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ABSTRACT Poultry nutritionists continually strive
for more “precision” nutritional programs that provide
the exact balance of nutrients that maximize broiler
growth performance without economically and
environmentally costly excesses. Many factors affect
the precise amount and balance of nutrients needed
by the broiler, including genetics, age, sex, and envi-
ronment. Furthermore, broilers in intensive rearing
environments will almost always be subjected to some
degree of enteric stress that can alter nutrient needs.
Exposure to enteric pathogens such as Eimeria spp.,
the intestinal parasites that cause avian coccidiosis,
induces physical damage to the intestinal epithelium
and activates immune responses, ultimately resulting
in the repartitioning of amino acids (AA) in response
to these prioritized demands. Even without any patho-
genic challenge, the intestine has an already high
demand for many AA, with 30 to 100% of dietary AA
extracted during first pass intestinal metabolism. In
many cases, increasing dietary protein from intact
proteins has been shown to be a viable option to
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ameliorate impaired AA digestion and absorption and
heightened need for certain AA of birds under an
enteric stress. However, increasing dietary protein
often results in concomitant increases in indigestible
protein and carbohydrates that can stimulate the
overgrowth of pathogenic bacteria (i.e., Clostridium
perfringens). Alternative options to increase dietary
AA levels are to increase all feed-grade, free AA (e.g.,
Met, Lys, Thr, Val), or specific individual feed-grade
AA. Therefore, the objectives of this paper are to dis-
cuss precision nutrition, the dietary AA demands of
the intestine, consequences of coccidiosis on AA needs
of the intestine, and formulation approaches to meet
these altered needs. In summary, increased dietary
protein met by intact proteins has consistently demon-
strated its benefits during an Eimeria spp. infection;
however, to further the goal of precision nutritional
programs, feeding higher levels of a specific AA to
support desired functions such as intestinal recovery
or immune function for birds experiencing an enteric
stress still require further evaluation.
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PRECISION NUTRITION

Precision nutrition has been defined as meeting the
nutritional needs of an animal under a specific set of con-
ditions without under or over feeding energy or a single
nutrient. Three imperatives for successful implementa-
tion of precision nutrition, as proposed by Moss et al.
(2021), include ingredient characterization, accurate
determinations of daily nutrient requirements of the ani-
mal, and rigorous yet careful management of these 2
imperatives. Genetics, age, sex, and environment are all
often carefully considered when estimating the daily
nutrient requirements of today’s broiler. On the other
hand, less emphasis has typically been placed on health
status, though it is well-understood that nutrient demand
will shift following disease, stress, or injury. While often
subclinical, birds will be exposed to some degree of enteric
stress in every flock. A better understanding of these
altered nutrient requirements could facilitate feeding
strategies that alleviate performance losses and support
the nutrition and immune functions of the intestine.
FIRST PASS INTESTINAL PROTEIN
METABOLISM

First pass intestinal metabolism involves enteral
metabolism of digested and absorbed nutrients before
they appear in the portal vein and systemic circulation
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for use by other tissues. First pass tissue metabolism
occurs within the splanchnic tissue or portal drained vis-
cera (PDV; intestine, spleen, stomach, and pancreas).
In pigs, PDV constitutes 3 to 7% of the body mass but
accounts for 20 to 35% of the whole-body protein turn-
over (Burrin, 2002). The fractional synthesis rate by the
PDV is several fold higher than in muscle, and the small
intestine fractional synthesis rate is greater than the
stomach and large intestine (Burrin, 2002). This is due
to its role in nutrient digestion and absorption as well as
its function as the primary protective barrier to patho-
gens, toxins, and oxidative stress. Thus, the small intes-
tine is in a continual state of epithelial and lymphoid cell
proliferation and desquamation and protein secretion.

