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ARTICLE

Comparative Effects of CT Imaging Measurement on
RECIST End Points and Tumor Growth Kinetics Modeling

CH Li1,2, RR Bies1,2,3, Y Wang4, MR Sharma3,5, S Karovic5, L Werk3,6, MJ Edelman3,7, AA Miller3,8, EE Vokes3,5, A Oto3,5,
MJ Ratain3,5, LH Schwartz3,9 and ML Maitland3,5,∗

Quantitative assessments of tumor burden and modeling of longitudinal growth could improve phase II oncology trials. To
identify obstacles to wider use of quantitative measures we obtained recorded linear tumormeasurements from three published
lung cancer trials.Model-based parameters of tumor burden changewere estimated and comparedwith similarly sized samples
from separate trials. Time-to-tumor growth (TTG) was computed from measurements recorded on case report forms and a
second radiologist blinded to the form data. Response Evaluation Criteria in Solid Tumors (RECIST)-based progression-free
survival (PFS) measures were perfectly concordant between the original forms data and the blinded radiologist re-evaluation
(intraclass correlation coefficient = 1), but these routine interrater differences in the identification and measurement of target
lesions were associated with an average 18-week delay (range, −20 to 55 weeks) in TTG (intraclass correlation coefficient =
0.32). To exploit computational metrics for improving statistical power in small clinical trials will require increased precision
of tumor burden assessments.
Clin Transl Sci (2016) 9, 43–50; doi:10.1111/cts.12384; published online on 21 January 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ Improvements in digital CT imaging offer the poten-
tial to improve the efficiency of phase II oncology clini-
cal trials. However, in retrospective comparisons, quanti-
tative assessments of tumor burden have not consistently
proved superior to more conventional categorical time-to-
event methods.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔ Theoretically, quantitative assessments should be
clearly superior. This study explored potential explanations
for why prior comparative analyses have supported contin-
ued use of categorical end points like RECIST-based PFS.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
✔ We found that the PFS end point is robust to routine
interrater differences in tumor burdenmeasurement, but the
measurement imprecision tolerated by RECIST caused sig-
nificant discordance in the model-based end point of TTG.
HOW THIS MIGHT CHANGE CLINICAL PHARMACOL-
OGY AND THERAPEUTICS
✔ Pharmacometrics methods offer innovative strategies to
improve conduct of oncology clinical trials. To exploit these
methods will require changes in how tumor burden mea-
surements are acquired and transmitted in the course of
early phase clinical trials.

One goal for computational modeling methods in cancer
drug development is to enable evaluation of new therapeu-
tics with available technology, in fewer patients, observed on
treatment for shorter periods of time. One strategy to achieve
this goal has been to apply computational modeling to the
longitudinal growth of solid tumors in populations of patients
and in silico simulation of clinical trials.1–5 The ultimate goal of
this effort is to improve the efficiency of cancer drug clinical
development.6–9

Non-small cell lung cancer (NSCLC) is the leading
cause of cancer-related death in the United States and an
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increasingly common cause of death globally.10 Because
NSCLC remains an important area of unmet need in cancer
therapeutics, one of the first major investigations of compu-
tational modeling of longitudinal tumor growth to determine
the relationship between early changes in tumor size and
overall survival was conducted in NSCLC.3 Clinical trial simu-
lations used a model of overall survival in metastatic disease
based on a longitudinal tumor growth model developed with
data from 3,400 patients from four phase III clinical trials
submitted to the US Food and Drug Administration (FDA).3

These studies of bevacizumab, docetaxel, erlotinib, and
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pemetrexed led to the development of the model, derived
from the sum of the longest dimension measurements of
tumors by computed tomography (CT) imaging as recorded
in study case report forms (CRFs). Estimations of the change
in tumor size from baseline to 8 weeks of treatment (the
tumor size ratio) proved an important predictor of overall
survival. We undertook an independent investigation of avail-
able archived NSCLC tumor measurement data to expand
on this initial study and to assess the robustness with which
modeling and simulation with these data could support
decision-making at the phase II to phase III transition in drug
development.1

