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Stabilizing a metalloid {Zn+>} unit within a
polymetallide environment in [K5Zn,oBitg]1®~
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The access to molecules comprising direct Zn-Zn bonds has become very topical in recent
years for various reasons. Low-valent organozinc compounds show remarkable reactivities,
and larger Zn-Zn-bonded gas-phase species exhibit a very unusual coexistence of insulating
and metallic properties. However, as Zn atoms do not show a high tendency to form clusters
in condensed phases, synthetic approaches for generating purely inorganic metalloid Zn,
units under ambient conditions have been lacking so far. Here we show that the reaction of a
highly reductive solid with the nominal composition KsGa,Bi, with ZnPh, at room tem-
perature yields the heterometallic cluster anion [K5Zn,oBi1g]6~. A 24-atom polymetallide ring
embeds a metalloid {Zny,} unit. Density functional theory calculations reveal multicenter
bonding, an essentially zero-valent situation in the cluster center, and weak aromaticity. The
heterometallic character, the notable electron-delocalization, and the uncommon nano-
architecture points at a high potential for nano-heterocatalysis.
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he use of nontoxic elements for applications in chemical

synthesis, as well as for innovative and harmless materials

is highly desirable. Zinc and bismuth are such nontoxic
metals, hence enjoying high reputation in this context. However,
especially zinc is predominantly found in the +II oxidation state
in its compounds, owing to the inherently high stability of the
corresponding 3d'0 electronic configuration. For this, one branch
of contemporary zinc chemistry is dedicated to the formation of
low-valent zinc compounds for enhancing its chemical reactivity.
A straightforward strategy toward low-valent metal compounds
includes the formation of metal-metal bonds, hence approaching
the metallic state eventually, yet in molecular compounds. Most
metals in the periodic table of the elements have been known to
form metal-metal-bonded molecules, with some exceptions that
represent a particular challenge to synthetic chemists. The first
species with a Mg-Mg bond, for instance, was reported in 2007
(ref. 1), and also the synthesis of the first compound comprising a
covalent Zn-Zn bond was reported as late as in 2004 for
Cp*Zn-ZnCp* (ref. 2). In the meantime, further species of the
type RZn-ZnR were added, including a compound with Gey cages
replacing the organic substituents’, as well as its triangular Zn(I)/
Zn(1I) derivative [CpsZns]t (ref. 4), and the lower-valent variant
Cp*Zn-Zn-ZnCp*, including a formal Zn(0) atom’. In-depth
investigation of such species during the past 15 years indicated
extraordinary reactivity and activation properties, which opened
up another branch of reactive metalloid compounds with rela-
tively benign metals>0-10, However, metals that do not tend to
readily form metal-metal bonds are also unlikely to form larger
aggregates, so-called metalloid clusters, under ambient tempera-
tures and pressures—which immediately raises the exciting
question, how such virtually inaccessible clusters would behave, if
an experimental access was actually found.

Gas-phase studies of zinc clusters that were generated in a
magnetron sputter gas aggregation source indicated unusual
electronic properties, which reveals the coexistence of insulating
and metallic properties!"12. This has been a tremendous
inspiration for synthetic groups that yearned for the isolation of
Zn, aggregates with x>3 in condensed phases. First, discrete
clusters containing organozinc units with up to ten Zn atoms,
were reported very recently by the Fischer group, in which the
Zn, subunits are protected and kinetically stabilized by organic
substituents like alkyl groups or Cp* (refs. 13-14). Besides this, Zn
clusters were only found as guests in Zeolite X (ref. 1°) or other
porous materials'®, and they were identified as subunits in neat
intermetallic phases!”-18. Hence, clusters with ligand-free Zn
atoms, which would enable direct access to the Zn sites in reac-
tivity studies, are still lacking.

Heterometallic and intermetalloid clusters can be viewed as
molecular mimics of heterometallic materials!®-22. Usually, the
number of heteroatomic bonds is maximized in such clusters for
a gain of bond energy through heteropolar interactions, but there
are a few exceptions to this, such as [SbsAusSbs]3~ (ref. 23), or
(GeyBiyg)*~ (ref. 24), that exhibit a clear segregation of the
involved atom types. Notably, both clusters refer to elemental
combinations that are virtually immiscible in the solid state.
Hence, we aimed at the formation of larger metalloid Zn aggre-
gates by synthesizing heterometallic clusters with elemental
combinations lacking size match.

