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Abstract: Hog1, a mitogen-activated protein kinase (MAPK), has been identified in diverse fungal
species, and it regulates various cellular processes, such as osmoadaptation, nutrient-sensing,
and pathogenesis. However, the roles that Hog1 plays in nematode-trapping fungi were previously
unclear. Here, we characterized orthologs of Saccharomyces cerevisiae Hog1 and membrane mucin
Msb2 in the nematode-trapping fungus Arthrobotrys oligospora. We generated gene deletion mutants
of HOG1 and MSB2 in A. oligospora, and characterized their roles in osmosensing, growth, and trap
morphogenesis. We found that both hog1 and msb2 mutants were highly sensitive to high osmolarity.
Predation analyses further revealed that hog1 and msb2 deletion caused a reduction in trap formation
and predation efficiency. Furthermore, HOG1 is required for conidiation in A. oligospora, demonstrating
its critical role in this developmental pathway. In summary, this study demonstrated that the conserved
Hog1 and Msb2 govern physiology, growth and development in the nematode-trapping fungus
A. oligospora.

Keywords: Arthrobotrys oligospora; high osmolarity glycerol (HOG) pathway; Hog1 mitogen-activated
protein kinase; osmolarity; nematocidal activity; signaling mucin Msb2

1. Introduction

The ability to sense and respond appropriately to the environmental changes is essential for any
organism. For example, eukaryotic cells regulate their internal osmolarity in response to osmolarity
changes in the environments. In the budding yeast Saccharomyces cerevisiae, cells respond to increases
in external osmolarity by increasing intracellular glycerol synthesis [1]. In the fungal kingdom,
osmosensing has been linked to fungal development, metabolism and virulence [2]. In some plant
pathogens, such as Fusarium graminearum and Botrytis cinerea, the pathway regulating responses to
hyperosmotic stress is also involved in hyphal development and pathogenesis [3,4].

Carnivorism is universal in the animal kingdom; however, certain plants and fungi that inhabit
in low-nutrient environments have also evolved the ability to prey on small animals such as insects
and nematodes. To access nitrogen resources, the Venus flytrap, Dionaea muscipula, attracts prey by
emitting of volatile organic compounds that simulate food odors [5]. Similarly, a number of fungi,
known as nematode-trapping fungi (NTF), can develop complex trapping structures to capture and
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kill nematodes [6,7]. Trap formation in NTF is mainly induced by different biotic and abiotic factors as
well as direct contact between fungal hyphae and living nematodes [8].

Mitogen-activated protein kinase (MAPK) signaling cascades function as key and evolutionarily
conserved signal transducers in all eukaryotes [9]. Sequential activation of MAPK cascades ultimately
results in transcription factor up-regulation and expression of specific sets of genes in response to
environmental stimuli [10]. One of the best-studied MAPK pathways is the high osmolarity glycerol
(HOG) pathway in the model yeast S. cerevisiae, which responds to changes in external osmolarity.
The S. cerevisiae MAPK, Hog1, is a central player in this pathway, controlling various osmoadaptive
responses. Operating upstream of Hog1 are two sensor proteins, Sln1 and Sho1, that act independently
but in a functionally redundant manner. Sln1 is a transmembrane histidine kinase, whereas Sho1 is a
tetraspanning membrane protein [11,12]. Furthermore, the Sho1 signaling cascade itself also involves
two functionally redundant osmosensors, Hkr1 and Msb2 (Supplementary Material Figure S1) [13–16].
Concomitant activation of Hog1 thus controls an array of osmoadaptive responses. Although the Hog1
MAPK pathway is mainly involved in osmoregulation in S. cerevisiae, its orthologs in various other
fungi often exert additional biological functions [2,10]. For instance, in Neurospora crassa, this MAPK
cascade is involved in nutrient sensing [17], and it is essential for virulence in several plant and human
fungal pathogens [3,18–21].

In this study, we investigated the roles of Hog1 MAPK pathway in Arthrobotrys oligospora, one of
the most common and best understood species of NTF [22]. We demonstrate that both Hog1 and Msb2
are involved in the pathogenicity, and that Hog1 is required for conidiation. Our msb2 mutant line
shared several but not all phenotypes displayed by our hog1 mutant. Consequently, we speculate that
additional upstream osmosensors, which are functionally redundant to Msb2, regulate Hog1 activation.
In summary, the Hog1 MAPK pathway appears to be important for the predator–prey interactions
between NTF and nematodes.

