictions among positive predictions) and negative predictive value (NPV: 

proportion of correct predictions among negative predictions) are indices that may be of 

interest in addition to the prediction accuracy (ACC: proportion of correct predictions 

among all samples) [7]. In the present application, these five performance measures were 

used. For each performance measure, the average (AVG), standard deviation (SD), and 95% 

margin of error (MOE) were estimated using the results of the twenty 10-fold CVs; 

calculations of MOE used asymptotic normality and the 97.5th percentile of Student’s t-

distribution with 19 degrees of freedom.

Results

Table 1 contains the results of twenty 10-fold CVs for predicting the occurrence of GM in 

the seventeen subjects based on their profiles of 132 proteins. As can be seen, the average 

prediction accuracy (ACC) was 0.741 (74.1%), with considerable variability from CV-run to 

CV-run for the five performance measures (range in SDs: 0.061 – 0.080). There was little 

difference in average values among the performance measures, the range being 0.721 – 

0.761. Over the twenty repetitions, one subject in one run (CV #10) was not classified 

because of a tied vote. Put another way, 339 of 340 samples (17 subjects × 20 repetitions) 

were classified by the selective-voting algorithm, with one abstention. Uncertainty in the 

performance-measure estimates of Table 1 can be quantified using 95% confidence limits, 

which can be calculated as AVG ± MOE using Table 1 values. For example, accuracy 

(ACC) in Table 1 has an AVG value (± MOE) of 0.741 ± 0.030, or (0.711, 0.771). Clearly, 

the confidence interval excludes 0.5 = 50% which corresponds to random chance prediction.

As a further check on the validity of our predictions, we randomly re-assigned GM class 

labels to the seventeen samples and ran another twenty cross-validations. As it turned out, 

eleven of the seventeen randomly assigned labels were correct (6 in class 1 and 5 in class 2) 

while six were incorrect (3 in class 1 and 3 in class 2). The average ACC over twenty CVs 

was only 0.394 (SD: 0.09). This poor accuracy is to be expected if the class labels are mixed 

up, and it gives assurance that our predictions are valid in the sense of reflecting truly 

predictive information found in the proteomic profiles [8].

An interesting feature of the data was that the occurrence of GM was statistically associated 

with the date enrolled on the study. While only one of the first eight subjects to be enrolled 

experienced GM grade 1 or 2, seven of the last nine subjects enrolled experienced GM grade 

1 or 2 (Fisher’s exact test: p-value=0.0152). We could not identify any reason for this 

phenomenon. To our knowledge, nothing in our operating procedures changed during the 

course of the study. In our search for a possible explanation, we noted that there was a 

statistical association between BMI and the occurrence of GM. Eight of twelve subjects with 

BMI>30 had GM grade 1 or 2, while zero of five subjects with BMI<30 had GM grade 1 or 

2 (Fisher’s exact test: p-value=0.0294). This is counter to expectations; that is, ordinarily 
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subjects with higher BMI are expected to be less prone to experiencing GM from radiation 

treatment.

We could not establish a reason for the propensity for GM to be observed in subjects 

enrolled later in the study, other than the counter-intuitive positive association with BMI. To 

see what influence, if any, BMI might have on our protein-profile-based predictions, we 

added BMI as a predictor in the model, and we included age as well. The results of the 

predictions are given in Table 2, where three subjects were not classified across twenty CVs 

due to tied votes (one each in CV#s 6, 15, 17). The average ACC was little changed by 

adding age and BMI as predictors, and the variability range was comparable to using 

proteins only (SD range: 0.057 – 0.086), as was the variation among average performance 

measures (range: 0.732 – 0.768). If BMI is in fact positively associated with the occurrence 

of GM, it does not add appreciable predictive information above what is already provided by 

the protein profiles.

From the CV results for the 132 proteins as predictors along with age and BMI (summarized 

in Table 2), the predictors occurring most prominently across the twenty runs were 

examined. Table 3 and Figure 1 identify the individual proteins and Figure 2 gives the 

protein pairs that were most prominent in the prediction of GM. In Table 3, the 

corresponding UniProt accession number and gene ID are given along with each protein 

name, as well as the mean and standard deviation of spectral counts for each of the two 

classes. In the figures and in our discussion, we refer to specific proteins via the gene ID. 

The ten protein-pairs with the largest R2 values in the regression phase of the selective-

voting algorithm [2] in each block of each run of 10-fold CV (2000 in all) were first 

identified. Then the frequencies of occurrence of each individual protein and each protein-

pair among those 2000 pairs were tabulated; proteins and protein-pairs with frequencies 

exceeding 50 were retained for Table 3 and the figures. Table 3 shows that for each of the 

top twelve proteins, spectral counts were higher on average in class 2 than in class 1, with 

some proteins showing high variability among subjects. As Figures 1 and 2 show, LPA 

(apolipoprotein (a)) and ITIH2 (inter-alpha-trypsin inhibitor heavy chain H2) were the two 

most prominent proteins, both individually and in pairs. Among the other ten prominent 

proteins, a high proportion of their individual frequencies can be explained by their pairing 

with either LPA or ITIH2, except for F10 (coagulation factor X) and CLEC3B (Tetranectin). 