Only three heterometallic clusters with Zn and Bi atoms have
been reported to date: the binary intermetalloid cluster anion
[Zn@ZngBi,@Bi,]3~ (ref. 2°), and the related ternary species
[Zn@ZnsTt;Biz@Bis]4~ (Tt = Sn (ref. 26), Pb (ref. 27)). In the first
case, the Zn atoms are found in a triangle and two dumbbells in
the cluster shell. In the second, they show some segregation, with
five Zn atoms forming weak interaction within a five-membered
ring. The quoted clusters were obtained by reactions of KsBi, or

[K(crypt-222)],(Tt,Bi,)-en, respectively, with ZnPh, (crypt-222
=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8 |hexacosan; Tt
= Sn, Pb; en = ethane-1,2-diamine). In both cases, population
analyses show that the natural charges of the involved atoms are
mostly +1 (Zn) and —1 (Bi). We assumed that further aggrega-
tion of Zn atoms might be obtained under conditions that let the
reduction of ZnPh, proceed further toward the finally metallic
Zn. Recent investigations using the binary anion (GaBiz)2~
indicated a tendency of this anion to release elemental Ga® during
heterometallic cluster formation, hence releasing two electrons
per formula unit in situ that can be used to form metalloid
clusters23-2%, This precursor compound, however, did not prove
suitable for reactions with ZnPh,, as no change of the reactants
was observed. A ternary mixture of the nominal composition
KsGa,Bi, (ref. 39) in contrast (with five negative charges per six
metal atoms instead of two negative charges per four atoms),
seemed to be reductive enough: indeed, the precursor is able to
reduce ZnPh, to form the heterometallic cluster [K,Zn,Bi;¢]®™,
with an essentially zero-valent situation at the Zn atoms in the
cluster center and distinct electron delocalization within its
extraordinary molecular architecture.

Here, we report an approach to molecular Zn clusters via
heterometallic cluster synthesis that was developed by systematic
investigations of potential elemental combinations in corre-
sponding reactions in solution.

Results

Synthesis and characterization of [K(crypt-222)]¢[K,Zn,,Bi¢]
(1). The reaction of a solid with the nominal composition
K5Ga,Bi, with ZnPh, in a 1:2.5 molar ratio in en/crypt-222 at
room temperature, subsequent filtration and layering of the
solution with toluene affords thin, black crystals of the most
probable composition [K(crypt-222)]4[K,Zn,¢Bijg] (1; Supple-
mentary Fig. 1). An X-ray structure analysis reveals the presence
of the cluster anion [K;Zn,oBi6]® (1a), comprising a homoa-
tomic subunit of 12 directly bonded Zn atoms. Despite being
obtained from solution, 1a represents a ligand-free nanocluster
comprising 36 metal atoms, hence exceeding the number of metal
atoms reported recently for [Rh;@Sn,4]>~ (ref. 31).

The cluster anion la is shown in Fig. 1. It possesses an
idealized point group symmetry of D,4, which is reduced to C,, in
the crystal structure due to slight distortions. The C, axis runs
through two K cations that are coordinated above and beneath a
bimetallic, crown-like [Zn,Bi;¢]8~ cluster; besides K1 and K2,
the two vertical mirror planes include Bi2, Bi4, Zn5 and Bi5, Bi6,
Zn6, respectively. The outer dimensions of the nanocluster 1a are
12.60 A (Bi2--Bi2¢), 12.55 A (Bi5--Bi5¢), 11.36 A (Bil--Bil¢), and
6.86 A (K1--K2). During the reaction, all Zn atoms released their
Ph groups to be ligand-free atoms within the cluster. Unusually
high, yet reasonable, displacement parameters in the structure of
la point to orientational disorder of the metal atoms over close
positions. Obviously, this also involves disorder of the cations,
which in the presence of the heavy atoms of the anions hampers
the localization of the atomic positions of the light atoms of the
cryptate ligands from the Fourier map. Yet, the spatial demand
around the K atoms (Supplementary Fig. 2 and Supplementary
Discussion) and the features of the electron density distribution in
the Fourier maps agrees with the assumption of [K(crypt-222)]*
cations. To reduce the impairment of the refinement of the
anionic cluster by an incomplete model, the influence of these
parts was detracted from the data by the back Fourier transform
method32. The crystal data and experimental parameters of the
structure determination of 1 (CCDC 1969162) are collected in
Supplementary Table 1. Figure 1c, d illustrates the packing of
cations and anionic clusters. The latter are arranged in two types
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Fig. 1 Crystal structure of [K(crypt-222)1¢[K,Zn,oBiis] (1). a View onto the oblate molecule [K>Zn,oBi]¢~ (1a) possessing idealized Doq symmetry,
which is reduced to crystallographic C,, symmetry. b Side view, upon an additional rotation about the C, axis running through K1 and K2 (by ~45° with
regard to the orientation above). Displacement ellipsoids are drawn at 30% probability. Selected distances [Al: Zn1-Zn12 2.756(5), Zn2-Zn2° 2.831(5),
Zn3-Zn4 2.812(4), Zn5-Zn(3,4) 2.664(3), 2.682(3), Zn6-Zn(32,42) 2.681(3), 2.674(3), Zn5-Zn6 2.544(3); Zn1--Zn(3,4) 2.879(4), 2.904(4); Bil--Zn