Another potential benefit of quantitative analysis of
NSCLC tumor burden would be to redesign phase II trials
to randomize fewer patients and have shorter observation
periods than required for determining progression-free
survival (PFS).11–17 Previously suggested simple strategies
in NSCLC have entailed measuring the median tumor size
at 8 weeks for randomly assigned treatment arms,7,18,19

or calculating the fraction of patients without progressive
disease at landmark timepoints.20 Model-based strategies
have had limited testing and require validation. In studies
of colorectal cancer therapy and survival outcomes, some
have found advantages to continuous tumor measurement
metrics, while others have not.21–23

We sought to assess and refine the published FDA longi-
tudinal tumor size model for NSCLC using archived tumor
measurement data so that modeling and simulation might
lead to smaller, quicker early phase trials for testing new
treatments for NSCLC. We intended to evaluate the power of
smaller clinical trials with novel end points to detect evidence
of anticancer drug treatment effects with archived CRFs
from three randomized clinical trials sponsored by the US
National Cancer Institute. The largest data set was sufficient
for evaluation of qualitative, time-to-event end points but
obviously useless for quantitative metrics. The other two
data sets had inconsistencies between the measurements
of tumor burden recorded on CRFs and re-measurements of
tumor burden from the original CT images performed by an
independent radiologist. These findings are likely to be com-
mon to historical and current solid tumor trial data sets. This
study demonstrated that features of historical data on tumor
burden measurement could bias comparisons between
continuous measurement and categorical strategies for
improving treatment evaluations. Our findings suggest that
comparing conventional and computational methods on
historical data is a key obstacle to progress. The simple,
prospective incorporation of more precise measurement of
tumor burden on CT imaging should enable computational
modeling methods to clearly surpass Response Evalua-
tion Criteria in Solid Tumors (RECIST)-based methods in
assessment of treatment effects.

METHODS
Patients
Archived CRFs were available from 857 patients enrolled in
three National Cancer Institute-supported studies by Can-
cer and Leukemia Group B (CALGB), now called the Alliance
for Clinical Trials in Oncology (Table 1). CALGB 973023 was
a phase III randomized trial that compared single-agent

Table 1 Three US National Cancer Institute-sponsored studies conducted by
the Cancer and Leukemia Group B

CALGB
study Treatment

No. of
subjects
enrolled

No. of
subjects
treated &
eligible Dates of accrual

9730 P vs. PCB 561 561 10/1997–12/2000

30203 GCb + ZiCe/both 140 134 12/2003–9/2004

30303 DC +/- BNP 160 151 8/2004–3/2006

BNP, BNP7787; CALGB, Cancer and Leukemia Group B; DC, docetaxel and
cisplatin; GCb, carboplatin and gemcitabine; P, paclitaxel; PCB, paclitaxel, car-
boplatin, and bevacizumab; ZiCe, zileuton celecoxib.

paclitaxel with combination carboplatin/paclitaxel, CALGB
3020325 was a randomized phase II trial that evaluated
eicosanoid modulation in standard first-line cytotoxic ther-
apy regimens, and CALGB 3030326 was a phase II random-
ized study of dose-dense docetaxel and cisplatin adminis-
tered every 2 weeks with growth factor supportive therapy.
The inclusion and exclusion criteria of the trials were previ-
ously published.24–26

Original clinical trial data collection
Data relevant to reporting of the clinical trial results were cap-
tured onCRFs and entered into the CALGBdigital databases.
The coded, patient-level data were stored at the Core Sta-
tistical Facility for CALGB (Durham, NC, USA). Treatment
response assessments were conducted according to the
study protocols. The CALGB 9730 trial incorporated stan-
dard World Health Organization response criteria27 based
on imaging studies conducted every two cycles (6 weeks)
as described.24 For CALGB studies 30203 and 30303, the
RECIST was used, and categorical responses were based
on the sum of the longest unidimensional measurements
of criteria-defined “target lesions.”28 CT imaging evaluations
were conducted in all patients pretreatment, and at 6 and
12 weeks after treatment. Patients were removed from the
studies for unacceptable toxicity or progression of disease.
Patients who completed all study therapy were followed at
minimum every 12 weeks thereafter. The target lesion and
sum of the longest dimensions of target lesions measure-
ments were captured on CRFs but not in the study database.