LPA is involved in proteolysis, transport, lipoprotein metabolic processes, blood circulation, 

apolipoprotein binding, hydrolase activity, and endopeptidase inhibitor activity. ITIH2 is 

involved in negative regulation of peptidase activity, hyaluronan metabolic process, and 

endopeptidase inhibitor activity. Neither age nor BMI appeared among the most prominent 

predictors, in keeping with the lack of improvement in accuracy observed when they were 

added to the set of proteins (compare Tables 1 and 2). Pathway analysis applied to the 12 

most frequently occurring proteins in the GM prediction model (Table 3) revealed an 

interaction network (Figure 3) with hematological system development and function, cell-to-

cell signaling and interaction, and organismal injury and abnormalities as the top associated 

network functions.
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Discussion

Based on the clinical benefit of being able to determine which gynecological cancer patients 

might be susceptible to gastrointestinal mucositis following pelvic radiation, we sought to 

develop a proteomic-based classification algorithm for that purpose, and to identify potential 

proteomic biomarkers for at-risk patients. Our objective being to show proof of concept, 

rather than to compare performance of various classifiers, we have restricted attention to our 

convex-hull, selective-voting ensemble classifier to predict outcomes. Previously, we have 

shown our algorithm to be competitive with a number of well-known classification methods, 

including Random Forest, Boosting, k-Nearest Neighbor and Fisher’s Linear Discriminant 

Analysis [2]. To assess our classifier’s performance, we performed twenty repetitions of 10-

fold cross-validation; a generally accepted method especially for high-dimensional predictor 

sets [9]. Our cross-validated results indicated prediction accuracy greater than 70% based on 

the 17 subjects and 132 proteins in our pilot study. Similar percentages were obtained for the 

other performance measures (Tables 1 and 2).

Table 4 divides the seventeen patients into GM-positive and GM-negative subgroups and 

provides a summary of clinical characteristics by subgroup. Four of the eight patients who 

developed mucositis had cervical cancer compared to seven of the nine who did not. The 

patient treated with the 2-field radiation technique did not develop mucositis. No clinical 

parameter typically associated with radiation-induced injury (smaller body habitus, cigarette 

smoking, concurrent chemoradiation), i.e., no conventional prognostic factor, was higher in 

the GM-positive group compared to the GM-negative group, and the percentages of patients 

receiving brachytherapy were virtually the same. Thus, the proteomic profile is more 

predictive of GM in this patient group than parameters typically associated with radiation-

induced symptoms.

We note that Covington et al. [10] investigated the use of either an electronic nose with a K-

nearest-neighbor classifier or field asymmetric ion mobility spectrometry with Fisher 

discriminant analysis to detect patients at risk of gastrointestinal toxicity during pelvic 

radiotherapy. Their prediction accuracies for both methods, as measured by leave-one-out 

cross-validation (n-fold CV where n is the sample size), were higher than ours. (Unlike 10-

fold CV, n-fold CV cannot be repeated in order to assess a method’s variability.) However, 

their investigation included only patients who were at the two extremes of toxicity as 

measured by the IBDQ-B score. They selected 23 extreme cases from a larger cohort in 

order to achieve good separation of classes, and thus to be able to establish proof of 

principle. Acknowledging the built-in bias of this approach toward overstated accuracy, they 

mentioned that in future work they would include patients between the two extremes. In our 

study, none of the subjects experienced extreme toxicity, i.e., no subjects had grade-3 or 

grade-4 GM. Thus, our two classes were not markedly separated, and yet we were able to 

achieve average accuracy greater than 70%.

Interestingly, pathway analysis [5] of the 12 most prominent proteins in the prediction of 

GM indicated they could be assembled into a single interaction network with direct 

associations (Figure 3). The cellular function associated with the highest number of these 12 

proteins was cell-to-cell signaling and interaction, related to the effects of five of these 
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proteins (LPA, CD14, VTN, F10, and APOH) in binding of blood cells. Similarly, four of 

these proteins (LPA, VTN, F10, and APOH) are reported to be associated with hemostasis. 

Currently, it is unclear what role, if any, this network of proteins may play in predisposing 

an individual to GM or why they may serve as predictors of GM. However, further study is 

warranted with a larger patient sample to determine if these proteins are predictive of GM in 

this patient population. Importantly, to evaluate the specificity and sensitivity of the panel of 

biomarkers in such a study, a cohort of additional control subjects would be required to 

control for factors such as age, obesity, nutritional status, cholesterol levels, stress and 

medications.