Dietary amino acids (AA) are preferentially utilized
by the PDV for many functions, including as energy sub-
strates, though there is currently a lack of work in poul-
try to determine the use of dietary AA by the PDV. In
rodents and swine, quantification of individual AA
metabolism in the PDV has been carried out by
Stoll et al. (1998), Van Goudoever et al. (2000), Van der
Schoor et al. (2002), and Stoll and Burrin (2006). Die-
tary essential, conditionally-essential (e.g., Gly, Pro,
Cys, Tyr, Gln), and nonessential AA have been esti-
mated to be utilized by the intestine at approximately
50, 70, and 65%, respectively, with an average range of
30 to 70%. For example, 70 to 100% of dietary Gln, Glu,
and Asp were used to meet intestinal energy demands,
whereas approximately only 6% of dietary glucose was
spent by the PDV (Wu, 1998). Van Goudoever
et al. (2000) showed that feeding lower CP diets could
increase dietary essential AA PDV uptake by 29%,
stressing the importance of feeding sufficient nonessen-
tial or conditionally essential AA to minimize catabolism
of essential AA intended to optimize protein synthesis of
skeletal muscle. In a more recent review focused on swine
and poultry, Chalvon-Demersay et al. (2021) addressed
the importance of several individual AA on gastrointes-
tinal function, including Asn, Asp, Arg, Cys, Glu, Gln,
Ile, Leu, Pro, Ser, TSAA, Thr, Trp, and Val as well as
their metabolites, and defined their impact on four pro-
posed pillars of gut health: 1) epithelial barrier and
digestion, 2) immune fitness, 3) oxidative stress homeo-
stasis, and 4) microbiota balance.

In addition to dietary supply of AA, environmental
conditions and pathogen exposure can alter the extent of
AA metabolism by the PDV. This can have direct conse-
quences on overall AA needs that should be considered
for practical feed formulation. For instance,
Corzo et al. (2007) reported that broiler requirement for
digestible Thr was 0.63 to 0.66% when reared on new lit-
ter vs. 0.65 to 0.70% when reared on used litter. These
authors proposed that higher Thr needs were associated
with increased intestinal mucosal maintenance from
greater microbial exposure from the used litter
(Corzo et al., 2007). Clearly, the intestine has a high
requirement for specific AA and these needs will be influ-
enced by changes in diet composition and environmental
conditions as well as exposure to pathogens such as coc-
cidiosis.
COCCIDIOSIS − A PREDOMINANT CULPRIT
OF ENTERIC STRESS

Avian coccidiosis, which is caused by Eimeria spp.,
continues to be the most widespread enteric disease for
commercial poultry, despite extensive coccidiosis
research spanning the last 100 yr (Chapman, 2003).
Eimeria spp. oocysts are nearly ubiquitous in most envi-
ronments and have variable behavior and pathogenicity
(Williams, 2005). Furthermore, the implementation of
antibiotic-free production systems that preclude the use
of in-feed ionophore coccidiostats, along with the emer-
gence of drug-resistant field Eimeria strains to available
chemical anticoccidials, have exacerbated many of these
challenges. Consequently, the industry has gradually
shifted to greater reliance on vaccination with live Eime-
ria oocysts as a means of coccidiosis control. To ensure
immunity to the different species of Eimeria potentially
encountered in the field, coccidiosis vaccines typically
contain multiple Eimeria species that infect different
parts of the gastrointestinal tract including the duode-
num, jejunum, ileum, and ceca.
PHYSIOLOGICAL, MORPHOLOGICAL, AND
METABOLIC CHANGES FOLLOWING

EIMERIA-INDUCED INTESTINAL STRESS

Eimeria infections elicit physiological, morphological,
and metabolic changes to the intestine and its associated
immune system. The species and number of Eimeria
oocysts ingested by the bird dictate the severity of infec-
tion, which can be classified as: 1) a mild infection with
no adverse effects, also known as “coccidiasis”, 2) sub-
clinical coccidiosis that results in reduced weight gain,
feed intake, and feed efficiency, and 3) clinical coccidiosis
causing diarrhea, markedly impaired growth and feed
efficiency, morbidity, and mortality (Williams, 1999,
2005). The extent by which broiler performance is
impaired is dependent on many factors including num-
ber and pathogenicity of oocysts ingested, age of the
bird, environment (e.g., litter conditions), and diet
(Willis and Baker, 1981; Lee et al., 2011; Paris and
Wong, 2013; Adedokun et al., 2016). Typically, 70 to
75% of the BW reduction following Eimeria infections
has been attributed to a reduction in feed intake,
whereas 25 to 30% stems from impaired nutrient diges-
tion and absorption and the redirected use of nutrients
to fulfill immune responses and intestinal repair (Pres-
ton-Mafham and Sykes, 1970; Russell Major jr. and
Ruff, 1978; Lillehoj and Trout, 1996).
Intestinal damage from coccidiosis is associated with a