2. Materials and Methods

2.1. Identification and Deletion of the KU70, HOG1 and MSB2 Homologs in A. oligospora

The KU70 homologs of A. oligospora were identified in Blast2GO 5 Pro [23] by performing a local
BLAST analysis. We used the amino acid sequences of Ku70 orthologs from S. cerevisiae (UniProt ID
P32807) as the queries and the proteome of the A. oligospora TWF154 strain as the database. The same
method was used to identify the HOG1 and MSB2 homologs of A. oligospora. The amino acid sequences
of Hog1 and Msb2 orthologs from Aspergillus nidulans (UniProt ID Q9P419, Q5AXD9), Neurospora crassa
(Q96TL5), F. graminearum (P0C431, I1RNP9), and S. cerevisiae (P32485, P32334) were used as the queries.

KU70, HOG1 and MSB2 were deleted by means of a homologous recombination-based strategy,
which reported previously for A. oligospora [24,25]. Primers used for generating the KU70, HOG1 and
MSB2 deletion mutants are described in the Supplementary Materials.

2.2. Generation of Target Gene Deletion Mutants

In a previous study [26], we generated deletion mutants via homologous recombination and
determined that the homologous recombination rate in A. oligospora is extremely low (~3%). Therefore,
here, we generated a non-homologous end-joining-deficient strain (ku70) to increase the efficiency of
targeted genes deletion in fungi [27–29]. An overlap PCR-based construct (donor DNA) was obtained
by fusing the 1.5 kb long sequences flanking the open reading frames of the target genes (amplified from
genomic DNA of the A. oligospora TWF154 strain) to the hygromycin-B resistance cassette (amplified
from vector pAN7-1 [30]). The construct was introduced into protoplasts of the A. oligospora TWF154
strain via PEG-mediated transformation. Generation of protoplasts in A. oligospora was carried out
based on previously described protocols [26]. For transformations, ~106 protoplasts were gently mixed
with 5 µg of donor DNA and incubated on ice for 30 min, after which five volumes of PTC (40% w/v
PEG 4000, 10 mM Tris-HCl pH 7.5, 50 mM CaCl2) were added and incubated at room temperature for
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20 min. Then, 50 mL of molten regeneration agar (0.3% w/v yeast extract, 0.3% w/v casein, 20.5% w/v
sucrose) at 45 ◦C containing 100 µg/mL hygromycin B was added to the protoplast mixture and poured
into Petri dishes. After 7 days at 25 ◦C, transformants grown on selective medium were screened
for gene replacement by rapid genomic extraction and PCR. Briefly, a small cluster of aerial hyphae
was added to PCR tubes containing 30 µL of DNA TE buffer (10 mM Tris-HCl pH 8, 0.5M EDTA
pH 8), which were placed in a microwave and heated for 2 min. After the samples cooled down
to room temperature, they were re-heated in the microwave. Finally, the samples were placed in a
−20 ◦C refrigerator to cool down for 10 min. Two µL of the samples were then used as template for
PCR reactions.

For deletion of the A. oligospora HOG1 gene (EYR41_010451) and MSB2 (EYR41_007180), we fused
the overlap PCR-based construct with flanking the open reading frame of the target gene to a
nourseothricin sulfate resistance cassette (amplified from vector pRS41N [31]). The construct
was introduced into protoplasts of the ku70 (control) strain via PEG-mediated transformation.
For transformations, ~105 protoplasts were used and the concentration of nourseothricin sulfate
was 250 µg/mL.

2.3. Phenotypical Characterization

To quantify trap formation, fungal isolates were grown on low nutrient medium (LNM) for 5 days
and then transferred to a fresh LNM plate for a further 48 h (25 ◦C, dark). Thirty N2 Caenorhabditis
elegans L4-stage larvae were then introduced onto the fungal plates for 6 h, after which the animals
were removed by washing with sterile water. Twenty-four hours after exposure, micrographs were
taken of fungi using a Nikon SMZ 745T stereo microscope. Three images were randomly taken of each
fungal plate using 40×magnification, and the sum of all traps in the three images was recorded.

