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Abstract: In order to solve the optimization problem of emergency logistics system, this paper
provides an environmental protection point of view and combines with the overall optimization idea
of emergency logistics system, where a fuzzy low-carbon open location-routing problem (FLCOLRP)
model in emergency logistics is constructed with the multi-objective function, which includes the
minimum delivery time, total costs and carbon emissions. Taking into account the uncertainty of the
needs of the disaster area, this article illustrates a triangular fuzzy function to gain fuzzy requirements.
This model is tackled by a hybrid two-stage algorithm: Particle swarm optimization is adopted
to obtain the initial optimal solution, which is further optimized by tabu search, due to its global
optimization capability. The effectiveness of the proposed algorithm is verified by the classic database
in LRP. What’s more, an example of a post-earthquake rescue is used in the model for acquiring
reliable conclusions, and the application of the model is tested by setting different target weight
values. According to these results, some constructive proposals are propounded for the government
to manage emergency logistics and for the public to aware and measure environmental emergency
after disasters.

Keywords: emergency logistics; location routing problem; environment effect; two-phase algorithm

1. Introduction

Since the 1950s, the number and scale of major natural disasters (such as earthquakes, tsunamis,
cyclones, floods, volcanoes and etc.) have grown exponentially [1]. These have resulted in catastrophic
consequences, which are closely related to resource waste and environmental degradation. In 1991, the
Mumbai heating belt storm left nearly 140,000 casualties. In 2004, the Indian Ocean tsunami caused
230,000 deaths. In 2008, the Wenchuan earthquake in China killed 69,227 people and injured 374,643
people. Moreover, in August 2017, Hurricane Harvey produced $180 billion in damage and impacted
13 million people. Nevertheless, the occurrence of natural disasters is inevitable [2]. In the face of
frequent natural disasters, taking active measures has become a major problem that all countries in the
world must face in solving sudden natural disasters [3].

In order to reduce severity and fatality in a disaster, emergency logistics has been an efficient
and effective relief means [4,5], which contents a series of actions performed before, during and
after a natural disaster. Compared with traditional commercial logistics, emergency logistics is more
challenging and unpredictable [6]. The two cores of the relief material dispatching decision are the
location of emergency distribution centers (DCs) before disasters and the route arrangement of vehicles
after disasters, which are called location allocation problems (LAP) and vehicle routing problems (VRP)
respectively. On the one hand, it is necessary to establish a certain number and scale of emergency
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DCs in suitable locations to store and allocate relief materials from all over the country; on the other
hand, it is necessary to dispatch appropriate vehicles to select reasonable routes to distribute relief
materials from the DCs to the demand points. In actual life, LAP and VRP are highly correlated, of
which the combination is called location routing problems (LRP). However, when distributing relief
supplies, the vehicles emit a certain amount of carbon dioxide, which will exacerbate climate change [7].
The deterioration of the environment is one of the considerable causes of frequent natural disasters.
Thus, it is essential to take carbon emissions into account, while optimizing location routing problem
in emergency logistics, for realizing a relative balance between rescue activities and environmental
protection in the long run.

The remainder of this paper is organized as follows. In the next section, the previous literature
on LRP is introduced. Section 3 builds a multi-objective FLCOLRP model. A two-phase algorithm is
proposed to solve the built model in Section 4. Section 5 performs a series of experiments and analyzes
the results. Finally, the conclusions of this article and the outlook for future research are presented in
Section 6.

2. Literature Review

Since the core of this research is to gain an overall optimal solution for LRP in emergency logistics
considering carbon emissions. Thus, we will review the related literature from the following two
aspects: The algorithm of LRP in emergency logistics and sustainability issues in LRP, including
carbon emissions.

2.1. Algorithm for LRP in Emergency Logistics

Due to the high complexity and difficulty of LAP and VRP [8–10], they were presented separately
in previous studies. Actually, the interaction between LAP and VRP was put forward in the 1970s [11].
In later research, LAP and VRP started to be integrated as a complex combinatorial optimization
problem called LRP. There are various exact methods, approximation algorithms and heuristic
algorithms proposed to solve LRP [12], such as the branch-and-price method [13], the Lagrangian
Relaxation-Granular Tabu Search (LRGTS) algorithm [14], the Multiple Ant Colony Optimization
(MACO) algorithm [15], the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [16], the Particle
Swarm Optimization (PSO) algorithm [17], the integrated Non-dominated Sorting Genetic Algorithm
II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO) [18] and etc.