reduced number of mucin-secreting goblet cells, reduced
mucosal thickness, villus atrophy, increased crypt depth,
and increased rate of cell movement and turnover along
the villus; the severity of this damage can be Eimeria
dose-dependent (Fernando and McCraw, 1973; Allen,
1987; Tan et al., 2014, 2020). The disruption of the
intestinal epithelium during coccidiosis inhibits brush
border digestive enzyme activity (Chute et al., 1961;
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Russell Major jr. and Ruff, 1978; Adams et al., 1996;
Su et al., 2015), downregulates nutrient transporters for
AA and peptides, carbohydrates, and Zn (Paris and
Wong, 2013; Su et al., 2015; Miska and Fetterer, 2018),
and alters pancreatic hormone release (Allen and McMur-
try, 1984). Consequently, this reduces absorption of AA
as well as minerals, vitamins, lipids, and monosaccharides
(Preston-Mafham and Sykes, 1970; Russell Major jr. and
Ruff, 1978; Willis and Baker, 1981; Southern and
Baker, 1983; Adams et al., 1996; Persia et al., 2006; Chap-
man, 2014; Gautier et al., 2020). Interestingly, the com-
bined downregulation of nutrient transporters and
enzymes to increase malabsorption of dietary AA may be
a host defense mechanism to alter cellular metabolism to
protect against Eimeria replication (Paris and
Wong, 2013; Su et al., 2015; Miska and Fetterer, 2018).
Several studies have estimated that coccidiosis infection
lowers AA digestibility by an average 8% compared with
uninfected birds, with the greatest impact on Thr, Val,
Cys, Ala, and Ser digestibility, which are key AA for gas-
trointestinal health and function (Persia et al., 2006;
Adedokun et al., 2016; Rochell et al., 2016, 2017a;
Yazdanabadi et al., 2020). However, the degree of reduc-
tion in AA digestibility caused by coccidiosis has been
shown to be influenced by Eimeria strain, severity of
infection, amount of endogenous losses, and bird age
(Teng et al., 2021), and impacts vary among studies. For
example, a 4-fold greater magnitude reduction in AA
digestibility was reported for young (21 d) vs. older (42
d) broiler subjected to a coccidia infection, likely because
the older birds had more mature gastrointestinal and
immune systems (Adedokun et al., 2016).

The increased flow of undigested dietary AA and
endogenously-secreted AA (e.g., sloughed cells, plasma
AA, mucin, enzymes) following Eimeria infection cause
opportunistic pathogens like Clostridium perfringens to
proliferate and move proximally in the digestive tract,
predisposing birds to necrotic enteritis, the second most
problematic disease in poultry (USAHA, 2019). Indeed,
coccidiosis and C. perfringens typically operate in tan-
dem, and coccidiosis has been used as an infection model
for necrotic enteritis (Williams, 2005). Growth of C. per-
fringens can be further influenced by dietary protein
source and AA composition, as well as cereal grain
source and non-starch polysaccharide content and com-
position (Kaldhusdal and Skjerve, 1996; Drew et al.,
2004; Moore, 2016; Xue et al., 2017). Moreover, the dis-
ruption and dysfunction of the mucosal and epithelial
barrier cause host inflammation involving vasodilation
and increased intestinal permeability via altered gene
expression of tight junctions, adheren junctions, gap
junctions, and desmosomes (Tan et al., 2014;
Teng et al., 2020). Although this mechanism facilitates
the rapid accumulation of immune cells, it also gives
pathogens an opportunity to cause systemic inflamma-
tion if not controlled.