(3,4) 2.893(3), 2.885(2); Bi1-Zn(1,22) 2.683(3), 2.692(3), Bi2-Zn1 2.701(3), Bi5-Zn2 2.699(3), Bi3-Zn3 2.818(2), Bi4-Zn4 2.798(2), Bi7-Zn32 2.809(2),
Bi6-Zn42 2.816(2), Bi4-Zn1 2.930(3), Bi7-Zn2 2.921(3); Bi2-Bi3 3.053(2), Bi5-Bi6 3.0414(16); K1--Bi3,3¢ 3.528(2), K2--Bi4,4¢ 3.741(3), K2--Bi6,6¢ 3.533

(2), K1-+Bi7,7¢ 3.725(3). Symmetry codes: 2 %2 — x, y, z; by 1, Y,z €% —x, Ya—y, z. ¢ View of the packing of [K»Zn,oBi;]®~ anions and K+ cations along
the crystallographic ¢ axis. d View of the packing of anions and cations along the crystallographic b axis. C, N, and H atoms are not shown.

of pillars along the crystallographic ¢ axis, with inverse
orientations of the clusters with respect to the (idealized) S, axis,
and with the clusters shifted by ¢/2 relative to each other.

The most intriguing feature within the [Zn,(Bic]®~ cluster
structure is the assembly of 12 Zn atoms (Zn3-Zn6 and
symmetry equivalents) in the cluster center. These atoms are
arranged in four corner-sharing tetrahedra that form a nearly
undistorted inner Zn, square (angle Zn6-Zn5-Zn6¢ 90.48(14)°).
The tetrahedra are not regular, with a short inner Zn5-Zn6 edge
(2.544(3) A), somewhat longer contacts to the outer edges (2.664
(3)-2.681(3) A) and an elongated outer Zn3-Zn4 edge (2.812(4)
A). However, the Zn-Zn-Zn angles differ only slightly from ideal
values (56.72(9)-63.48(8)°). As Ga and Zn atoms cannot be easily
distinguished by means of common X-ray diffraction, the
question whether Ga atoms might be involved in the structure
instead of or in addition to Zn atoms was clarified by energy-
dispersive X-ray spectroscopy (EDS) on single crystals of 1

(Supplementary Figs. 3, 4, and Supplementary Table 2), and by
DFT calculations (vide infra). Both clearly rule out the presence
of any Ga atoms in the cluster anion 1la.

The inner {Zn;,} unit is embedded in a macrocycle consisting
of the eight remaining Zn atoms (Znl, Zn2, and symmetry
equivalents) and 16 Bi atoms (Bil-Bi7 and symmetry equiva-
lents), to which it is bonded by Zn-Bi contacts (2.798(2)-2.893
(3) A). The atoms of the {ZngBi,s} moiety are connected by
different metal-metal bonds: Zn—Zn (2.756(5), 2.831(5) A), Bi
—Bi (3.053(2), 3.0414(16) A) and Zn—Bi (2.683(3)-2.930(3) A).
The nature of the interatomic interactions were studied in detail
by means of quantum chemical calculations.