LRP has plenty of real-life applications [19] involving newspaper distribution, energy enterprise
material distribution, e-commerce distribution, garbage recycling, military application and etc. Over
the last decade, some scholars paid attention to LRP in emergency logistics owing to the active
occurrence and the devastating aftermaths of natural disasters. Yi and Özdamar [20] discussed the
coordination of material distribution and wounded migration in disaster response activities and built
a mixed-integer multi-commodity network flow model which considered the location of temporary
medical points, the assignment of medical personnel, the allocation of relief material and the decision
of vehicle transportation path. In this study, a simple routing algorithm and a linear solution were
proposed to solve the model. Zheng et al. [21], from the perspective of integration and optimization of
emergency logistics system, established a multi-objective LRP optimization model with fuzzy demand
for relief materials. In order to deal with the model, they introduced a new multi-objective genetic
algorithm which averted the boundedness of traditional multi-objective optimization ways. Based on
the research [21], Ma et al. [22] built a fuzzy multi-objective open LRP model which added the deadlines,
the different types of delivery vehicles, as well as the open vehicle paths. A hybrid genetic algorithm
combining heuristic rules was designed in this study. Rath and Gutjahr [23] presented the modified
warehouse location-routing problem in disaster relief and established a multi-objective mixed-integer
linear programming model which included strategic costs, operative costs and uncovered demand. An
exact method was introduced to tackled small instances; A constraint pool heuristic was more suitable
for larger examples. Both of them adopt the adaptive epsilon-constraint algorithm as the basic method.
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Alem et al. [24] addressed a novel two-phase stochastic network flow model which involved the
preposition of disaster relief points and the decision for transportation. A simple two-phase heuristic
was presented to solve this model and tested by real cases.

2.2. Sustainability Issues in LRP

With the increasing emphasis on the environment, a large number of articles on low-carbon
transportation have emerged. In recent years, some studies have begun to concern about the reduction
of carbon emissions in LRP. In 2014, Govindan et al. [25] designed a sustainable supply chain network
(SCN) of perishable food and addressed a multi-objective optimization model to solve LRP with
time windows. The economic objective of the model was to minimize the fixed costs, transportation
costs, inventory costs, variable costs, penalty costs. The environmental objective of the model was
to calculate greenhouse gas emissions throughout the network. In the same year, Ramos et al. [26]
presented a sustainable reverse logistics system and proposed the three concerns: Economic aspects,
environmental aspects and social aspects. This paper debated the balance between the objectives
and employed a real recyclable waste collection case to gain an approximate value of the Pareto
frontier. Tang et al. [27] established a location-routing-inventory integration problem optimization
model, which introduced the carbon-capped difference. The objective of the model was to decline
the total costs and carbon emissions. In this study, carbon trading prices were proposed to convert
carbon emissions into carbon emissions costs in the objective function. Based on the research [27],
Tang et al. [28] considered the customer’s limited “carbon behavior” preferences and introduced an
environmental factor as a feature vector for carbon emissions in 2016. A multi-objective function
with the lowest cost and the lowest carbon emissions was constructed. This paper proved that the
customer’s limited “carbon behavior” preferences and the product environmental degree had an impact
on the company’s operational plans and revenue levels. In 2017, a green capacitated location-routing
problem was firstly addressed by Toro et al. [29]. They proposed the location of multi-depots and
the routing of multi-vehicles, and developed a novel mathematical model which considered the
greenhouse gas emissions. The target of this model was to minimize operating costs and minimize
fuel consumption. In 2018, Ebrahimi [30] raised a sustainable loop-locked SCN and formulated a
location-allocation-routing optimization model with the goals of minimizing the total costs and the
environmental impact. In order to test the availability of the model, he adopted a real Iranian case.
Meanwhile, Wang et al. [31] studied the low-carbon LRP for cold chain logistics and designed the
mathematical model with the lowest total costs, including carbon emissions costs. In this study, it
was proved that a certain range of carbon taxes could affect the carbon emissions of the cold chain
logistics industry. Recently, Zhang et al. [32] introduced the sustainable LRP in emergency logistics
and established a multi-objective model which included the targets of minimum travel time, relief
costs, carbon emissions. They regarded travel time as their main goal and regard relief costs and
carbon emissions as restrictions, converting multi-objective into single-objective.

To sum up, according to the analysis of the above two parts, there are numerous pieces of literature
on the algorithm of LRP in emergency logistics. Simultaneously, the studies about sustainability
issues in LRP have appeared extensively in the last five years. The objectives of the current studies
are mainly to minimize the total costs and the environment effect. Taking into account the time
urgency of emergency logistics, the study of LRP in emergency logistic should put travel time into
model. Nonetheless, there are relatively few studies in which the LRP in emergency logistics and the
development of sustainability are combined. This only related literature [32] studied the multi-depot
emergency LRP with uncertainty theory tackled by a hybrid genetic algorithm and focused on verifying
the effectiveness and robustness of the algorithm. Although the research considered travel time,
distribution costs and environmental impacts into the model, further research on the low-carbon LRP
in emergency logistics is necessary. In view of this, in this paper, we establish a fuzzy low-carbon open
location-routing problem (FLCOLRP) model of emergency logistics and discuss the interconnection
between the objective function of time, economic, as well as environment. A hybrid PSO-TS algorithm



Int. J. Environ. Res. Public Health 2019, 16, 2982 4 of 18

is designed to deal with the model in this study. What’s more, this paper employs the triangular fuzzy
function tackling the unpredictability of demand in disaster areas.

3. Mathematical Model

3.1. Problem Description

The FLCOLRP model of emergency logistics studied in this paper can be stated as follows. There
are some candidate distribution centers dispatching relief materials to the demand points by several
different types of vehicles. The construction cost of each candidate distribution center and the operation
cost of each vehicle are known, and the demand can be expressed by a triangular fuzzy function. After
completing each delivery task, the vehicle may go to different distribution centers to continue the
delivery task according to the need and finally return to the nearest distribution center. Under the
constraints of time, space and resources, the multi-objective FLCOLRP model is established with the
objectives of the lowest delivery time, total costs and carbon emissions, thus obtaining a fast, economical
and environmentally friendly location-routing scheme and ensuring the distribution of relief materials
simultaneously. Figure 1 shows a simplified diagram of the problem studied in this article.
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Figure 1. A simplified routing diagram of LRP.