Following infection, intestinal epithelial cells commu-
nicate closely with immune cells to activate both the
innate and acquired immune systems. This leads to the
diversion of dietary and peripheral tissue AA that would
otherwise be used for muscle deposition (Selvaraj, 2012).
For example, inflammatory responses can consume 30 to
65% of TSAA for glutathione synthesis (Grimble and
Grimble, 1998; Selvaraj, 2012). Other specific immune
responses or metabolic changes induced by coccidiosis
and other enteric infections include increased prolifera-
tion of immune cells and their effector molecules and
production of acute phase proteins. The amount of indi-
vidual AA required to support many of these responses
appears to often differ from that needed to maximize
muscle protein synthesis (Reeds et al., 1994;
Yaqoob et al., 2018; Oxford and Selvaraj, 2019;
Mund et al., 2020). Even under conditions of dietary
deficiency for key substrate AA, prioritization of
immune molecules synthesis can take priority over
growth, as has been shown for prioritization of Arg for
nitric oxide production in Eimeria-infected birds fed
Arg deficient diets (Rochell et al., 2017b). Nonetheless,
impaired immune response and increased disease suscep-
tibility can occur when birds are fed reduced protein
diets with unbalanced AA profiles (Grimble and Grim-
ble, 1998; Li et al., 2007; Kamely et al., 2020).
APPROACHES FOR INCREASING AA
SUPPLY DURING COCCIDIAL INFECTIONS

The compounding effect of reduced AA absorption
and the redirection of AA to repair intestinal damage
and support immune responses may create conditional
AA deficiencies in coccidiosis-infected birds, thereby
warranting diet modulation. Furthermore, birds that
are given a live oocyst vaccine may not compensate for
early growth reduction by market weight age because of
the relatively short growing period of broilers
(Waldenstedt et al., 1999; Williams, 2002; Lee et al.,
2009; Lehman et al., 2009; Arczewska-W»osek et al.,
2017). Higher AA density diets created to address
altered AA needs following Eimeria infection can be for-
mulated in 3 primary ways: 1) by increasing total AA
density with proteinaceous feed ingredients, 2) by
increasing total AA density with feed-grade, free AA, or
3) by increasing specific “functional” AA. Increasing
total AA density can be accomplished by greater inclu-
sion levels of proteinaceous feed ingredients, such as soy-
bean meal, to meet a certain CP or digestible Lys level.
Indeed, increasing total AA by intact proteins can pro-
vide a margin to prevent an AA limitation of condition-
ally essential AA; however, this approach results in the
greatest excess of AA that can contribute to enteric
stress in addition to negative economic and environmen-
tal consequences. These effects are certainly counter to
the goals of precision nutrition. To increase AA density
with minimal increases in dietary CP, feed-grade AA
that are currently economically feasible to use, including
Met, Lys, Thr, Val and perhaps Ile and Arg, can be
increased with minimal changes to overall dietary nitro-
gen or diet composition. However, as opposed to increas-
ing total dietary CP with proteinaceous feed
ingredients, less-limiting essential and nonessential AA,
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many of which have been shown to support intestinal
development and repair (e.g., Gly, Pro, and Gln), may
be under-supplied with this approach. Lastly, feeding a
higher level of individual “functional” AA such as Thr,
Arg, Gly, or Gln can supply substrates for a specific met-
abolic or immune function. Therefore, it would be ideal
to provide the bird with the exact AA that is needed to
improve gut and immune function while preventing AA
waste.
INCREASED AA DENSITY FOR EIMERIA-
INFECTED BROILERS

Sharma et al. (1973) were among the first to report
that daily weight gain and feed efficiency of birds sub-
jected to a coccidiosis infection were improved when fed
increased dietary CP levels (16, 20, and 24%), despite
higher CP diets causing increased oocyst shedding. It
should be noted that disease suppression and improved
performance are not always achieved in concert. Indeed,
lowering CP has been shown to reduce coccidiosis-
related mortality, oocyst shedding, and coccidiosis
lesions, perhaps due to the role of trypsin in oocyst
excystation, but increasing CP protects birds from
weight loss and provides AA for intestinal repair and
immune function (Britton et al., 1964; Mathis et al.,
1995).