Quantum chemical investigation of the bonding in
[K,Zn,Bi6]%~ (1a). We optimized3334 the geometric structure
at DFT level (TPSS/dhf-TZVP/grid m3). The calculated molecular
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Fig. 2 Chemical bonding in [KZanoBim]s* (1a). a lllustration of the bonding situation from a Boys localization procedure for the valence orbitals followed
by calculation of atomic Mulliken contributions to each localized molecular orbital (LMO) and neglecting contributions <20%. Resulting two-center bonds
are displayed by solid lines, three-center and four-center bonds by planes and polyhedrons, respectively. b Results of a NPA performed on [Zn,oBiig18~,
with atoms that possess charges of the given ranges drawn in the following colors: +0.0...4-0.1 (red), +0.7...4+0.9 (yellow), —1.0...—1.1 (light blue), and
—1.5...—1.6 (dark blue). ¢ LMOs A-D representing the lone pairs at each of the Bi atoms, LMOs E-J representing Zn-Bi and Bi-Bi two-center bonds (with H
and J showing significant contributions from one further atom), and LMOs K and L representing closed Zn-Zn-Bi three-center bonds and four-center bonds
within the four Zn,4 subunits forming the central {Zn;,} unit. Amplitudes are drawn at 0.05 atomic units (a.u.), numbers refer to the number of equivalent

LMOs of the shown type.

orbitals show a significant HOMO-LUMO gap of 1.4 eV, but no
further significant gaps in the region of frontier orbitals, which
indicates that the total electron number and thus the assumed
composition are correct (an isoelectronic alternative, including Ga
atoms in the cluster center would require a lower overall charge,
hence “[K,Zn;sGa,Bij¢]2~”, which is clearly ruled out by the
detection of six additional K* counterions in the crystal structure
of 1, and the corresponding electron density representing six
disordered cryptand molecules in the voids between the anions).
For a plausible assignment of bonds in [K,Zn,(Bi;s]°~, we carried
out a Boys localization procedure3® for the 164 valence orbitals
and calculated the atomic Mulliken contributions?®37 to each
localized molecular orbital (LMO). The results are illustrated in
Fig. 2. For each of the LMOs, one representative is shown in
Fig. 2c. When neglecting atomic contributions <20%, this reveals
the following picture. A total of 116 LMOs represent one-center
contributions: 20 x 5 LMOs for the Zn(d) orbitals and 16 LMOs

A-D, representing one lone pair for each of the 16 Bi atoms. A
total of 32 LMOs E-H represent Zn-Bi two-electron-two-center
bonds (straight lines): eight Zn-Bi bonds within the upper inner
ring (E), another eight within the lower inner ring (F), and 16
within the outer ring (G, H). All of these bonds are polarized,
which is evident from the Mulliken contributions to the LMOs,
which amount to 52-66% for Bi and to 22-41% for Zn (for a more
refined picture we note that the two-center bonds in the outer ring
show contributions from the Zn atoms in the inner rings (typically
10%) and vice versa, in particular LMO H). Among the remaining
16 LMOs, 12 connect the outer ring with the two inner rings: 4
Bi-Bi bonds (I), 4 three-center bonds (blue triangles, K), and four
more bonds (blue triangles, J), which also may best be viewed as
three-center bonds (the shown representative as well as two of its
equivalents binds mainly to the lower inner ring, whereas the
fourth binds mainly to the upper inner ring. This is an unphysical
break of symmetry from the localization procedure, and a less
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strict interpretation as three-center bonds appears more reason-
able). The inner four Zn atoms are involved exclusively in the
finally remaining four LMOs (gray tetrahedra, L) representing
four-center bonds that connect the unique Zn,, unit within 1a.

A natural population analysis (NPA)3® performed on the
optimized structure of 1a (Fig. 2b) yields charges of +0.05 for the
inner four Zn atoms and +0.71 for the other eight Zn atoms. The
latter is a typical value for an oxidation state of +I (compare, for
instance, ZnCl: +0.71, ZnBr: +0.67), so this unit as a whole is
clearly low valent. We note in passing that this {Zn;,} unit as an
isolated species is stable even as a neutral species. Structure
optimizations carried out for charges q=0, +2, +6 (Supple-
mentary Fig. 5) show that the structure of the {Zn;,} moiety
persists in an isolated form, for =0 even with a reasonable
HOMO-LUMO gap of 1.6 eV, indicating the general stability of
this cluster unit. However, a second local minimum was
found that is less stable for {Zn;,}** (457 kJ/mol) and {Zn;,}*>*
(+9 kJ/mol), but is favorable for {Zn;,}* (—138kJ/mol). In
summary, the calculations confirm 1la as being a cluster with a
large low-valent subunit of group ten metals known to date.
Efforts to experimentally probe the atomic charges by means of
X-ray photoelectron spectroscopy (XPS) failed so far owing to the
high sensitivity of the very thin crystals, which spontaneously
oxidized during sample preparation and thereupon produced XPS
signals of Zn?T and Bi** only. Further studies are underway to
first of all increase the crystal size.