Tumor measurement collection
The retrospective access and analysis of these data was
approved by the University of Chicago and Duke University
Institutional Review Boards as consistent with the intentions
of the original clinical trial consent documents.

Archived paper CRFs were obtained from storage,
scanned, and saved as portable document format files.
Tumor measurements from the portable document format
files for CALGB 30203 and 30303weremanually extracted by
a research assistant and entered into a tracking file and into
the study databases simultaneously. The transcriptions were
independently reviewed by two of the study authors (S.K. and
C.L.) and inconsistencies were manually corrected. Individ-
ual patient tumor growth plots were inspected for atypical
growth and response patterns. Aberrant plots were cross-
verified with the original case report form portable document
format and any additional data entry errors captured by this
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review were corrected before modeling analyses were per-
formed.

Tumor size and time-to-tumor growth modeling
Longitudinal tumor size trajectories (sum of longest tumor
diameter) were analyzed with nonlinear mixed effect model-
ing software, NONMEM, version VII (GloboMax_LLC, Ellicott
City, MD, USA) using Wings for NONMEM, version 729 and
the model structure as described by Wang et al.3 (see Sup-
plementary Materials for details). This model used a combi-
nation of a linear growth function and an exponential shrink-
age function to describe the tumor change with respect to
baseline size (Eq. 1).

TSi (t ) = BASEie−SRit + PRit (1)

Where TSi(t) is the tumor size at time t for the ith individ-
ual, Basei is the baseline tumor size, SRi (t ) is the exponent
tumor shrinkage rate constant, and PRi (t )is the linear tumor
growth rate constant. Tumor size changes were modeled
using the first-order conditional estimationmethodwith inter-
action. Between subject variability was assumed to be log-
normally distributed and evaluated on baseline tumor size,
tumor shrinkage rate, and tumor progression rate using an
exponential model Pi = PTV x eηp where Pi is the parame-
ter estimate for the ithindividual and PTV is the typical value
for the parameter at the population level. Residual variabil-
ity was also estimated using a proportional residual error
model (yi j = ŷi j (1 + εi j )) where yi j and ŷi j represents the jth

observed tumor trajectory, and its corresponding model pre-
dicted tumor size.
The final model was examined using goodness-of-fit plots

generating using R (version 2.13) based on the condi-
tional weighted residuals distribution and the predicted vs.
observed tumor size measurements at both the population
and individual levels. The tumor size model was developed
to evaluate data from both treatment arms individually as
well as simultaneously on the combined data set. In addi-
tion to change in tumor size at 8 weeks, treatment effects on
serial tumor measurements were also evaluated with time-
to-tumor growth (TTG), as described by Claret et al.23 More
specifically, the rate of tumor growth (the differential equation
dTSi/dt) was set to zero and the equation solved for time (see
Supplementary Materials for details).

Modeling tumor burden measures from CALGB 30203
and the FDA sample
The parameter estimates for the linear growth rate and the
treatment-related shrinkage rate in the CALGB trials dif-
fered from the originally published FDA sample. To determine
whether the deviation of the parameter estimates was spe-
cific to the CALGB data collection, we extracted longitudinal
tumor measurement data from patients with NSCLC treated
with first-line platinum doublet therapy in the original FDA
sample. One hundred three individual patients were selected
from the platinum doublet treated patients on the FDA reg-
istration trials to match the baseline tumor size distribution
of the 103 patients in CALGB 30203 based on Mahalanobis
metric matching method.30

Blinded reevaluation of imaging data
To identify sources of variance between patient outcomes
and the modeled tumor burden over time, we obtained the
original sets of images from patients enrolled at one of the
CALGB sites (University of Chicago) in studies 30203 and
30303. One radiologist, blinded to the original CRFs and
radiology reports (coauthor A.O.) reviewed all of the base-
line images and identified and measured all target lesions
and measured them subsequently on all follow-up scans.
PFS was determined by the time from initiation on-study
until the date of the CT imaging at which, consistent with
RECIST, is: the sum of the longest dimensions of target
lesions increased by at least 20%; or the patient withdrew
for clinical progression. One patient in this analysis had dis-
ease progression defined by development of a new lesion,
and none had progression of nontarget lesions. To describe
agreement between CRF and blinded evaluator-based mea-
sures for PFS and TTG in this sample, the intraclass correla-
tion coefficient was calculated.