3.2. Notations

Based on the needs to establish the model, Table 1 presents the corresponding notations applied
in this paper.

Table 1. Explanation of corresponding notations.

Notations Explanation

Dc Set of candidate distribution centers {i|i = 1, . . . , C}.

Do Set of open distribution centers Do ⊆ Dc.

Nd Set of demand points {i|i = C + 1, C + 2, . . . , C + D}.

Vh Set of vehicles {h|h = 1, 2, . . . , H}.

Pm Set of sub-paths {m|m = 1, 2, . . . , M}.

ti j Transportation time from node I to node j.

Ci Construction and operation costs of the distribution center i.

Hh Operation costs of the vehicle h.

S1 Transportation costs of per unit distance.

S2 Penalty costs of per unit unmet need.
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Table 1. Cont.

Notations Explanation

[EDi]
o Represents the most optimistic demand for demand point i.

[EDi]
l Represents the most likely demand for demand point i.

[EDi]
p Represents the most pessimistic demand for demand point i.

ω1 Weight coefficient of the most optimistic demand.

ω2 Weight coefficient of the most likely demand.

ω3 Weight coefficient of the most pessimistic demand.

Qi Demand for relief supplies of demand point i.

µ Fuel consumption rate when the vehicle is full-load. Consumption Rate

u0 Fuel consumption rate when the vehicle is no-load.

Mh Maximal weight the vehicle h could carry.

Mi jh Carried load of vehicle h from node i to node j.

τ Conversion factor for carbon dioxide and fuel consumption.

Wi Maximum capacity of candidate distribution center i.

Oh Longest travel distance of the vehicle h.

yi
yi = 1 represents the candidate distribution center i are employed.

Otherwise, yi = 0.

xh
ij

xh
ij = 1 represents the vehicle h visit the node j from the node i.

Otherwise, xh
ij = 0.

zc
mhi

zc
mhi = 1 represents the sub-path m of candidate distribution center c.

includes node i served by the vehicle h. Otherwise, zc
mhi = 0.

3.3. Model Construction

The FLCOLRP model of relief materials distribution in this paper takes the delivery time minimum,
the total costs minimum, as well as the carbon emissions minimum as the objective functions. Above
all, we analyze the components of three objective functions separately, and then the specific formulation
of the FLCOLRP model is determined by these components.

3.3.1. Analysis of Objectives Function

1. Delivery Time

In emergency logistics, it is critical to delivering relief supplies from the distribution centers to
the demand points as quickly as possible for reducing post-disaster loses. Thus, the minimization
of delivery time is significant. In this paper, the delivery time T in the FLCOLRP model can be
expressed as:

T =
∑
h∈Vh

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

ti jxh
ij. (1)

2. Total Costs

(1) Fixed Costs

In the FLCOLRP model, the fixed costs are actually the construction costs of the distribution
centers. However, due to some factors, such as land price levels and natural conditions, candidate
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distribution centers have different construction costs. The total fixed costs C f in the FLCOLRP model
can be calculated as:

C f =
∑
i∈Dc

(Ciyi +
∑
h∈Vh

∑
m∈Pm

∑
i∈Dc∪Nd

Hhzc
mhi). (2)

(2) Transportation Costs

When the vehicle transports relief supplies from the distribution center to the demand point, it
may encounter many situations, such as road damage, broken vehicles, extreme weather, etc. In this
study, we only study research under normal conditions. The transportation costs Ct in the FLCOLRP
model can be expressed as:

Ct = S1

∑
h∈Vh

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

di jxh
ij. (3)

(3) Penalty Costs

It is nearly impossible to gain the precise demand for relief supplies before the disaster, because
the demand in the disaster area is fuzzy and uncertain. Hence, this paper utilizes the triangular fuzzy
number and proposes the most optimistic demand, the most likely demand and the most pessimistic
demand to describe the estimated demand ẼDi. The relationship of them is shown in the formulas
below:

ẼDi =
〈
[EDi]

o, [EDi]
l, [EDi]

p
〉
, (4)

[EDi]
o
≤ [EDi]

l
≤ [EDi]

p. (5)

In addition, the weighted method can be adopted to convert the triangular fuzzy number into a
certain value. Thus, the estimated demand ẼDi can be calculated with the equation:

ẼDi = ω1[EDi]
o +ω2[EDi]

l +ω3[EDi]
p. (6)

However, the number of relief materials transported by the vehicle to the demand point may
be less than the estimated demand because of the limitation of the capacity of the vehicle and the
distribution center. Therefore, when the demand for the demand point is not met, it will be given a
certain penalty. The penalty costs of the FLCOLRP model can be expressed as:

Cq = S2

∑
c∈Dc

∑
h∈Vh

∑
m∈Pm

(
∑
i∈Nd

ẼDizc
mhi −Mh). (7)