To estimate survival rates of C. elegans upon exposure to hog1 and msb2 mutant lines, 80 young
adult stage N2 C. elegans were introduced onto mutant fungal plates for 6 h. Numbers of moving
nematodes were assessed every 2 h for a total of 12 h using a stereo microscope.

2.4. Statistics

For trap quantification analysis, a two-tailed unpaired Student’s t test was performed to determine
the statistical difference between the control and experimental samples using GraphPad Prism 8.
For survival rate analysis, a two-tailed unpaired Student’s t test was conducted to determine the
statistical difference between the control and experimental groups after being exposed to C. elegans for
12 h. A value of p < 0.05 was considered statistically significant.

3. Results

3.1. Identification of the KU70 Gene in A. oligospora

The homologous recombination rate in A. oligospora was extremely low (~3%) in a previous
study [26]. To enhance the recombination rate, we generated a non-homologous end-joining-deficient
strain (ku70) which has been reported to increase the efficiency of gene deletion in fungi [27–29].
We surveyed the genome of A. oligospora strain TWF154 [26] to search for the orthologs of the S. cerevisiae
KU70 gene, and identified EYR41_000878 (KU70).

The ku70 mutants did not exhibit any obvious growth defects under normal growth conditions
(Figure 1A). To examine if the deletion of KU70 in A. oligospora influenced trap morphogenesis,
we compared phenotypic differences between the TWF154 (WT) and the ku70 lines upon exposure
to C. elegans. We observed that independent ku70 mutants formed traps and exhibited nematocidal
activity comparable to that of the wild-type strain (Figure 1B). Southern blot analysis revealed that
some ku70 deletion strains we obtained contained multiple ectopic integrations of the repair DNA
(Figure 1C). Therefore, we decided to conduct gene disruption experiments in the ku70-2 mutant line
to facilitate homologous recombination.
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Figure 1. Phenotypic characteristics in a non-homologous end-joining-deficient strain (ku70) of A. 
oligospora. (A) Colonies of TWF154 (WT) and independent ku70 strains grown on potato dextrose agar 
(PDA) plates (5-cm diameter) for 4 day at 25 °C (Scale bar, 1 cm). (B) Representative brightfield images 
of the traps induced by N2 C. elegans in the TWF154 (WT) and independent ku70 mutant strains. 
Images were taken 24 h after induction with N2 C. elegans (Scale bar, 200 µm). (C) Southern blot 
confirmation of KU70 deletion. The wild-type TWF154 strain displayed a predicted band of size 2.9 
kb, whereas ku70 mutants had predicted bands of 5.9 kb. 

3.2. Identification of the HOG1 and MSB2 Genes in A. oligospora Suggests a Conserved Role in 
Osmosensing 

We were interested in examining the role of the HOG MAPK pathway in responses of A. 
oligospora to C. elegans presence. First, we surveyed the genome of A. oligospora strain TWF154 [26] to 
search for the orthologs of the S. cerevisiae HOG1 and MSB2 genes, and identified two targets, i.e., 
EYR41_010451 (HOG1) and EYR41_007180 (MSB2), respectively. The overall sequence identities 
between S. cerevisiae and A. oligospora Msb2 and Hog1 proteins were ~44.5% and ~54.8%, respectively. 
The predicted A. oligospora Msb2 protein has a domain architecture similar to that of S. cerevisiae Msb2 
(Figure 2A,C), including an N-terminal signal sequence (22 amino acids), a large extracellular domain 
(amino acids 23 to 793), and one transmembrane domain (TM; 23 amino acids). A. oligospora Hog1 
also has a similar domain structure to that of S. cerevisiae Hog1 (Figure 2B,D), including a highly 

Figure 1. Phenotypic characteristics in a non-homologous end-joining-deficient strain (ku70) of
A. oligospora. (A) Colonies of TWF154 (WT) and independent ku70 strains grown on potato dextrose
agar (PDA) plates (5-cm diameter) for 4 day at 25 ◦C (Scale bar, 1 cm). (B) Representative brightfield
images of the traps induced by N2 C. elegans in the TWF154 (WT) and independent ku70 mutant strains.
Images were taken 24 h after induction with N2 C. elegans (Scale bar, 200 µm). (C) Southern blot
confirmation of KU70 deletion. The wild-type TWF154 strain displayed a predicted band of size 2.9 kb,
whereas ku70 mutants had predicted bands of 5.9 kb.