RESULTS
Data quality control
CRFs were reviewed for three randomized, controlled clin-
ical trials of first-line therapy in NSCLC conducted by the
CALGB (Table 1). CALGB 973023 was a phase III randomized
trial that compared single-agent paclitaxel with combination
carboplatin/paclitaxel. We discovered that CRFs from this
study frequently included text notations of “no change” or
“not available” rather than actual tumor size measurements
on subsequent CT scans (Supplementary Figure S1). The
data as entered were sufficient to determine the time of dis-
ease progression, but had toomuchmissing data to be useful
for validating the longitudinal tumor growth model and data
from all 561 subjects were excluded.
CALGB 3020324 was a randomized phase II trial that

evaluated eicosanoid modulation in standard first-line cyto-
toxic therapy regimens, and CALGB 3030325 was a phase
II randomized study of dose-dense docetaxel and cisplatin
administered every 2 weeks with growth factor supportive
therapy. For the CALGB 30203 and 30303 trials, we applied
the same standard for data inclusion as in the FDA model (at
least a baseline measurement and measurements recorded
at some subsequent timepoint). From 140 original cases in
the CALGB 30203 trial and 160 in CALGB 30303, a total of
227 patients had data suitable for the analyses (Figure 1).

Longitudinal modeling of tumor growth in the CALGB
30203 and 30303 studies
Parameter estimates for sum of longest tumor dimensions
at baseline (M_BASE), the treatment-effect/shrinkage rate
(M_SR), and the linear tumor growth rate (M_PR) were deter-
mined and compared with the results of similar study arms
from the original study (Table 2). Variance in parameter esti-
mates increased as sample size was reduced from typical
phase III to typical phase II size study arms. With a combi-
nation of both 30203 and 30303 trials, the model estimates
of baseline tumor size, shrinkage rate, and progression rate
were 8.1 cm, 0.025/week, and 0.059 cm/week, respectively.
For example, a patient with an average baseline tumor size
of 8.1 cm will, after 1 month, have the typical tumor burden
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Figure 1 Selection of patients contributing tumor measurements from Cancer and Leukemia Group B (CALGB) 30203 and 30303.

Table 2 Tumor model parameter estimates and precision standard error of baseline (M_BASE), shrinkage rate (M_SR), and progression rate (M_PR) for the FDA
registrational trials and CALGB 30203 and 30303 trials

Study Treatment No. of patients M_BASE (cm) M_SR (1/wk) M_PR (cm/wk)

FDA trial treatment arms

E4599 PCB 434 9.1 (0.33) 0.06 (0.004) 0.13 (0.02)

PC 444 8.0 (0.30) 0.038 (0.01) 0.14 (0.04)

TAX 326 DC 408 8.7 (0.31) 0.052 (0.01) 0.16 (0.02)

DCb 406 9.2 (0.38) 0.047 (0.005) 0.16 (0.02)

VC 404 8.5 (0.28) 0.063 (0.01) 0.17 (0.02)

NCI trial treatment arms

CALGB 30203 GCb +/- Zi or Ce 103 7.85 (0.45) 0.012 (0.002) 0.031 (0.002)

CALGB 30303 DC +/- BNP 124 8.28 (0.40) 0.035 (0.004) 0.072 (0.013)

Total combined 227 8.10 (0.30) 0.025 (0.003) 0.059 (0.008)