Others have also consistently shown that increasing
total dietary CP or balanced digestible AA levels sup-
port broiler performance when birds are infected with a
coccidia challenge or administered a live oocyst vaccine
(Table 1). Specifically, increasing CP from 20 to 24%
(0−27 d; Lee et al., 2011), 24 to 26% (0−32 d;
Bryan et al., 2019), average of 21 to 23% (0−42 d; Arc-
zewska-W»osek et al., 2017), or increasing digestible Lys
from 1.15 to 1.25% (0−19 or 21 d; Cloft et al., 2019a; b)
have been shown to assist coccidiosis-vaccinated broilers
in compensating for losses in performance. Notably, work
by Cloft et al. (2019a,b) indicates that feeding increased
Table 1. Summary of published research evaluating increased crude
with Eimeria spp.

Period (d)

Authors Experimental diet Total growth Challenge m

Sharma et al., 1973 0-29 E. acervulina or

Lehman et al., 2009 0-56 Vaccine
Lee et al., 2011 0-27 E. acervulina, maxim

Arczewska-W»osek
et al., 2017

0-42 1£ vaccine d

Bryan et al., 2019 0-32 Vaccine

Cloft et al., 2019a 0-21 0-41 1£ vaccine d

Cloft et al., 2019b 0-19 0-40 1£ vaccine d

Abbreviations: BWG, body weight gain; CP, crude protein; dec., decrease; d
AA density only during the first 3 wk, when the impacts
of vaccinal Eimeria oocysts cycling are the greatest, has
sustained benefits on broiler performance at market
weight. In each of these experiments, increased CP or AA
density was achieved partly or totally with increased die-
tary soybean meal. As a result, concomitant increases in
indigestible protein and carbohydrates (i.e., non-starch
polysaccharides and oligosaccharides) may have limited
the positive responses to increased AA density due to
their propensity to stimulate undesirable bacteria fermen-
tation and proliferation (Gilbert et al., 2018; Bryan et al.,
2019; Adhikari et al., 2020). Although fermentation of
certain dietary fiber fractions can benefit broiler health,
excess soluble NSP and protein fermentation are gener-
ally detrimental. Increases in AA density achieved with
ingredients such as soy protein isolate, free AA, or other
highly digestible, low non-starch polysaccharides feed-
stuffs might prove even more advantageous to Eimeria-
vaccinated or challenged broilers. Adedokun et al. (2016)
quantified the impacts of a Eimeria vaccine challenge
(12£ the dose recommended for newly-hatched chicks)
on AA digestibility and conducted a subsequent experi-
ment in which similarly challenged broilers were fed diets
with higher levels of soybean meal, Biolys, DL-Met, L-
Thr, Val, Ile, and L-Trp to compensate for expected
reductions in AA digestibility. Feed efficiency from 14-21
d, but not d 21 BW, was improved, though an uninfected
group fed the same diets was not included to confirm
these responses were specifically beneficial to the Eime-
ria-challenged birds.
Currently, there is increasing pressure to implement

low CP diets, which has been reviewed elsewhere
(Lemme et al., 2019; Lee et al., 2020). Work by
Lehman et al. (2009) reported that vaccinated broilers
fed a low CP diet with supplemental gelatin performed
equivalent to broilers fed higher CP diets met by greater
inclusion levels of soybean meal. These authors stated
that the high content of Gly, Ser, Pro, and the marginal
increases in other essential AA from gelatin was a viable
alternative to increasing soybean meal inclusion levels.
protein or balanced amino acids when fed to broilers challenged

odel Protein change Growth performance response

tenella 16 to 24% CP - Improved overall BWG &
FCR

2% CP unit dec. + gelatin - Improved overall FCR
a, & tenella 20 to 24% CP - Improved overall BWG &

FCR
ose 2% CP unit inc. - Improved 22 to 42 d BWG

24 to 28% CP - Improved overall FCR & pec-
toralis minor meat yield

ose Starter: 1.15 to 1.25% dLys - Improved overall BWG, FCR,
& total breast weight & yield

ose 1.15 to 1.25% dLys - Improved 0 to 19 d FCR,
overall BWG, & total breast
meat weight

