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SHORT COMMUNICATION

Photodynamic therapy-induced alterations in interstitial fluid pressure,
volume and water content of an amelanotic melanoma in the hamster*
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Summary The effect of photodynamic therapy (PDT) on interstitial fluid pressure (IFP), tumour volume and
water content was measured in melanomas grown in hamsters. Unlike control tumours, treated tumours
exhibited a 40-60% increase in volume at 1, 3 and 6 h post PDT. IFP also increased at 1 and 3 h after PDT,
but decreased to 50% of control value after 24 h, presumably as a result of PDT-induced microcirculatory
impairment.

It has until now been generally accepted that the impairment
of tumour microcirculation plays a critical role in tumour
eradication by photodynamic therapy (PDT) (Henderson et
al., 1985; Star et al., 1986; Reed et al., 1988; White et al.,
1988; Wieman et al., 1988; Foster et al., 1991). Vascular
effects which have been characterised in response to PDT
include vasoconstriction, platelet aggregation, thrombi for-
mation, microembolisation, release of eicosanoids and release
of von Willebrand factor. These vascul. r phenomena are
likely to modify microvascular pressure. By measuring mic-
rovascular and- interstitial fluid pressure (IFP) simul-
taneously, Boucher and Jain (1992) reported recently that
both are nearly identical. Since tumour microvessels have a
high permeability (Gerlowski & Jain, 1986; Yuan et al., 1993)
and lack functioning lymphatics (Gullino, 1975), they con-
cluded that the vascular pressure is the principal driving force
for interstitial hypertension. If this is the case, then measure-
ment of tumour IFP following PDT may reflect
photodynamically induced changes in the tumour microcir-
culation.

Since microvascular events have been well documented
following PDT, we hypothesised that PDT modulates inter-
stitial fluid pressure in tumours. To quantify tumour IFP,
volume and water content we used a melanoma in the ham-
ster, whose microhaemodynamics (Asaishi et al., 1981),
photosensitiser uptake (Leunig et al., 1993) and
photodynamic dose-response (Dellian et al., 1992) have been
well characterised.

Materials and methods

Tumour model

This study was carried out on male Syrian golden hamsters
(90-110 g) bearing amelanotic melanomas (A-Mel-3)
implanted s.c. over the dorsal thorax and lumbosacral region
at four different sites. Seven to eight days later, when the
tumours had reached a volume of about 200-300 mm3
(thickness 5.0 ± 0.1 mm), animals were anaesthetised (pen-
tobarbital 50 mg kg-', i.p.) for treatment and for measure-
ments described in the Experimental procedure section.
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Photodynamic therapy
Tumours were illuminated at 100 mW cm-2 for 1,000 s by an
argon-pumped-dye laser (630 nm) (Aesculap-Meditec,
Heroldsberg, Germany) 24 h after i.v. injection of Photofrin
(5 mg kg-', Cyanamid-Lederle, Wolfratshausen, Germany).
The distance between the optical fibre and tissue was set to
10 cm, and the spot diameter was 1.5 cm. Pilot studies
demonstrated that this dose of PDT leads locally to a com-
plete response of the amelanotic melanoma A-Mel-3 in ham-
sters.

Tumour volume

The dimensions of the tumours were measured in vivo and
the volume of the melanomas was calculated as
0.873 x a x b x h, where a is the longer perpendicular axis, b
is the shorter perpendicular axis and h is the height of the
half-ellipsoid tumour nodule (Weiss et al., 1990).

Water content

The water content of the excised A-Mel-3 tumours was cal-
culated as [(w-d)/w] x 100% from the wet weight (w) of
tumours immediately after excision and the dry weight (d)
after a drying period of 7 days in an incubator (1 10°C;
Memmert, Schwabach, Germany).

Interstitialfluid pressure
At the same time as all IFP measurements the mean arterial
pressure (MAP) was monitored continuously via a catheter
(PEIO) implanted into the right carotid artery. IFP was
measured using the wick-in-needle technique (Fadnes et al.,
1977; Leunig et al., 1992). IFP was measured in tumours and
as a control in the s.c. tissue of all animals (distance from
tumour or treated tissue > 1 cm).

Experimental procedure

Baseline tumour volume was measured immediately before
two of the four tumours were illuminated. At 1, 3, 6 and 24 h
after PDT, tumour volume and the IFP were measured in
two PDT-treated melanomas (Photofrin + light) and in two
control melanomas (Photofrin + no light) in the same animal
in four groups of six animals each. In a control group of six
animals that received physiological saline (2 ml kg-' b.w. i.v.)
tumour volume and IFP were quantified 3 h after laser treat-
ment. All experiments were performed under controlled
temperature conditions.
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After the final IFP measurement, blood samples (100 jl)
were taken from the catheter in the right carotid artery and
the haematocrit and serum osmolarity were determined.
Tumours of both 3 h groups were excised and processed for
water content determination.

Statistics

Statistical analysis of the data was performed using the Krus-
kal-Wallis test for multiple comparison on ranks of several
independent samples. Single comparisons of independent
samples were performed using the U-test and of related
samples using the Wilcoxon test. P<0.01 was considered as
significant. Data are presented as medians and interquar-
tiles.

Laser treatment alone (no Photofrin + light) or Photofrin
alone (Photofrin + no light) did not affect tumour IFP
(Figure 3).
IFP in untreated s.c. tissue of all hamsters (as control)

ranged between - 1 and - 2 mmHg (Photofrin, - 1.5 mmHg;
no Photofrin, - 1.1 mmHg) and was significantly lower than
in the amelanotic melanomas (P<0.001). The administration
of Photofrin 24 h prior to the measurements had no effect on
s.c. tissue IFP. MAP, recorded at the same time as the IFP
measurements, ranged between 95 and 110 mmHg in the
anaesthetised hamsters and did not differ significantly among
the various experimental groups.