3. Carbon emissions

According to statistics from the Environmental Protection Agency, the transportation sector
produces the largest share of greenhouse gas emissions in the world [33]. The carbon emissions of
transportation are linearly related to fuel consumption. But, the fuel consumption is affected by many
factors, such as vehicle speed, vehicle load, road gradient, driving distance, etc. This paper refers to
the literature [34] to calculate the fuel consumption Uc , which can be shown in the formulas below:

Uc =
∑
c∈Dc

∑
h∈Vh

∑
m∈Pm

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

(µ−
µ0 − µ

Mh
Mi jh)di jxh

ijz
c
mhi. (8)

Therefore, the carbon emissions Eco2 of the FLCOLRP model can be expressed as:

Eco2 = τUc. (9)
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3.3.2. FLCOLRP Model Setting

Based on the detailed analysis of the three objectives, the established multi-objective FLCOLRP
model is shown as follows:

MinF =
∑
h∈Vh

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

ti jxh
ij (10)

MinC =
∑

i∈Dh

(Ciyi +
∑

h∈Vh

∑
m∈Pm

∑
i∈Dc∪Nd

Hhzc
mhi)

+S1
∑

h∈Vh

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

di jxh
ij

+S2
∑

c∈Dc

∑
h∈Vh

∑
m∈Pm

(
∑

i∈Nd

ẼDizc
mhi −Mh)

(11)

MinEco2 = τ
∑
c∈Dc

∑
h∈Vh

∑
m∈Pm

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

(µ−
µ0 − µ

Mh
Mi jh)di jxh

ijz
c
mhi (12)

Subject to: ∑
h∈Vh

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

xh
ij − yc ≥ 0, ∀c ∈ Do (13)

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

xh
ij − yc ≤ 0, ∀h ∈ Vh,∀c ∈ Dc

⋂
(CUDo) (14)

∑
h∈Vh

∑
i∈Dc∪Nd

xh
ij = 1,∀ j ∈ Nd (15)

∑
h∈Vh

∑
m∈Pm

∑
i∈Nd

ẼDizc
mhi ≤Wc,∀c ∈ Dc (16)

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

di jxh
ijz

c
mhi ≤ Oh,∀h ∈ Vh,∀m ∈ SPm,∀c ∈ Dc (17)

∑
i∈Dc∪Nd

∑
j∈Dc∪Nd

xh
ij = 1,∀h ∈ Vh (18)

∑
i∈Nd

∑
j∈Dc∪Nd

xh
ij = 1,∀h ∈ Vh. (19)

This model has three objective functions: The first objective (10) is to minimize the delivery time
of relief supplies; the second objective (11) is to minimize the total costs of fixed costs, transportation
costs and penalty costs for emergency logistics system; the third objective (12) is to minimize the
carbon emissions. At least one vehicle is assigned for each open distribution center, and no vehicles
can be assigned for unopened distribution centers, which are imposed by constraint (13) and constraint
(14). Each demand point is only served once by one vehicle presented by Constraint (15). Constraint
(16) addresses the amount delivered from each distribution center does not exceed the capacity of
the distribution center. The distance traveled by each vehicle does not outstrip the limit, which is
shown by constraint (17). Constraint (18) and constraint (19) illustrate vehicles must depart from the
distribution center and can return to any distribution center.

4. Design of PSO-TS Algorithm

LRP is an NP-hard problem [7,35], and a PSO algorithm combining Tabu Search (TS) is introduced
to solve the model in this paper on account of the simplicity and flexibility of PSO algorithm and the
ability of TS to obtain global optimal solutions. In the first stage, PSO algorithm is applied to obtain
the partial optimization solution. In the second stage, TS is adopted to acquire the global optimization
solution. The basic process of the hybrid algorithm is described in Figure 2.
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Step 1: Particle coding. All particles are composed of three parts: Part 1 has D particles (D
is the number of demand points), the value of each particle represents the sub-path number to
which each demand point belongs and is randomly selected from the natural number of 1 to A
(A =

∑Nd
i ẼDi/min(Mh)); Part 2 has P particles, the value of each particle represents the initial DC

corresponding to each sub-path and is randomly selected from the natural number of 1 to C (C is the
number of DCs); Part 3 has D particles, the value of each particle represents the order of the various
demand points in each sub-path and is randomly selected from the natural number of C to C + D.
Hence, the total length of coding is 2D + A. What’s more, the particles in the parts 1 and 3 correspond
one-to-one, and the demand points in part 3 corresponding to the particles having the same value in
part 1 are on the same path.

For example, there are 4 DCs (number 1 to 4) and 8 demand points (number 5 to 12), A = 5 (number
1 to 5). For the following particles:

As displayed in Table 2, part 1 includes 2, 3 and 4, indicating that there are three sub-paths. The
positions corresponding to 2nd, 3rd and 4th in Part 2 are 2, 3 and 3 respectively, so DCs of 2 and 3 are
established. It should be explained that the 1st and 5th of part 2 are numbered 1 and 4 respectively,
but the DCs of 1 and 4 are not actually built. The 3rd and 7th of part 1 are numbered 2, and the
corresponding positions in part 3 are the demand points 5 and 6, which show that these demand
points are in the sub-path 1 and the driving order in sub-path 1 is 5-6. The 2nd in part 2 is numbered 2,
representing that the starting point of sub-path 1 is distribution center 2—thus, the sub-path 1 is 2-5-6.
In a similar way, the sub-path 2 is 10-8-9, and sub-path 3 is 7-12-11.