Relationship of the {ZngBi;c}7~ unit in la to porphine.
Remarkably, the {ZngBi¢}9~ wunit (g=38...14 embedding
{Zn,}*0--6%) exhibits a certain relationship with the organic
macrocycle porphine, C,)N4H;4 both rings possess 24 ring
atoms, and a similar number of s and p valence electrons (104 for
{ZnsBi16}87 or 110 for {anBi16}l47, vs. 114 fOr C20N4H14). In
both cases, five-atomic units (Zn,Bi; vs. C4N) are connected by a
one-atom bridge (Bi vs. C), with lone pairs in 1a replacing the H
substituents of porphine. In contrast to porphine, the {ZngBi;¢}9~
metallacycle is not known as a separate entity, but both macro-
cycles are capable of accommodating metal atoms or ions. Of
course, owing to the very different nature of the involved ele-
ments, the detailed behavior of both macrocycles differs. Very
obviously, owing to the larger atomic sizes, the {ZngBi;¢}9™ tire-
shaped unit can accommodate 12 Zn atoms, while porphine and
its porphyrin derivatives usually coordinate one single ion only.
Furthermore, with Bi2-Bi7 (and symmetry equivalents) being
located above or beneath the plane defined by the other twelve
atoms (Bil, Znl, Zn2, and symmetry equivalents), the five-atom
unit in la is not planar. It represents a nearly planar Zn,Bi,
diamond that is inclined with respect to the molecule’s equatorial
plane, with Bi3 and Bi6 (and symmetry equivalents) being further
exposed by binding exclusively to Bi2 and Bi5, respectively (and
symmetry equivalents). The reason for this exceptional archi-
tecture of the {ZngBi;c}9~ moiety is found (a) in the covalently
bonded Znl-Znl’ and Zn2-Zn2’ pairs, and (b) in the way the
macrocycle embeds the {Zn;,} unit. The latter might be under-
stood as the natural way of how a very flexible, porphine-like
macrocycle with the respective elemental combination and elec-
tron count can structurally respond to this uncommon guest
moiety. The high flexibility of purely inorganic mimics of por-
phine was recently shown on the example of [HggTec]8
(ref. 3%). However, while the latter possesses 120 valence electrons,
hence more valence electrons than porphine, the electron count
in {ZngBi;c}9™ is lower than that in the organic macrocycle. Thus,
the porphine-related arrangement of atoms observed in 1a can be
viewed as an electron-poor variant of the quoted 24-atom mac-
rocycles. To examine the applicability of this thought experiment,

we were interested to see whether the polymetallide unit would
also show all-metal aromaticity, such as observed for several
smaller polymetallic ring systems*0-42, To study aromaticity
based on the magnetic criterion, we calculated the magnetically
induced current density of the [Zn,(Bi;c]® cluster based on the
magnetic criterion344. This was done with GIMIC*>46, using the
response to the magnetic field obtained from TURBOMOLE (for
details, see the Supplementary Discussion)*”. The cluster sustains
a net diatropic ring current of 0.43-7.0 nA/T, which is obtained
upon integration along a plane perpendicular to the molecular
plane and parallel to the external magnetic field (Supplementary
Figs. 6 and 7 and corresponding discussion). Remarkably, this is
about a fifth of the ring current calculated for porphine (25.4 nA/
T at the same computational level) or zinc porphyrine (25.1 nA/
T), and about a third of the value calculated for benzene
(11-15nA/T)*>*4. We note that the strength of the ring current
depends on the number of electrons participating, the surface, and
the topology. It is not a direct measure of aromaticity**. Further-
more, the nucleus-independent chemical shift (NICS) approach*®
was utilized. The NICS values of [K,Zn,Bi;¢]®~ and [Zn,Bi;¢]8~
are —4.2 and —4.4 ppm, respectively. For comparison, we obtain
—8.0 ppm for benzene and —14.6 ppm for porphine. Considering
the core electrons in a scalar-relativistic all-electron theory results
in —3.6 ppm for [K,Zn,oBi 6]~ and —4.2 ppm for [Zn,oBi;6)8~.
Thus, the weak aromaticity of the [K,Zn,(Bi;¢]®~ and [Zn,oBi; ]~
cluster in 1a is notable—in contrast to the properties of the
(topologically more porphine-like) [HgsTe;s]8~, which exhibits
essentially no global ring current (0.24 nA/T)%, and an insignif-
icant NICS value of 1.3 and 1.2 ppm, respectively.