BNP, BNP7787; CALCB, Cancer and Leukemia Group B; Ce, celecoxib; DC, docetaxel and cisplatin; DCb, docetaxel and carboplatin; FDA, US Food and Drug
Administration; GCb, gemcitabine and carboplatin; M_BASE, precision standard error of baseline; M_PR, progression rate; M_SR, shrinkage rate; NCI, National
Cancer Institute; PC, paclitaxel and carboplatin; PCB, paclitaxel, carboplatin, and bevacizumab; VC, vinorelbine and cisplatin; Zi, zileuton.

decrease to 8.1 cm (−0.0251 × 4) + (0.0594 × 4) = 7.56
cm. This 6.7% decrease reflects the average drug effect on
tumor size. Table 2 depicts the parameter estimates deter-
mined for patients with first-line metastatic NSCLC enrolled
in five treatment arms for two multicenter phase III trials
(>400 patients per study arm). Compared with these previ-
ously published findings, the CALGB results were lower for
M_BASE, M_SR, and M_PR by 7%, 52%, and 61%, respec-
tively.

Evaluation of deviations in parameter estimates
We expected these estimates to be more robust with smaller
data sets and explored modifiable sources of noise in the
data. First, we hypothesized that data from small cooperative
group trials might be of lower quality than data perhaps more
meticulously curated for submission to FDA review.We there-
fore identified 103 patients from the data set used to gener-
ate the FDA model, by matching their baseline tumor sizes to
those of the 103 CALGB 30203 cases (who received carbo-
platin/gemcitabine). For the 103 patients identified from the

FDA study, the observed mean and median baseline tumor
sizes (Table 3) were comparable to those of the 103 CALGB
30203 cases, which suggested the matching method was
able to identify a subset of patients from the larger FDA
database to be comparable to the 103 patients in CALGB
30203. As a result, the parameter estimates for M_SR and
M_PR were more similar to CALGB 30203 (Table 3) than to
the results for any of the larger platinumdoublet study arms in
ECOG 4599 or TAX 326 (Table 2) even though the estimates
for M_BASE still showed some difference. This implied that
the deviation of parameter estimates between similar treat-
ment arms in the CALGB and FDA data sets were unlikely to
be due to significant differences in data quality and instead
reflected effects of decreasing the size of the analyzed sub-
ject pool.

A less testable hypothesis is that the CALGB 30203 and
the subset of 103 patients from the FDA data set are gen-
uinely different from the larger population of patients on
which the FDA model was based. Our experience with
the multistep process of CT-imaging measurement and

Clinical and Translational Science
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Table 3 Observed baseline tumor size and tumor parameter estimates for first line platinum doublet therapy in CALGB 30203 and similarly treated patients from
the FDA trials database

Study Treatment No. of patients
Baseline

(mean) (cm)
Baseline

(median) (cm) M_BASE (cm) M_SR (1/wk)
M_PR

(cm/wk)

Subset of FDA
trials database

Platinum doublets 103 9.74 8.70 9.26 0.0138 0.0346

NCI trial treatment
arm (CALGB
30203)

GCb +/- Zi or Ce 103 9.71 8.70 7.85 0.0121 0.0312

CALCB, Cancer and Leukemia Group B; Ce, celecoxib; FDA, US Food and Drug Administration; GCb, gemcitabine and carboplatin; M_BASE, precision standard
error of baseline; M_PR, progression rate; M_SR, shrinkage rate; NCI, National Cancer Institute; Zi, zileuton.

transmission of measurements into clinical trial databases
offers an alternative hypothesis – the current RECIST-
oriented clinical trial methods introduce variance in the
recorded tumor burden that affects computational models of
continuous tumor growth with minimum impact on RECIST-
based time-to-event end points.
We therefore performed an exploratory hybrid investi-