Table 2. Illustration of coding example.

Part 1 3 4 2 3 4 3 2 4
Part 2 1 2 3 3 4
Part 3 10 7 5 8 12 9 6 11

Step 2: Initializing parameters of PSO and generating the initialization position and velocity of
the particle randomly.

Step 3: Determining the optimal solution by PSO. The built FLCOLRP model of this paper is
a multi-objective optimization problem, which usually is solved by weighting methods, constraint
methods, goal planning methods, and minimax methods [18]. Since the objective functions and
constraints of the FLCOLRP model are linear functions, this paper utilizes the weighting method to deal
with the multi-objective model. Thus, the fitness function of this paper is expressed as: Fitness(i) =
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w1F(i)/F(i)min + w2C(i)/C(i)min + w3Eco2(i)/Eco2(i)
min, and 0 < w1, w2, w3 < 1, w1 + w2 + w3 = 1,

where w1, w2 and w3 are the weight of the objective function 1, 2 and 3 respectively. In order to obtain
the optimal solution, the position and velocity of particles need to be updated. Then, the optimal
solution can be determined according to the value of the fitness function.

Step 4: Setting termination conditions of the PSO algorithm. The number of the population is Np.
When the number of the iteration is greater than Np, the PSO algorithm ends, and the current optimal
solution is regarded as the partial optimization solution.

Step 5: Initializing tabu list, determining tabu length and putting the partial optimization solution
of PSO as the initial solution of TS.

Step 6: Determining the optimal solution by TS. First, according to the feature of the particle
coding, this paper randomly selects the neighborhood search algorithm from the three routes (swap,
reversion and insertion). Next, based on the special rules, tabu objects are defined, and tabu tables are
renewed. Through a series of rules, the final selected solution is taken as the optimal solution.

Step 7: Setting termination conditions of TS. The maximum number of the iteration is Mp. When
the number of the iteration is greater than Mp, the TS ends, and the current optimal solution is regarded
as the final global optimization solution.

5. Experimental Design and Results Analysis

The example validation includes two parts: in Section 5.1, the designed algorithm PSO-TS
in this paper is tested utilizing the well-known data sets proposed by Barreto [35]; in Section 5.2,
the effectiveness of the FLCOLRP model is proved by an example of a location-routing problem in
post-earthquake relief deliveries. MATLAB R2017a is used to implement the PSO-TS algorithm, and
all the experiments are evaluated on a PC with an Intel 2.3 GHz processor and 8DB RAM (Apple Inc.,
Cupertino, CA, USA).

5.1. Algorithm Experiment

In this section, we choose 10 cases (Gaspelle1-2, Christ50, Christ75, Christ100, Min27, Min134,
Das88, Das150, Or170) from the typical database in LRP to test the applicability of the designed PSO-TS
algorithm. Based on the previous literature [16,36], the parameters of PSO-TS are set as follows: The
number of the population Np is 20, and the maximum number of the iteration Mp is 500. In this study,
the traditional PSO algorithm is compared with the proposed PSO-TS algorithm. Each of the following
experiments is executed 20 times. The best value is recorded as the optimal result. Table 3 shows the
number of candidate distribution centers (DCs), the number of demand points (DPs), as well as the
detailed computational results of PSO and PSO-TS which include the number of open DCs and the
total distance of dispatch.

Table 3. Computational results of PSO and PSO-TS.

Case Number of DCs Number of DPs
PSO PSO-TS

Number of DCs Total Distance Number of DCs Total Distance

Gaspelle1 5 21 3 544.57 1 545.01
Gaspelle2 5 22 2 892.69 1 898.07
Christ50 5 50 3 1462.01 3 1401.17
Christ75 10 75 7 2448.57 6 2316.46

Christ100 10 100 6 3027.12 6 2895.13
Min27 5 27 3 5744.55 1 5206.01

Min134 8 134 6 31,933.38 6 30,361.27
Das88 8 88 3 2411.84 3 2341.46
Das150 10 150 8 166,473.80 6 161,141.65
Or117 14 117 5 60,203.40 4 56,399.91

We can easily see from Table 2 that, compared with the PSO algorithm, the number of open
distribution centers, and the total dispatch distance of the PSO-TS algorithm, is 100% better excepting
the total dispatch distance of Gaspelle2. Overall, they have a great improvement in the quality of



Int. J. Environ. Res. Public Health 2019, 16, 2982 10 of 18

the solution. Thus, the proposed PSO-TS algorithm in this paper is effective and competitive in
tackling LRP.

5.2. Model Experiment

5.2.1. Experimental Design

In this paper, the distribution data of a location-routing problem about emergency logistics, which
are referred from the literature [22], is used to verify the FLCOLRP model. There are three candidate
distribution centers and 20 demand points. Three types of vehicles are three each. The distance is
the Euclidean distance in the test example. We suppose that between two nodes, the travel time of
the vehicle is equal to the Euclidean distance. Table 4 illustrates the position, maximum capacity and
construction costs of the candidate distribution centers. Table 5 shows the details about the demand
points. Based on this information, the estimated demand can be calculated. The maximal weight,
operation costs and longest distance of vehicles are displayed in Table 6. In order to be fair, the weights
of the multi-objective function (w1, w2, w3) are initially set to 1/3. And we set the other parameters of
the FLCOLRP model according to the former studies [22,31,37], which are shown in Table 7.