3.2. Identification of the HOG1 and MSB2 Genes in A. oligospora Suggests a Conserved Role in Osmosensing

We were interested in examining the role of the HOG MAPK pathway in responses of A. oligospora
to C. elegans presence. First, we surveyed the genome of A. oligospora strain TWF154 [26] to search for
the orthologs of the S. cerevisiae HOG1 and MSB2 genes, and identified two targets, i.e., EYR41_010451
(HOG1) and EYR41_007180 (MSB2), respectively. The overall sequence identities between S. cerevisiae
and A. oligospora Msb2 and Hog1 proteins were ~44.5% and ~54.8%, respectively. The predicted
A. oligospora Msb2 protein has a domain architecture similar to that of S. cerevisiae Msb2 (Figure 2A,C),
including an N-terminal signal sequence (22 amino acids), a large extracellular domain (amino acids 23
to 793), and one transmembrane domain (TM; 23 amino acids). A. oligospora Hog1 also has a similar
domain structure to that of S. cerevisiae Hog1 (Figure 2B,D), including a highly conserved protein
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kinase domain (amino acids 1 to 272), a common docking (CD) domain (amino acids 273 to 284) and
a Pbs2-domain binding 2 (PBD-2) domain (amino acids 290 to 320). Both the CD domain and the
PBD-2 are required for the activation of Hog1 by Pbs2 in S. cerevisiae [32]. These results indicate that
these two genes might play important roles, including pathogenesis, in nematode-trapping fungi.
We therefore generated targeted gene deletion mutants for HOG1 and MSB2 mutants via a homologous
recombination-based strategy reported previously for A. oligospora [24,25]. The deletion of HOG1 or
MSB2 genes was confirmed by Southern blot analysis (Supplementary Material Figure S1).
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(A) Schematic representation of the domain structure of A. oligospora and S. cerevisiae Msb2 proteins. 
Both proteins share common features of signaling mucins, including a N-terminal signal peptide, a 
large extracellular domain, and one transmembrane that is closed to the C-terminus. (B) Schematic 
representation of the domain structure of A. oligospora and S. cerevisiae Hog1 proteins. Both proteins 
share common features, including a protein kinase domain, common docking (CD) domain and Pbs2-
domain binding 2 (PBD-2). (C) Amino acid sequence alignment of the transmembrane region of the 
S. cerevisiae Msb2 (S. c. Msb2p) and A. oligospora Msb2. (D) Amino acid sequence alignment of the CD 
domain and PBD-2 of the S. cerevisiae Hog1 (S. c. Hog1p) and A. oligospora Hog1. Highly conserved 
residues are shaded in black; moderately conserved residues are shaded in gray. 

Figure 2. A. oligospora Msb2 and Hog1 are structural orthologs of the S. cerevisiae Msb2p and Hog1p.
(A) Schematic representation of the domain structure of A. oligospora and S. cerevisiae Msb2 proteins.
Both proteins share common features of signaling mucins, including a N-terminal signal peptide,
a large extracellular domain, and one transmembrane that is closed to the C-terminus. (B) Schematic
representation of the domain structure of A. oligospora and S. cerevisiae Hog1 proteins. Both proteins
share common features, including a protein kinase domain, common docking (CD) domain and
Pbs2-domain binding 2 (PBD-2). (C) Amino acid sequence alignment of the transmembrane region of
the S. cerevisiae Msb2 (S. c. Msb2p) and A. oligospora Msb2. (D) Amino acid sequence alignment of the
CD domain and PBD-2 of the S. cerevisiae Hog1 (S. c. Hog1p) and A. oligospora Hog1. Highly conserved
residues are shaded in black; moderately conserved residues are shaded in gray.

The HOG MAPK pathway is important in regulating responses to hyperosmotic stress in fungi [2],
so we investigated the effect of treating our A. oligospora hog1 and masb2 mutants with excess sodium
chloride (NaCl). On potato dextrose agar (PDA) with 1% (w/v) NaCl, the hog1 mutant had not grown
after incubation for 4 days, whereas the msb2 mutant showed a growth defect relative to the ku70
control (Figure 3A). These results indicate that the osmoregulatory role of the HOG MAPK cascade is
conserved in A. oligospora. Given that the msb2 mutant exhibited only a slight growth defect in the
presence of excess NaCl, it is plausible that Msb2 is not the only receptor operating upstream of the
HOG pathway.