Lys, digestible Lys; FCR, feed conversion ratio; inc., increase.
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Recent work by Teng et al. (2021) evaluated lower CP
diets from 12-23 d and with feed-grade Met, Thr, Arg, or
Gln increased individually or all together (combination
diet) when fed to Eimeria spp. challenged broilers.
When compared to the challenged birds fed the control
diet, offering the low CP diet showed no adverse effects
on intestinal health or growth, and increasing Arg
improved intestinal permeability and gene expression of
AA transporters; Gln and Thr lowered gene expression
for tight junction proteins; and the combination diet
lowered gene expression for tight junction proteins but
decreased villus height to crypt depth ratio. Interest-
ingly, increasing Met or the combination diet exacer-
bated infection severity. Beyond these reports, there has
been a limited amount of research to evaluate
approaches for increasing overall dietary AA density
(essential, conditionally essential, and nonessential AA)
without also markedly increasing indigestible protein
and dietary non-starch polysaccharides content.

Increasing specific individual AA over recommended
levels in standard CP diets have been studied for Met/
TSAA (Southern and Baker, 1982; Lai et al., 2018;
Ren et al., 2020), Thr (Kidd et al., 2003; Wils-
Plotz et al., 2013), Arg (Perez-Carbajal et al., 2010;
Tan et al., 2014; Castro et al., 2020; Yazdanabadi et al.,
2020), and Gln (Mussini et al., 2012; Oxford and Sel-
varaj, 2019). Challenge models varied among these stud-
ies with one or a mixed Eimeria spp. used, but general
Table 2. Summary of published research evaluating increased individ
with Eimeria spp.

Period (d)

Authors
Experimental

feed Total growth Challenge model

Lai et al., 2018 0-22 0-42 E. tenella

Ren et al., 2020 11-21 Mixed Eimeria
Kidd et al., 2003 2 or 3-15 0-15 E. acervulina
Wils-Plotz et al., 2013 0-16 E. maxima

Perez-Carbajal et al., 2010 0-28 1£ vaccine dose & mixed E

Tan et al., 2014 0-21 20£ vaccine dose

Yazdanabadi et al., 2020 0-42 Mixed Eimeria

Castro et al., 2020 0-26 Mixed Eimeria

Oxford and Selvaraj, 2019 0-21 20£ vaccine dose

Gottardo et al., 2016, 2017 11-42 0-42 Mixed Eimeria & E.co

Abbreviations: BWG, body weight gain; CD, crypt depth; Dec., decrease; FC
conclusions can be made. Increasing dietary TSAA, Thr,
Arg, or Gln can improve growth performance; TSAA,
Arg, or Gln can improve intestinal integrity and mor-
phology; and TSAA, Thr, Arg, or Gln may improve
immune response and anti-inflammatory effects that are
detailed in Table 2. Supplementation of specific feed-
grade AA can increase the digestibility of the respective
AA but may interfere with digestibility of other AA
(Teng et al., 2021). Interestingly, Met requirements
were lower for vaccinated vs. medicated broilers to opti-
mize performance and immune response (Lai et al.,
2018). Although, Southern and Baker (1982) disagree
whereas Ren et al. (2020) agrees that coccidia infected
broilers do not respond with greater Met/TSAA concen-
trations. Conflicting reports on Thr have been docu-
mented where Kidd et al. (2003) found that the Thr
requirement was not affected by an infection of E. acer-
vilina (3 £ 104 or 1 £ 105), whereas Wils-
Plotz et al. (2013) noted that E. maxima (1.5 £ 103)
infection increased Thr needs by 25% for performance
and immune response. Gottardo et al. (2016, 2017) fed
increased Thr, Arg, and Gln in combination from
11-42 d to broilers challenged with mixed Eimeria spp.
(14 d) and E. coli (16 d) challenge. These authors
reported improvements in weight gain, FCR, mucosa
cell proliferation, goblet cells, villus height to crypt
depth ratio, and immune function with a combined
increase in dietary Thr, Arg, and Gln.
ual dietary feed-grade amino acids when fed to broilers challenged