gation of data quality and modeling effects. We explored
specific modifiable factors in the collection and reporting
of tumor measurements that might contribute to the altered
parameter estimates in the longitudinal growth model when
the size of the population was decreased. To evaluate the
reproducibility of the tumor measurements, an independent
radiologist in blinded fashion measured the baseline target
lesions and subsequent follow-ups from the original CT
scans from 15 patients enrolled in CALGB 30203 and 30303
at one institution (Figure 2). For 4 of the 15 patients, at least
one additional target lesion was identified (Figure 2a). Of
the 15 subjects, 3 did not have an on-treatment assessment
and therefore were not included in subsequent model-
ing analyses. For the 12 cases with serial measurements
(Figure 2b), 4 (subjects 7, 8, 9, and 12) had trajectories
of the measured sums of longest dimensions that were
nearly superimposable between the CRFs and the blinded
evaluator (BE) re-assessment. Four cases (subjects 1, 3,
4, and 5) had obvious divergence between the CRF and
blinded evaluations in terms of the magnitude of change
in tumor burden and timepoints at which these changes
are registered. The remaining four cases had differences of
unclear significance (subjects 2, 6, 10, and 11).

Estimated impact of continuous measurement variance
on modeled end points
RECIST was developed to be robust to interrater vari-
ance in measurements by setting categories for tumor size
changes (progressive disease, partial response, and com-
plete response) based on thresholds for magnitudes of
change that would be unlikely to be due to the great-
est degree of interrater variance.28 A patient’s category of
response would then likely only be due to a significant effect
of treatment.5,27 It is therefore not surprising that in settings
where interrater variance is not actively controlled, assess-
ments of continuous measurements of tumor growth will not
improve upon our current RECIST-based categorical and
time-to-event strategies.
We hypothesized that this interrater variance in tumor bur-

den assessments would have a significant effect on more
quantitative end points, such as TTG, with less effect on a

RECIST-based time-to-event end point, such as PFS. For the
12 subjects with serial CRFs and blinded radiologist mea-
surements (Table 4), we identified an average 18-week delay
in TTG (range, 20–55weeks) calculated from the re-evaluated
scans compared with the CRF data, but no absolute differ-
ences in PFS assessments, corresponding with intraclass
correlation coefficients of 0.32 and 1, respectively. The neg-
ative TTG values result from individuals for whom the tumor
continues to progress from the baseline measurement and
therefore the TTG actually occurred before the baseline mea-
sure. Despite differences in target lesion assessment and
measurement, subjects met criteria for progressive disease
at the same imaging session in both data sets.

DISCUSSION

This evaluation of NSCLC tumor measurements and end
points in published cooperative group studies revealed limi-
tations to using continuous measurements of tumor burden
in phase II clinical trials. Modeling of typical phase III clinical
trials has reproducibly demonstrated tumor burden metrics
as predictors of survival.1,16,23,31,32 These findings suggest
that more quantitative evaluation of tumor growth trajectories
early in the course of therapy might improve the efficiency of
phase II clinical trials.3,18,19,33 However, effective implemen-
tation of this strategy in phase II trials will require changes in
the conduct and collection of data in such trials.
The primary advantage of the use of quantitative measures

of tumor burden in early phase trials is to improve statisti-
cal power for detecting treatment effects. During this inves-
tigation, newly published analyses suggested that quanti-
tative assessments of tumor burden were no more useful
than RECIST-based categorical assessments or PFS.4,21,22

Our findings are consistent with the hypothesis that the
RECIST-based methods by which tumor measurement data
are collected biases these evaluations. We found the mod-
eled treatment effect and growth parameters in the 227
CALGB patients with NSCLC to diverge significantly from
published results of a larger population. We then interrogated
a smaller sample from the original data set from which the
model was developed and obtained similar results. The large
and consistent effect on computed parameters of longitu-
dinal tumor growth models led us to scrutinize the original
images and the recorded data. We identified “noise” in the
process by which tumor burden is assessed and recorded
to meet RECIST standards. This imprecision has no appar-
ent effect on RECIST categories or time-to-event end points,
but does affect tumor burden metrics.

www.wileyonlinelibrary/cts
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Figure 2 Baseline tumor burden represented by the sum of target lesion measurements from Cancer and Leukemia Group B (CALGB)
30203 and 30303. (a) Each pair of bars represents an individual patient’s tumor burden, with each color representing the size of an
independent target lesion, the first in gray, second in white, third in blue, fourth in yellow, fifth in black; left bar tumor measurements
per case report forms (CRFs); right bar tumor measurements by independent, blinded evaluation (BE). (b) Tumor burden over time for
subjects in CALGB 30203 and 30303. Horizontal axis reflects time in weeks; the vertical axis reflects the tumor burden by sum of the
longest dimensions (cm) at each assessment timepoint for first 12 subjects in (a) by computed tomography (CT) imaging at each timepoint
over the course of the trial. Circles represent tumor burden reported on case report forms (yellow) or on BE (blue).