The hog1 mutant did not exhibit any obvious growth defects under normal growth conditions
(Figure 3A), but a more detailed morphological analysis using scanning electron microscopy (SEM)
revealed a defect in conidial formation (Figure 3B). In contrast, though the msb2 mutant presented
reduced growth in PDA alone, its conidiation was as robust as the wild-type (Figure 3B). Thus, Hog1
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appears to play a role in osmoregulation and the asexual development of A. oligospora. In contrast,
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Figure 3. Defects of the hog1 and msb2 mutants in response to hyperosmotic stress. (A) Colonies of ku70
(control), hog1, and msb2 mutants grown on PDA plates (5-cm diameter) for 4 days with or without 1%
(w/v) NaCl (Scale bar, 1 cm). (B) SEM images of ku70 (control), hog1, and msb2 mutants after growing
on PDA plates (5-cm diameter) for 4 days (Scale bar, 50 µm).

3.3. The Hog1 Pathway Is Required for Proper Formation of Traps during Nematode Induction

To examine if the HOG pathway functions in A. oligospora trap morphogenesis, we compared
phenotypic differences between the control and the mutant fungal lines upon exposure to C. elegans.
We observed that both hog1 and msb2 mutants formed traps, but trap numbers were reduced when
compared to the control (Figure 4A). Quantification of trap morphogenesis revealed that the trap
numbers in the hog1 and the msb2 mutant reduced to ~70% and ~50% of the ku70 control, respectively
(Figure 4C). Next, we conducted SEM analysis to further examine the detail trap morphology in the
wild-type and mutant strains. We observed that the hog1 mutant exhibited defective development of
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three-dimensional trap structures; however, the traps formed by the msb2 mutant were comparable to
those of the ku70 control (Figure 4B).
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Figure 4. The HOG1 MAPK pathway is involved in proper formation of traps during nematode
induction. (A) Representative brightfield images of the traps induced by N2 C. elegans in the ku70
(control), hog1, and msb2 mutants. (Scale bar, 200 µm). (B) Representative SEM images showing
defective trap network formation by the hog1 mutant. (Scale bar, 25 µm). (C) Quantification of the trap
numbers induced by N2 C. elegans for the ku70 (control), hog1, or msb2 mutant lines. (Mean ± SEM;
n shown along the x axis; asterisks represent significance levels of unpaired t test compared to the
control. *** p < 0.001.) (D) Survival rates of nematodes upon exposure to the ku70 (control), hog1,
or msb2 mutant lines. (Mean ± SEM; n = 14).
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Both hog1 and msb2 mutants developed fewer traps upon C. elegans exposure; therefore,
we evaluated their trapping efficiency. In the ku70 control, only ~28% of the nematodes applied to
A. oligospora fungal plates had survived after 12 h (Figure 4D). In contrast, survival rates of nematodes
exposed to the hog1 and msb2 mutants were ~50 to 60% (Figure 4D). Together, the reduction in trap
numbers and the development of inadequate trapping structures demonstrate that the hog1 and msb2
mutants display impaired predation ability when compared to the wild-type.

4. Discussion

NTF hold great potential to be utilized as biological control agents in agricultural settings.
However, the interactions between nematodes and NTF have not been investigated in detail at the
molecular level. In recent years, a number of studies have begun to uncover the molecular mechanisms
underlying the biology of these specialized predators. For example, it has been reported that two
MAP kinases, Slt2 in the cell wall integrity (CWI) pathway and Ime2 in the inducer of meiosis 2 (Ime2)
pathway, are involved in A. oligospora trap formation and nematocidal activity [33,34]. These data
suggest that MAPK pathways play important roles in interaction between NTF and their prey.