Coordination properties of the {Zn,Bi, s}~ polyanion in 1a.
Another point worth mentioning is the fact that the oblate
{Zn,Bi 6}~ polyanion in the trimetallic cluster 1a coordinates
two KT ions, in an inverse-sandwich-type manner, at Bi--K dis-
tances of 3.528(2) or 3.533(2) A (Bi(3,6)-K), and 3.741(3) or
3.725(3) A (Bi(4,7)--K). Figure 3 illustrates the calculated elec-
trostatic potential with and without coordination of K*. The
polyanion {Zn;¢Biy}3~ bears a relatively even (negative) elec-
trostatic potential, and the four Bi atoms that are exposed in the
inner ring of the cluster (Bi3, Bi4, Bi6, and Bi7) are attractive
enough to trap the Kt cations, which polarize these Bi atoms
upon coordination.

Notably, the K ions prefer this site although an excess of the
cation-sequestering agent crypt-222 was present during the
formation and crystallization of the title compound. This is a
rare observation, which was reported for heterometallic clusters
in a few cases only, [NbAsg]3~ (ref. %°), [(MesCu),Ge,]4~
(ref. %9), [M;_,@Sno]*~, (M/x=Ni/0 (ref. 5!), Co/=~0.32
(ref. °2)), and [AusGess]®~ (ref. 33). Calculated energies of
exchange reactions of 1la with crypt-222 or 18-crown-6 (18c6),
according to Egs. (1)/(2) and (3)/(4), clearly indicate that the
cluster would lose its Kt cations to the cation-sequestering
agents, if considered as an isolated species (in kJ/mol): —182 [Eq.
(1)], =132 [Eq. (2)], —126 [Eq. (3)], and —76 [Eq. (4)].

[K,ZnyBiyg]* + crypt-222 — [KZnyBiye]" + [K(crypt-222)]", (1)
[KZn,,Bi,g)" + crypt-222 — [ZnyBiy |* + [K(crypt-222)]",  (2)
[K,Zn,,Bi,s]* + 18c6 — [KZny,Bi,¢)"~ + [K(18¢6)]", (3)

[KZn,,Bi )"+ 18c6 — [Zn,Bi,¢]* + [K(18¢6)]". (4)

The same holds for many other cations that were tested this
way, also with Sb or As atoms replacing Bi atoms in 1la
(Supplementary Tables 3-8 and Supplementary Equations (1)-(7).
However, in the crystalline state, the two KT cations remain
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Fig. 3 Electrostatic potential of calculated cluster anions. a, Electrostatic potential of [Zn,oBis]18~. b, Electrostatic potential of [K>Zn,oBiig16~ (1a). Values

are given in atomic units (a.u.).

coordinated—most probably to reduce the overall charge and
allow for the formation of single crystals along with six (instead of
eight) [K(crypt-222)]* counterions.

Discussion

We report on the targeted synthesis of a salt of the heterometallic
cluster anion [K,Zn,oBi;6]® (la), comprising a homoatomic
subunit of 12 Zn atoms, and at the same time a large molecular
architecture, involving 20 Zn and 16 Bi atoms. As shown by
quantum chemical investigations, an inner {Zn;,} unit in la
represents a really metalloid zinc cluster, which is held together
by four-center bonding exclusively. This unit is embedded in a
polymetallide {ZngBi;¢}9~ ring (¢ = 8..14), to which it is con-
nected by three-center and two-center bonds. In striking contrast
to the large number of metalloid clusters of other electron-rich d-
block metals, like the coinage metals Ag and Au, only a few low-
valent organozinc clusters were reported to date. 1a does not only
add to this rare class of compounds, it is at the same time an
example of a purely inorganic metalloid group 12 cluster within
an isolable compound in condensed phase. No low-valent clus-
tering has been reported to date for Cd or Hg, which again sets
the cluster 1a apart from all known compounds involving such
elements. Besides these uncommon features, the anion shows a
relationship with the organic, aromatic macrocycle porphyine: the
24-membered {ZngBi;¢}9~ unit that embeds the inner {Zn,,} unit
possesses a similar valence electron count, and also topological
similarities. Notably, the cluster also shows weak aromaticity,
indicated by the occurrence of a global ring current that was
calculated to be about a fifth of the value calculated for porphine.
Weak aromaticity is also suggested by the NICS approach. Fur-
thermore, the disc-shaped anion coordinates two K+ cations in
an inverse-sandwich-type manner to reduce the overall charge of
the cluster anion, and finally crystallizes as [K(crypt-
222)]6[KyZny0Bij] (1). We envisage using this monodisperse
metal nanocluster, with its heterometallic architecture and its
uncommon electronic features in reactivity studies, and even-
tually nano-heterocatalysis.