There is no superior alternative approach to RECIST for
the standardized assessment of anatomic tumor burden and
its change over time.34–36 This categorical system provides
low interrater variance (progressive disease will be deter-
mined with high uniformity across sites in a multicenter trial
and among trials) at the expense of efficiency (requires more

patients to be observed over long periods of time). Our find-
ings are consistent with investigators collecting and curating
the quantitative tumor burden data with sufficient precision
to support use of RECIST but not to support more computa-
tionally intensive methods of evaluating effects of treatments
in small clinical trials. As long as this remains the process by
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Table 4 Comparisons of PFS and calculated TTG from the target lesion mea-
surements on original CRF and by blinded BE

Patient ID 1 2 3 4 5 6 7 8 9 10 11 12

PFS CRF 8 26 12 48 28 128 40 5 36 48 24 18

(wk) BE 8 26 12 48 28 128 40 5 36 48 24 18

TTG CRF −10 23 57 29 46 53 21 −85 32 23 30 50

(wk) BE 65 48 69 80 53 72 24 −111 44 3 53 54

BE, blinded evaluator; CRF, case report form; PFS, progression-free survival;
TTG, time-to-tumor growth.

which tumor burden data are collected, we would expect to
find no consistent advantages to use of quantitative meth-
ods (such as tumor size ratio) in small phase II trials over
more qualitative time-to-event strategies (such as PFS) for
predicting impact on overall survival.4,21,22

This study had a limited data sample for analysis, but
it required significant effort to obtain these data because
these need to be retrospectively collected and analyzed.
The primary databases maintained the RECIST-based cat-
egories in data fields, but obtaining the quantitative tumor
measurements required manual retrieval and processing of
archived paper forms. The small cohort of patients for whom
images were available and reviewed might have been a
biased sample, but this patient-recruitment site had been a
major contributor to enrollment across thoracic oncology tri-
als in CALGB with the stringent audit and quality control pro-
cesses applied for member sites. The data are therefore likely
representative of the overall quality of data in the larger clini-
cal trials. Furthermore, data that included patients from inde-
pendent trials submitted to the FDA yielded similar results.
We cannot exclude the possibility that this particular sub-
set of patients from the CALGB and FDA data sets repre-
sents a unique group of patients with NSCLC whose tumor
growth patterns are distinct from the typical patient popula-
tion. Therefore, our findings will require confirmation in other
data sets.
Efforts to improve cancer therapeutics development are

critical because, despite recent celebrated successes, the
overall success rate of oncology drugs in phase III trials has
been the lowest among fields of medicine.37,38 The process
of measuring, transmitting, analyzing, and interpreting CT
imaging-based measures of tumor burden contributes sig-
nificant but potentially modifiable variance to evaluations of
treatment effects. This study demonstrates that this variance
has greater effects on the ultimate performance ofmore com-
putationally intensive metrics of tumor burden than conven-
tional RECIST end points.
If quantitative strategies in assessing solid tumor burden

are to improve the power of early phase trials to detect treat-
ment effects, this will require changes in our methods for
obtaining and recording the measurements. Centralized col-
lection and measurement of CT images with semiautomated
and digitally enhanced procedures may significantly reduce
this variance. Advances in computing and digital data man-
agement in the past several years havemade possible paper-
less systems with fewer opportunities for manual error.39 Our
findings suggest that establishing methods with less inter-
rater variance could be a worthwhile investment in the future
of cancer therapeutics assessment.
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