Although limited because of sample size, the results indicate that selective voting in 

classification ensembles using proteomic profiles has the potential to classify cervical/

endometrial cancer patients with high accuracy as to their susceptibility to the occurrence of 

GM following radiation therapy. However, we do not expect the MS-based method and the 

associated prediction algorithm to be used routinely for determining patient susceptibility if 

the biomarkers we have identified can be validated (and, perhaps augmented) in further 

studies. If we are successful in doing that, we envision that lab tests more relevant in clinical 

labs would be employed (e.g., ELISA). Once a panel of biomarkers is validated, the 

sophisticated data processing methods of this paper would not be necessary. For clinical 

practice, the positive predictive value (PPV) and negative predictive value (NPV) may be of 

most interest, as they indicate the likelihood that a patient is actually in the predicted class. 

Further development of this approach could provide the radiation oncologist with a valuable 

tool to help increase the precision of radiation levels for these patients.

A few subjects were left unclassified in the cross-validation runs due to tied votes among 

members of the ensemble. In practice, the prediction algorithm would not be applicable to 

such subjects, and they would need to be evaluated using different criteria. Fortunately, 

there were only three tied votes out of 340 attempts to classify when the algorithm used 132 

proteins along with age and BMI as predictors, and only one tied vote when it used the 132 

proteins alone.

We conclude that pre-radiation proteomic profiles have the potential to classify cervical and 

endometrial cancer patients with high accuracy as to their susceptibility to gastrointestinal 

mucositis following radiation therapy. Further study of the network of 12 most prominent 

predictive proteins is warranted with a larger patient sample to confirm their predictivity of 

gastrointestinal mucositis in this patient population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Frequencies (> 50) of occurrence of individual proteins in the set of 2000 best pairs from 20 

runs of 10-fold cross-validation (100 per run). (Protein names in Table 3).
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Figure 2. 
Frequencies (> 50) of occurrence of pairs of proteins in the set of 2000 best pairs from 20 

runs of 10-fold cross-validation (100 per run). (Protein names in Table 3).
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Figure 3. 
Network associated with the proteins in Table 3. The top associated network functions with 

these proteins are ‘hematological system development and function, cell-to-cell signaling 

and interaction, and organismal injury and abnormalities’ based on Ingenuity Pathway 

Analysis. Filled-in shapes represent proteins from Table 3; unfilled shapes represent relevant 

nodes/proteins added by Ingenuity. Solid lines connecting proteins indicate direct 

interactions.
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Table 3

Most frequently observed individual proteins.a

UniProt Accession No. Gene ID Protein Name Class 1 Mean (SD) Class 2 Mean (SD)

APOA LPA Apolipoprotein (a) 0.9 (1.2)b 5.8 (7.7)

APOB APOB Apolipoprotein B-100 26.2 (30.1) 79.4 (73.2)

APOH APOH Beta-2-glycoprotein 1 6.8 (5.2) 10.9 (6.7)

CD14 CD14 Monocyte differentiation antigen CD14 0.2 (0.5) 1.9 (1.7)

CPN2 CPN2 Carboxypeptidase N subunit 2 1.6 (1.9) 5.9 (6.0)

FA10 F10 Coagulation factor X 0.8 (1.0) 2,9 (3,5)

ITIH2 ITIH2 Inter-alpha-trypsin inhibitor heavy chain H2 14.7 (8.7) 32.4 (21,7)

MASP1 MASP1 Mannan-binding lectin serine protease 1 0.2 (0.4) 1.0 (0.9)

PHLD GPLD1 Phosphatidylinositol-glycan-specific phospholipase D 1.3 (1.5) 3.5 (3.3)

PROP CFP Properdin 2.3 (1.1) 3.4 (1.6)

TETN CLEC3B Tetranectin 2.7 (1.8) 4.9 (1.1)

VTNC VTN Vitronectin 5.7 (2.9) 11.6 (6.2)

a
Twelve proteins most frequently observed in the set of 2000 best pairs from 20 runs of 10-fold cross-validation (100 per run).

b
Means and standard deviations (SD) of spectral counts.
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Table 4

Clinical characteristics of positive and negative GM patients.

Subgroup

GM positive (n=8) GM negative (n=9)

BMI 45.0a (30.6 – 66.3)b 34.1 (21.6 – 56.4)

Age 52.0 (26 – 76) 55.8 (30 – 75)

Past or current smoker 5c (62.5)d 5 (55.5)

Chemoradiation 4 (50.0) 6 (66.7)

Brachytherapy 6 (75.0) 6 (66.7)

Cancer type Cervical 4 (50.0) 7 (77.8)

Endometrial 4 (50.0) 2 (22.2)

a
Average,

b
range,

c
number,

d
percent.
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