Methods

General synthesis details. All manipulations and reactions were performed under
dry Ar atmosphere using standard Schlenk or glovebox techniques, as all Zintl
compounds are sensitive to air and moisture. Elements were used as received: K
lumps, Acros Organics, 98%; Ga pellets, Alfa Aesar, 99,9999% (metals basis); Bi
powder, ChemPur Karlsruhe, 99%. Diphenyl zinc (ZnPh,) was prepared according
to a modified literature procedure®: a 1:2 mixture of ZnCl, (0.2 mol/l in THF) and
PhMgBr (1.3 mol/l in THF) in dry THF was stirred for 3 h at ambient temperature,
before the solvent volume was doubled by addition of dioxane for precipitation of
ZnPh, as colorless crystalline powder. The en and N,N-dimethylformamide (DMF;
Aldrich, 99.8%) were distilled from CaH, and stored over 3 A molecular sieves.

Toluene (Acros Organics, 99%) was distilled from sodium-potassium alloy and
stored over 4 A molecular sieves. Kryptofix® 222 (crypt-222, Merck) was dried
under vacuum overnight. A solid with the nominal composition KsGa,Bi, was
prepared by stoichiometric fusion of the elements in a homogeneous temperature
chamber oven. The elements were weighed into a niobium tube that was sealed
within an evacuated silica ampule. The mixture was heated to 550 °C, kept at this
temperature for 24 h, and then cooled down to room temperature at a cooling rate
of 5K/h, and grinded prior to use.

Synthesis of [K(crypt-222)1¢[K,Zn;oBi16] (1). The starting material with the
nominal composition KsGa,Bis (176 mg, 150 umol), crypt-222 (280 mg, 744 umol),
and ZnPh, (82 mg, 375 umol) were combined in a Schlenk tube and dissolved in
4.5 ml of en. After stirring for 2 h, an intense green solution, indicating the for-
mation of bluish-green Bi,2~ (ref. 3°), was filtered through densely packed glass
wool. The solution was stored at room temperature for one night and layered with
5ml of toluene the next day. Crystals of 1 suitable for SC-XRD (Supplementary
Fig. 1) formed on the wall of the tube after ~10 days. Although the yield per batch
is systematically not high (<50 mg), the compound is the only one to crystallize
from the reaction mixture besides bluish-green crystals of the known by-product
[K(crypt-222)],Bi4, and thus can be obtained in decent amounts by multiple
reactions. While the exact processes during the formation of 1 are not yet clarified
and subject to current in-depth studies, we suggest that it takes place under pre-
cipitation of elemental Ga and Bi upon the redox process, and under release of
Ph~, which may then undergo a potential follow-up reaction with the solvent en to
form benzene and (H,NCH,CH,NH); such processes have been known for
reactions of Zintl anions with metal phenyl compounds®. Compound 1 is soluble
in dry en and DMF. Although the integrity of the highly charged anion in solution
could not be confirmed by means of electrospray ionization mass spectrometry
(ESI-MS; which may be a consequence of the corresponding measurement con-
ditions), room temperature solution 'H NMR of 1 in DMF-d’ indicate the presence
of [K(crypt-222)]% (Supplementary Fig. 10), hence corroborating the solubility
as such.