Table 4. Parameters of candidate distribution centers.

Distribution Centers Di X Coordinate Y Coordinate Maximum Capacity Wi Construction Costs Ci (CNY)

1 40 5 1500 200,000
2 70 60 2000 250,000
3 20 50 1800 300,000

Table 5. Parameters of demand points.

Demand Points Ni X Coordinate Y Coordinate Optimistic Demand [EDi]
o Likely Demand [EDi]

l Pessimistic Demand [EDi]
p

4 25 85 129 135 150
5 5 45 369 375 387
6 42 15 66 75 84
7 38 5 141 153 165
8 95 35 128 135 150
9 85 25 69 75 82

10 62 80 180 195 212
11 58 75 129 135 150
12 50 50 64 75 82
13 18 80 269 275 280
14 25 30 63 69 72
15 15 10 129 135 143
16 45 65 60 69 78
17 65 20 245 251 257
18 31 52 165 177 186
19 2 60 39 45 52
20 5 5 105 111 117
21 57 29 119 123 138
22 4 18 159 165 171
23 26 35 296 305 308

Table 6. Information about three types of vehicles.

Number of Vehicles Vh Maximal Weight Mh Operation Costs Hh (CNY) Longest Distance Oh (km)

1–3 100 500 350
4–6 150 700 360
7–9 200 900 370



Int. J. Environ. Res. Public Health 2019, 16, 2982 11 of 18

Table 7. Parameters related to the objective function.

Parameters Value

S1 8 CNY/km
S2 150 CNY/kg
µ 0.165 L/km
u0 0.377 L/km
τ 2.63 kg/L

5.2.2. Experimental Results

Urgent time, limited costs and environmental protection are all important in emergency logistics.
From the overall emergency logistics’ point of view, the delivery time of relief supplies, the total costs
for emergency logistics system and the carbon emissions need to be considered at the same time.
Thus, we do the following experiments to achieve overall system optimization. Each experiment is
implemented 20 times, and the numerical value with the best result is recorded.

First of all, we do the initial experiment when the w1, w2 and w3 have the same value 1/3. The
experimental results show that the minimum delivery time is 1035.36, the minimum total cost is
508,982.92, and the minimum carbon dioxide emission is 488.79.

Next, in order to compare the results of the initial experiment, we calculate the minimum values
of the delivery time F, the total costs C, and the carbon emissions Eco2 respectively by setting different
values of w1, w2 and w3 (0,1). Table 8 shows the contrast experimental results, including the specific
values of w1, w2 and w3. The difference between the results of the initial experiment and the results of
the contrast experiment, shown in Figure 3, can be described by parameter Gap (Gap = (the results of
the initial experiment- the results of the contrast experiment)/the results of the contrast experiment).

Table 8. The results of the contrast experiment.

Value MinF (min) MinC (NCY) MinEco2 (kg)

w1 = 1, w2 = w3 = 0 851.21 - -
w2 = 1, w1 = w3 = 0 - 458,997.82 -
w3 = 1, w1 = w2 = 0 - - 365.76
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Figure 3. The difference between the initial experiment and the contrast experiment.

From the results in Figure 3, we can observe that the highest percentage of the difference belongs
to the carbon emissions reaching 33.64%. The percentages of the difference between the delivery time
and the difference between the total time are 20.01% and 10.89%, respectively. Obviously, there is still a
certain gap between the minimum values of the initial experiment and the minimum values of the
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contrast experiment. For the best of the entire system, it is necessary to reduce this gap. It can be
guessed that the minimum of the multi-objective function is related to the values of w1, w2 and w3.

Then, in order to study the relationship between the minimum of the multi-objective function
(MinF, MinC and MinEco2) and the weight of w1, w2 and w3, we do following tests thought setting
series values of w1, w2 and w3 around the initial value 1/3. These tests consist of three types of trials
(w1 = 1/3, w2 = 1/3, w3 = 1/3). The other weights for each type of trial are chosen from the five given
values (1/12, 1/6, 5/12, 1/2, 7/12). The results of all experiments, including the values of w1, w2

and w3, the minimum of multi-objective function (MinF, MinC and MinEco2 ) and the optimal value of
the total emergency logistics system (Optimal) are shown in Table 9. In this study, the fitness function
represents the optimal value of the total emergency logistics system. Figure 4 is composed of three-line
charts (w1 = 1/3, w2 = 1/3, w3 = 1/3) describing the changing trends of the minimum of the delivery
time, the total costs and the carbon emissions. The changing trends of the total optimal results of the
emergency logistics system are shown in Figure 5.

Table 9. The results of the three types of experiments (w1 = 1/3, w2 = 1/3, w3 = 1/3).