Response

Amino
acid Growth performance Other

Met Higher Met requirement for
medicated vs. vaccinated

broilers
Improved BWG & FCR

- For medicated, inc. antioxi-
dant capacity, glutathione
peroxidase, IL-2, IgA, CD4,
CD8, TNF, interferon-g, VH:
CD,

- Dec. intestinal lesion scores
TSAA No Improvements - Inc. jejunum IgA
Thr Thr needs are not increased
Thr Improved BWG & FCR - Inc. proinflammatory cyto-

kines & interferon- g
imeria Arg ———— - Dec. intestinal lesion scores

- Inc. nitric oxide and hetero-
phils and monocytes

- Inc serum IgG and IgM
Arg Improved BWG & FCR - Improved goblet cell, VH, CD,

mucosal density, & inflamma-
tion

- Dec. apoptosis
Arg ———— - Inc VH:CD

- Dec. intestinal lesion score
Arg Improved BWG & FCR - Improved intestinal

permeability
Gln No improvements - Inc. tight junction proteins &

VH:CD
- Dec. pro- and anti-inflamma-
tory cytokine expression

li Thr, Arg,
& Gln

Improved FCR - Inc. VH:CD, intestinal cell
proliferation, & goblet cell

- Lower IgA

R, feed conversion ratio; Inc., increase; VH, villus height.
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In our own lab, we have directly compared feeding
increased AA diets achieved primarily with soybean
meal, several essential feed grade AA (Met, Lys, Thr,
Val, Ile, and Arg), or select AA (Val, Ile, or Thr)
(unpublished data). Specifically, digestible Lys levels
were increased from 1.24 to 1.32% in the starter and
from 1.11 to 1.19% in the grower period, with other
essential AA ratios relative to Lys held constant. In one
diet series, soybean meal was allowed to increase (37.1
to 40.6% in the starter) to meet increased digestible AA
minimums, whereas with the other approach, soybean
meal was held constant (37.1%) and feed-grade Met,
Lys, Thr, Val, Ile, and Arg were used to match digestible
levels of these AA with the high soybean meal diet. We
determined that coccidiosis vaccinated broilers
responded positively and similarly when fed increased
essential AA density from either soybean meal or feed
grade AA. Similar to Cloft et al. (2019a,b), these higher
AA diets that were provided early (0−26 d) resulted in
sustained benefits to market weight age. Given that per-
formance was improved with both approaches, we con-
cluded that the greater amount of less limiting essential
AA, conditionally essential AA, and nonessential AA in
the soybean meal provided no advantage over feeding
only the first 6 limiting essential AA, nor did the
increase in indigestible protein and carbohydrate frac-
tions of the soybean meal elicit any negative effects. Fur-
thermore, the same benefits were not seen with only
increasing Val, Thr, and Arg.
CONCLUSIONS

Enteric stress from pathogens such as Eimeria will be
a continual problem for the poultry industry for years to
come. Existing data consistently demonstrate that
either increased dietary protein or AA density is benefi-
cial to the performance of Eimeria-infected broilers.
However, it must be recognized that gut health is multi-
factorial, and Eimeria infection, especially when sub-
clinical, is often only one factor of many that influence
overall gastrointestinal health. The potentially negative
consequences of over-feeding nitrogen in attempt to
meet increased AA needs of Eimeria-infected broilers
cannot be overlooked. Thus, additional research is
needed to close the gap between the consistent positive
responses of Eimeria-infected broiler to increased AA
density and the less consistent responses to individual
AA. Furthermore, understanding how any newly identi-
fied feeding strategies ultimately impacts the susceptibil-
ity of broilers to necrotic enteritis or other
gastrointestinal health challenges must also be consid-
ered. Finally, precision nutrition approaches can only be
implemented if they can be applied to targeted flocks
that are most likely to benefit. This will require respon-
siveness, flexibility, and coordination among stress/dis-
ease diagnosis, ingredient characterization, feed
formulation, and feed manufacture and delivery. Only
then will the true potential of precision nutrition be fully
realized.
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