Single-crystal X-ray diffraction. Several data sets for the X-ray structural analyses
were collected at T'=100(2) K on different crystals with different sizes and on
different diffractometers with Mo-K, radiation and Cu-K, radiation, as it was
difficult to obtain sufficient data, especially at higher angles. In spite of high
absorption, best results were gained from data measured with Cu radiation (A =
1.54186 A) on an area detector system Stoe StadiVari at a GeniX 3D microfocus
source. The structure was solved by direct methods (SHELXT)>7. The refinement
was done by full-matrix-least-squares methods against F with the program
SHELXL3S, It clearly revealed the [K,Zn,(Bi;¢]®~ anion and the K centers of the [K
(crypt)] T cations (Fig. 1). The large displacement parameters are not the result of
an inappropriate absorption correction: in several refinements with different data
sets, with different absorption corrections, and even with the uncorrected original
data, their size shows only small variations (<20%). As this disorder likely influ-
ences the atomic positions of adjacent cations, it is comprehensible that the light
atoms of the cryptate ligands could not be localized from the Fourier map. In
addition, this explains the intensity decay at higher angles in the data.

Energy-dispersive X-ray spectroscopy. The EDS analysis on 1 was performed
using the EDS device Bruker XFlash 5010 attached to a JEOL JIB-4601F SEM
(implemented in a SEM/focused ion beam dual beam system) operating at 15kV.
Data acquisition was performed with at least 100 s accumulation time. For the
analyses, multiple single crystals were tested (Supplementary Figs. 3 and 4, and
Supplementary Table 2).
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Quantum chemical calculations. Structure parameters were optimized with the
functional TPSS>® using basis sets of type dhf-SVP together with corresponding
effective core potentials®! and Coulomb fitting basis sets®2. The negative charge was
compensated with the conductor-like screening model (COSMO)®3, employed with
default parameters, except for the cavity radius of Zn. This was set to 2.223 A, the
default value for both neighboring elements Cu and Ga, as well as for K. The
induced current density was studied with basis sets of type dhf-TZVP®0. Scalar-
relativistic all-electron calculations were carried out with the diagonal local
approximation to the unitary decoupling transformation of the exact two-
component (DLU-X2C) Hamiltonian®4-% and basis sets of type x2c-TZVPall-s%7.
For details, see the Supplementary Discussion. Calculations of [HgsTe; ]38~ were
performed with the same settings as above, but employed the same basis set as in
ref. 39,

Powder X-ray diffraction. Powder X-ray diffraction data were collected on a Stoe
StadiMP diffractometer system equipped with a Mythen 1 K silicon strip detector
and Cu-K, radiation (A = 1.54056 A). A sample of the starting material with the
nominal composition KsGa,Bi, was filled into a glass capillary (0.3 mm diameter),
which was sealed air-tightly with soft wax. The tube was then mounted onto the
goniometer head using wax (horizontal setup) and rotated throughout the
measurement.

Electrospray ionization mass spectrometry. ESI mass spectra (Supplementary
Figs. 8 and 9) were recorded with a Thermo Fischer Scientific Finnigan LTQ-FT
spectrometer in the negative ion mode. All samples were prepared inside of a
glovebox, where they were dissolved in anhydrous DMF and filtered through teflon
syringe filters with a pore size of 0.45 um. The solutions were injected into the
spectrometer with gastight 250 ul Hamilton syringes by syringe pump infusion. All
capillaries within the system were washed with dry DMF for 30 min before, and at
least 10 min in between measurements to avoid decomposition reactions and
consequent clogging.

Data availability

All data generated or analyzed during this study are included in this published article and
its Supplementary information files. The X-ray crystallographic coordinates for the
structure reported in this study have been deposited at the Cambridge Crystallographic
Data Center (CCDC), under the deposition number 1969162. These data can be obtained
free of charge from The CCCDC via www.ccdc.cam.ac.uk/data_request/cif. Input files or
sets of all input parameters for TURBOMOLE and GIMIC are available from the
corresponding authors upon request. See also the Supplementary Discussion for

details on the computational methods noting all non-default parameters for
TURBOMOLE. Cartesian coordinates of the optimized structures are listed in the
Supplementary Information.

Code availability

The TURBOMOLE quantum program suite is available from https://www.turbomole.org
(Accessed 29 August 2020), and the GIMIC code can be obtained from the GitHub
repository at https://github.com/qmcurrents/gimic (Accessed 29 August 2020; open-
source, see also ref. 46). The GitHub repository also includes a sample input for GIMIC.
Additionally, the Supplementary Information contains a short note on the use of GIMIC
with Python version 2.
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