Value MinF (min) MinC (NCY) MinEco2 (kg) Optimal

w1 = 1/3

w2 = 1/12,
w3 = 7/12 1 851.21 757,509.68 378.39 1.07

w2 = 1/6,
w3 = 1/2 2 913.09 757,804.73 368.25 1.14

w2 = 5/12,
w3 = 1/4 3 1088.24 509,605.92 451.42 1.19

w2 = 1/2,
w3 = 1/6 4 1088.24 509,605.92 451.42 1.18

w2 = 7/12,
w3 = 1/12 5 1120.93 486,267.49 453.73 1.15

w2 = 1/3

w1 = 1/12,
w3 = 7/12 1 1097.92 574,483.42 435.06 1.20

w1 = 1/6,
w3 = 1/2 2 1129.94 509,939.58 461.62 1.22

w1 = 5/12,
w3 = 1/4 3 1094.38 509,655.09 484.96 1.23

w1 = 1/2,
w3 = 1/6 4 1058.95 508,971.64 504.65 1.21

w1 = 7/12,
w3 = 1/12 5 1058.95 508,971.64 504.65 1.20

w3 = 1/3

w1 = 1/12,
w2 = 7/12 1 1129.57 509,536.58 458.94 1.17

w1 = 1/6,
w2 = 1/2 2 1139.40 509,615.18 431.38 1.17

w1 = 5/12,
w2 = 1/4 3 1037.23 458,997.82 457.41 1.17

w1 = 1/2,
w2 = 1/6 4 851.21 757,509.68 378.39 1.11

w1 = 7/12,
w2 = 1/12 5 862.71 757,801.72 365.76 1.06
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Figure 4. (a) The changing trends of the minimum of the delivery time, the total costs and the carbon
emissions, when w1 = 1/3. (b) The changing trends of the minimum of the delivery time, the total costs
and the carbon emissions, when w2 = 1/3. (c) The changing trends of the minimum of the delivery time,
the total costs and the carbon emissions, when w3 = 1/3.

From the results in Table 9, Figures 4 and 5, we can observe the following findings:

1. The minimum delivery time is better when the weight of total costs becomes smaller, and the
weight of the carbon emissions becomes bigger. When the weight of delivery time w1 = 1/3 the
minimum delivery time goes up gradually with the increase of the weight of total costs w2; when
the weight of total costs w2 = 1/3, the minimum rises initially, then goes up as the weight of
delivery time w1 go up; when the weight of carbon emissions w3 = 1/3, this figure goes up, then
declines to the lowest value 851.21, finally rises slightly with the increase of w1. The range of the
minimum delivery time is from 851.21 to 1139.40.

2. The minimum of total costs is better when the weight of delivery time and the weight of carbon
emissions become smaller. When the weight of delivery time w1 = 1/3 , the minimum of total
costs levels out initially and declines afterwards with the increase of the weight of total cost w2;
when the weight of total costs w2 = 1/3, the minimum rises slightly, then drops dramatically,
after that remains unchanged as the weight of delivery time w1 goes up; when the weight of
carbon emissions w3 = 1/3, this figure remains stable, then declines slowly, finally rises to the
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highest value 757,801.72 with the increase of w1. In brief, the minimum of total costs is between
757,801.72 and 458,997.82.

3. The minimum of carbon emissions is better when the weight of delivery time becomes bigger,
and the weight of total costs becomes smaller. When the weight of delivery time w1 = 1/3 , the
minimum delivery time drops a little, then rises steadily with the increase of the weight of total
costs w2; when the weight of total costs w2 = 1/3, the minimum gradually increases reaching
the highest value 504.65 as the weight of delivery time w1 goes up; when the weight of carbon
emissions w3 = 1/3, this figure rises and falls, finally decreases to the lowest value 504.65 with
the increase of w1.

4. The changing of the weight of w1, w2 and w3 has an influence on the optimal result of the total
emergency logistics system. From Table 9 and Figure 4, we can see that the optimal result rises,
then declines when w1 = 1/3, and w2 = 1/3; while this result remains stable, then drops when
w3 = 1/3. Although all of them have a downward trend, the result of w3 = 1/3 decreases more
quickly than others. What’s more, the optimal result of the total emergency logistics system
reaches the highest value 1.23 when w2 = 1/3, w1 = 5/12, w3 = 1/4. It reaches the lowest value,
1.06, when w3 = 1/3, w1 = 7/12, w2 = 1/12.
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According to the above results, in order to optimize the entire emergency logistics system, we
had to set w1, w2, w3 as 7/12, 1/12, 1/3, respectively, which means that delivery time is the most
important, followed by environmental protection, and finally operation costs. It just coincides with
the main characteristics of emergency logistics and low-carbon transportation. When w1 = 7/12,
w2 = 1/12, w3 = 1/3, the results of the experiment show that three distribution centers are opened
and seven vehicles are chosen in the test example. The specific selection of distribution centers and
arrangement of vehicle routing can be seen in Table 10.

Table 10. The service order of vehicles (w1 = 7/12, w2 = 1/12, w3 = 1/3).