The Hog1 MAPK pathway is thought to be primarily involved in osmoregulation in S. cerevisiae,
whereas its orthologs in various filamentous fungi often have additional biological functions [2,10].
In Figure 5, we illustrated schematic models for the role of Hog1 and Msb2 playing in S. cerevisiae,
M. oryza, and A. oligospora. In S. cerevisiae, functionally redundant osmosensors activate downstream
Hog1 MAPK to respond to changes in osmolarity in the extracellular environment [13,15]. In M. oryzae,
Osm1 (ortholog of Hog1) activated by upstream osmosensor Sln1 plays a critical role in osmoregulation
but is dispensable for plant infection [35]. In contrast, M. oryzae Msb2 activates Pmk1, an ortholog
of the S. cerevisiae Fus3 MAPK-mediating mating process, to regulate appressorium formation and
penetration [36]. In other plant pathogens, such as Ustilago maydis, deletion of MSB2 also impedes
the differentiation of appressoria on inductive surfaces [37]. In Fusarium oxysporum, which does not
produce appressoria, mutants lacking Msb2 present reduced penetration of host roots [38]. These
findings indicate that Msb2 has evolved diverse functions in different fungal species.
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Sln1, Sho1, and Msb2 sense the changes in the osmolarity of the extracellular environment and 
activate Hog1 for osmoregulation. The proteins separated by a slash symbol (/) are functionally 
redundant. Not all of the known components are shown. In blast fungus, M. oryzae, Msb2 and Sho1 
are involved in recognizing physical or chemical signals from plant to activate the downstream Mst11-
Mst7-Pmk1 MAPK cascade which is responsible for pathogenesis. The Ssk2-Pbs2-Osm1 MAPK 
cascade is activated by Sln1 to respond to changes in the osmolarity of the extracellular environment. 
In A. oligospora, both Hog1 and Msb2 are not only involved in osmoadaptation but also in growth, 
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connections, respectively. The figure was created with BioRender.com. 

Figure 5. Schematic models for the role of Hog1 and Msb2 in yeast and filamentous fungi. S. cerevisiae
Sln1, Sho1, and Msb2 sense the changes in the osmolarity of the extracellular environment and activate
Hog1 for osmoregulation. The proteins separated by a slash symbol (/) are functionally redundant.
Not all of the known components are shown. In blast fungus, M. oryzae, Msb2 and Sho1 are involved
in recognizing physical or chemical signals from plant to activate the downstream Mst11-Mst7-Pmk1
MAPK cascade which is responsible for pathogenesis. The Ssk2-Pbs2-Osm1 MAPK cascade is activated
by Sln1 to respond to changes in the osmolarity of the extracellular environment. In A. oligospora,
both Hog1 and Msb2 are not only involved in osmoadaptation but also in growth, trap morphogenesis
and conidiation. Solid and dashed arrows indicate the verified and putative connections, respectively.
The figure was created with BioRender.com.
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In A. oligospora, we found that the hog1 and the msb2 mutants were hypersensitive to osmotic
stress, especially for the hog1 mutant that was completely inhibited when excess NaCl was present
in the culture medium. In some pathogenetic fungi, deletion of HOG1 has been shown to reduce
conidia numbers [20,39], and we also found that our A. oligospora hog1 mutant was defective in
conidial formation. Thus, Hog1 not only participates in the osmoregulation, but also regulates asexual
reproduction in A. oligospora.

Both the hog1 and the msb2 mutants were capable of forming traps upon exposure to C. elegans,
but in both cases, trap numbers were reduced. Notably, the hog1 mutant displayed a defect in developing
proper three-dimensional trap structures, although those of the msb2 mutant were comparable to
ku70 control traps. These observations potentially explain the decreased nematocidal activity of our
mutants, as assessed by C. elegans survival.

Our msb2 mutant line shared several but not all of the phenotypes displayed by the hog1 mutant.
Accordingly, we speculate that additional functionally redundant osmosensors also regulate Hog1
activation (Figure 5), a scenario that has also been described for the HOG pathway of budding
yeast [13,14]. Besides, in U. maydis and M. oryzae, it has been reported that compared to individual
deletion mutants of SHO1 or MSB2, the sho1 msb2 double mutant completely abolished appressorium
formation [36,37]. Therefore, we hypothesize that SHO1 and SLN1, which are both present in the
genome of A. oligospora, likely also function as upstream osmosensors. Overall, our study demonstrates
that the Hog1 MAPK pathway displays a conserved role in osmoregulation, and is also critical in
regulation of conidiation and trap morphogenesis in the NTF A. oligospora.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/6/4/191/s1,
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Primer used in this study.
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