Discussion

Results

The measured values for haematocrit (45-59%) and serum
osmolarity (303-323 mosmol l1) did not differ significantly
among the experimental groups.
At 1, 3, and 6 h after PDT (Photofrin + light), tumour

volume was significantly elevated up to 140-160% of
baseline (200-300 mm3) (P<0.001), whereas control
tumours in the same animal (Photofrin + no light) showed
no significant volume changes. Maximum volume changes in
the A-Mel-3 tumours were seen at 3 h post PDT (Photofrin-
+ light). At 24 h, tumour volume was no longer different
between PDT-treated (Photofrin + light) and control
tumours (Photofrin + no light). Laser treatment without
previous Photofrin administration did not alter tumour
volume significantly at 3 h (no Photofrin + light) (Figure
1).
When melanomas revealed the most pronounced increase

in volume, i.e. 3 h .after PDT, the water content of tumours
was measured. PDT significantly increased the water content
in tumours (Photofrin + light) (83%) (P<0.01). For tumours
that were untreated (no Photofrin + no light) or received
Photofrin alone (Photfrin + no light) or laser illumination
alone (no Photofrin + light) water content ranged between 81
and 82% (Figure 2).
IFP in the melanomas reached maximum values at 1 h;

however, at this time the rise in IFP was not statistically
significant because of an elevated IFP in the internal control
tumours (Photofrin + no light). At 3 h, IFP (Photofrin +
light) was significantly higher than in the internal control
tumours (Photofrin + no light) (P<0.001) (Figure 3). Six
hours after PDT (Photofrin + light), IFP was in the range of
the control tumour IFP (Photofrin + no light), and 24 h after
PDT IFP dropped to 50% of control tumour IFP (P<0.001).
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Figure 1 Within the first 6 h, volume of PDT-treated melanomas
( _ ) was significantly elevated compared with the volume of
the control tumours (L ) (*P <0.001). Twenty-four hours after
PDT, the volume of the A-Mel-3 tumours returned to control
tumour value. Laser treatment alone ( ) did not alter tumour
volume compared with untreated controls ( 1 ) at 3 h after
laser treatment. Bars represent medians and interquartiles.
Numbers of tumours are given in bars.

Interstitial hypertension is a pathophysiological characteristic
of experimental and human tumours (Jain, 1987; Gutmann et
al., 1992) and has been shown to be modulated by thera-
peutic interventions that alter tumour blood flow (Jain, 1988;
Roh et al., 1991; Lee et al., 1992; Leunig et al., 1992;
Zlotecki et al., 1993). A recent study by Fingar et al. (1991)
on IFP changes following PDT did not report the absolute
values, however the time course of IFP changes was similar
to that observed here. Maximum changes in IFP were
2.5 mmHg or less compared with IFP alterations of 8 mmHg
measured in the A-Mel-3 tumours in this study. These
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Figure 2 Water content of tumours 3 h after laser treatment.
Water content was significantly increased in the PDT-treated
tumours ( _ ) ('P <0.001) only, whereas laser treatment alone
( M ) or Photofrin alone ( = ) did not significantly increase the
IFP compared with the untreated controls ( M ). Bars represent
medians and interquartiles. Numbers of tumours are given in the
bars.
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Figure 3 During the first 3 h, IFP in PDT-treated tumours
( _ ) reached maximum values; after 6 h, IFP returned to cont-
rol tumour level; and after 24 h, IFP of the PDT-treated tumours
was reduced to -50% of internal control tumour values (L )
(*P<0.001). Laser treatment alone ( E1) did not alter IFP in
the A-Mel-3 tumours compared with untreated controls ( M ) at
3 h after laser treatment. Bars represent medians and interquar-
tiles. Numbers of tumours are given in the bars.
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differences may be related to the different tumour models and
the techniques used to measure IFP.
What factors can alter IFP following PDT? Any agent that

increases vascular resistance in tumours may raise the mic-
rovascular pressure, and hence IFP. Wiig and Gadehold
(1985) were able to increase IFP in sarcomas implanted into
the tail of rats by occluding the venous outflow by inflating a
cuff around the proximal end of the tail vein, which resulted
in occlusion of the venous outflow. Several factors are likely
to increase the vascular resistance in tumour vessels after
PDT, including vasoconstriction, microembolisation and par-
tial occlusion of vessels by swollen endothelial, cancer or
immune cells. Increased vascular resistance would result in an
increase in microvascular pressure, thus elevating IFP in
tumours for up to 6 h after PDT (Figure 3). However,
6-24 h after successful PDT treatment, blood flow may shut
down in the tumour (Star et al., 1986; Reed et al., 1988).
This is presumably due to arterial constriction (Reed et al.,
1988) or progressive blockage of microvasculature from the
venous to the arterial end. This in turn may lead to a
reduction in microvascular pressure followed by a decrease in
IFP. The venous blockade leads to an entrapment of blood
(as observed in excised tumours), which could explain why

tumour water content increased only slightly although
tumours were extensively swollen (water content 79-82%)
(Davis et al., 1953). However, skin reactions to PDT (Tralau
et al., 1989), which methodologically had to be included in
our in vivo measurements, might also have led to an over-
estimation of alterations in tumour volume. Based on this
hypothesis, the gradual increase in microvascular pressure
and hence IFP, followed by the decrease in IFP, may reflect
the impairment of tumour microcirculation subsequent to
PDT.
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