Number of Vehicle Service Order Number of Vehicle Service Order

2 DC3-11-DC2 7 DC3-18-23-DC3-DC1-6-DC1
3 DC3-4-5-19-DC3-DC2-10-DC2 8 DC3-20-DC1-DC2-8-16-13-DC3-DC2-9-DC2
4 DC3-14-DC3 9 DC1-15-DC1-DC3-12-DC2
6 DC1-7-22-17-21-DC1

Finally, for the reason that the candidate distribution centers are all open in the example above, we
add two new candidate distribution centers into the case for the sake of the application of the FLCOLRP
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model. The position of the two new candidate distribution centers is randomly chosen from the array
100× 100. The maximum capacity and construction costs of the candidate distribution centers are set
based on the value of example. Table 11 displays the parameters of the new candidate distribution
centers in detail. The experimental results about the service order of vehicle are demonstrated in
Table 12.

Table 11. Parameters of two new candidate distribution centers.

Distribution Centers Di X Coordinate Y Coordinate Maximum Capacity Wi Construction Costs Ci (CNY)

4 5 20 1900 240,000
5 90 80 1500 300,000

Table 12. The service order of vehicles (w1 = 7/12, w2 = 1/12, w3 = 1/3).

Number of Vehicle Service Order Number of Vehicle Service Order

2 DC4-22-DC4 6 DC1-9-DC1

4 DC3-6-DC4 7 DC3-7-13-16-DC3-DC2-10-19-12-14-DC2

5 DC4-25-DC3-DC1-8-11-20-
DC3-DC1-17-23-DC1 8 DC3-21-24-DC4-DC3-15-18-DC2

As shown in Table 12, when the number of candidate distribution centers is five, the number of
used vehicles is six (2,4,5,6,7,8) and the open distribution centers is four (DC1, DC2, DC3, DC4). Even
though the number of candidate distribution centers is more, the results of the experiment are better.
Besides, we still can obtain a good scheme of distribution. It indicates that the applicability of the
FLCOLRP model in this study is good.

5.3. Analysis of Results

For the location-routing problem in emergency logistics, the multi-objective FLCOLRP model is
built in this paper aiming at the optimization of the total emergency logistics system. By taking the
minimum delivery time, total costs and carbon emissions as the objective functions, the routing plan
that considers time, economic and environmental benefits can be obtained, thereby achieving “rapid
and green” allocation scheme. Considering carbon emissions into the objective function is necessary
for this environment with frequent natural disasters and bad climate. However, it is difficult to achieve
the minimization of the three objective functions at the same time.

In this paper, by assigning weights to the three objective functions, we transform them into
single objective function achieving the overall optimality of the emergency logistics system. The main
summings-up are listed as follows:

1. The minimum of the multi-objective function is closely related to the value of weight
(w1, w2, w3. When w2 = 1/3, w1 = 5/12, w3 = 1/4, the emergency logistics system obtains
the overall optimality.

2. Though setting the different weight of objective functions and adding several candidate
distribution centers, it is proved that the built FLCOLRP model in this study is applicable
for LRP in emergency logistic.

Based on the above research, some constructive suggestions are put forward. From the perspective
of the government emergency departments, firstly, they must strengthen people’s awareness of
environmental protection, and improve education on how to take action after the disaster. Secondly,
before the disaster, rescue measures have been planned, such as the construction of the rescue center,
planning of the vehicle path, etc. As we all know, time is very urgent during the rescue, the cost of
rescue is limited, and vehicles release carbon dioxide while delivering supplies. The government
emergency departments can refer the results of this study to weigh the importance of the three to
obtain the overall optimization of the emergency logistics system. Thirdly, carbon emissions during
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transportation should be emphasized. As a proverb says, a small leak will sink a great ship. The
frequent occurrence of natural disasters is inseparable from climate change. From the perspective of
the public, in order to minimize losses, it is important to learn to save the energy, which can extend the
time as much as possible waiting for rescue. In addition, they must be educated that the greenhouse
effect is one of the causes of frequent natural disasters, and take measures to protect the environment.
For example, people can go out on foot or by public transportation, instead of private cars for the
reduction of carbon emissions.

6. Conclusions

With the frequent occurrence of natural disasters, the lives and property of the people have already
been caused by serious damage. However, natural disasters are closely related to environmental
changes caused by human activities. The importance of environmental issues should be taken seriously.
Thus, in the distribution of materials for emergency logistics, it is necessary to put carbon emissions into
the overall optimal of emergency logistics for environmental protection and sustainable development.
In this paper, aiming at the location–routing problem in the distribution process of relief supplies,
the FLCOLRP model is established and solved by the hybrid PSO-TS algorithm. An example of a
post-earthquake rescue is used to validate the established model. The minimum delivery time, total
costs and carbon emissions are calculated respectively as the reference for subsequent experiments.
Finally, the weight of the multi-objective function is ensured by a series of experiments to obtain
the overall optimization. Based on the results, some suggestions are provided for the management
department of emergency logistics and the citizen.

In this study, we obtain the overall optimization of emergency logistics through different settings
for weight parameter values. However, we conduct comparative experiments around the weight value
1/3, due to experimental limitations. In future research, extensive and comprehensive comparative
experiments are supposed to apply to the FLCOLRP model to get better overall optimization results.
Besides, in a real emergency distribution environment, that emergency supplies are of various types can
be considered into emergency logistics. What’s more, “embodied pollution” which can be considered
into the emergency logistics system, is a new field about sustainable research.
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