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BSTRACT 

lternative splicing (AS) and alternative polyadeny- 
ation (APA) are two crucial steps in the post- 
ranscriptional regulation of eukar yotic g ene ex- 
ression. Protocols capturing and sequencing 

NA 3 

′ 
-ends have uncovered widespread intronic 

olyadenylation (IPA) in normal and disease con- 
itions, where it is currently attributed to stochas- 
ic variations in the pre-mRNA processing. Here, we 

ook advantage of the massive amount of RNA-seq 

ata generated by the Genotype Tissue Expression 

roject (GTEx) to simultaneously identify and match 

issue-specific expression of intr onic polyaden yla- 
ion sites with tissue-specific splicing. A combina- 
ion of computational methods including the analysis 

f short reads with non-templated adenines revealed 

hat APA events are more abundant in introns than 

n exons. While the rate of IPA in composite terminal 
xons and skipped terminal exons expectedly corre- 
ates with splicing, we observed a considerable frac- 
ion of IPA events that lack AS support and attributed 

hem to spliced polyaden ylated intr ons (SPI). We hy- 
othesize that SPIs represent transient b ypr oducts 

f a dynamic coupling between APA and AS, in which 

he spliceosome removes the intron while it is be- 
ng cleaved and polyadenylated. These findings indi- 
ate that cotranscriptional pre-mRNA splicing could 

erve as a rescue mechanism to suppress premature 

ranscription termination at intr onic polyaden ylation 

ites. 

NTRODUCTION 

he majority of transcripts that are generated by the 
ukaryotic RN A Pol ymerase II undergo endonucleol ytic 
leavage and polyadenylation (CPA) at specific sites called 

he polyadenylation sites (PASs) ( 1 ). More than half of 
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uman genes have multiple PASs resulting in alternati v e 
olyadenylation (AP A) ( 2 , 3 ). AP A modulates gene expres- 
ion by influencing mRNA stability, translation, nuclear 
xport, subcellular localization, and interactions with mi- 
roRN As and RN A binding proteins (RBPs) ( 4 , 5 ). APA
s widely implicated in human disease, including hemato- 
o gical, imm unolo gical, neurolo gical disorders, and can- 
er ( 6 , 7 ). 

APA can generate transcripts not only with different 3 

′ 
- 

ntranslated regions (3 

′ 
-UTR) but also transcripts encod- 

ng proteins with different C-termini ( 8 ). Recent studies 
ave shown that more than 20% of human genes contain 

t least one intronic PAS located upstream of the 3 

′ 
-most 

xon ( 9 ). Intronic polyadenylation (IPA) can lead to im- 
ortant functional changes due to alterations in the pro- 
ein primary sequence ( 10 ). For instance, IPA in DICER 

enera tes a trunca ted protein with impaired miRNA cleav- 
ge ability that results in decreased endogenous miRNA ex- 
ression ( 11 , 12 ). Remar kab ly, the truncated oncosuppres- 
or proteins that are generated by IPA often lack tumor- 
uppressi v e functions and contribute significantly to the tu- 
or onset and progression ( 11 ). 
The interplay between splicing and polyadenylation has 

ong been recognized as being related to cotranscriptional 
re-mRNA processing ( 13 ). Many splicing factors have 
ual roles serving both splicing and polyadenylation, in- 
luding U2AF ( 14 ), PTBP1 ( 15 ), members of Hu pro- 
ein family ( 16 ) and others ( 8 ). The observation that IPA
s associated with weaker 5 

′ 
-splice sites and longer in- 

rons, and experiments on mutagenesis of CPA and splic- 
ng signals in plants together suggest that splicing and 

olyadenyla tion opera te in a d ynamic competition with 

ach other ( 9 , 17 ). Furthermore, nascent RN A pol ymerase 
I transcripts that are susceptible to CPA at cryptic PASs 
re pr otected fr om it by U1 snRNP in a process called 

elescripting, most remar kab ly in genes with longer in- 
rons ( 18 ). These results raise a number of challenging ques- 
ions about the actual abundance and function of cryptic in- 
ronic PASs, mechanisms of their inactivation, and relation 
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A number of experimental protocols have been de v el-
oped to identify the genomic positions of PASs ( 19 ). Many
of them use oligo(dT) (3’RNA-seq, PAS-seq, polyA-seq)
or similar primers (3’READS) to specifically capture tran-
script ends ( 2 , 20–23 ). A combination of these protocols
yielded a consolidated set of more than 500 000 human
PASs ( 24–26 ), howe v er man y more PASs ma y be acti v e in
tissue- and disease-specific conditions. A number of com-
putational methods also attempt to identify PASs from the
standard pol yA 

+ RN A-seq data as genomic loci that exhibit
an abrupt decrease in read cov erage ( 27–32 ). Howe v er, since
the density of RNA-seq reads is highly non-uniform along
the gene length, many of these methods are limited to PASs
tha t are loca ted in the last exon or 3 

′ 
-UTR, thus implicitly

focusing on quantifying relati v e usage of PASs in the gene
3 

′ 
-end rather than on identifying novel intronic PASs. 
On the other hand, RNA-seq data contain an admix-

tur e of r eads that cover the junction between the termi-
nal exon and the beginning of the polyA tail. They align
to the r efer ence genome only partially due to a stretch of
non-templated adenine residues. Although the fraction of
such reads is quite small and normally does not exceed
0.1%, they can potentially be used for de novo identification
of PASs. Previous studies such as ContextMap2 ( 30 ) and
KLEAT ( 29 ) demonstrated that the analysis of RNA-seq
reads containing a part of the polyA tail can offer a power-
ful alternati v e to cov erage-based methods w hen anal yzing a
sufficiently large panel of RNA-seq experiments. 

In this work, we took advantage of the massive amount
of RNA-seq data generated by the Genotype Tissue Ex-
pression Project (GTEx), the largest to-date compendium
of human transcriptomes, to sim ultaneousl y assess alterna-
ti v e splicing and intronic polyadenylation and match their
tissue-specific patterns ( 33 ). Unlike previous studies, which
e xtensi v ely characterized the tissue-specific polyadenylation
using coverage-based methods ( 31 , 34–36 ), here we focused
specifically on intronic PAS by combining the information
on polyA reads to identify PAS, split reads to measure the
AS rate, and the read coverage to assess the CP A rate. W e
identified a core set of 318 898 PAS clusters that are stably
expressed in GTEx tissues, which is consistent with other
published sets, and characterized their attribution to the
UTRs, exonic, and intronic regions. After normalizing the
number of polyA reads to the background read coverage, we
observed that intronic PAS are used more frequently than
PASs in regions that are not spliced, i.e., e xons. Moreov er, in
inspecting the concordance between IPA and AS, we unex-
pectedly found a consider able fr action of unannotated in-
tronic PAS that are inconsistent with previously proposed
IPA models (skipped and composite terminal exons). We
attributed them to Spliced Polyadenylated Introns (SPI), a
term we introduce here to describe transient byproducts of
the dynamic coupling between CPA and AS, and conjecture
that they are generated by the spliceosome removing the in-
tron while it is being cleaved and polyadenylated. 

MATERIALS AND METHODS 

Genome assembly and transcript annotation 

The February 2009 (hg19) assembly of the human genome
and comprehensi v e GENCODE transcript annotation
v34lift37 were downloaded from Genome Reference Con-
sortium ( 37 ) and GENCODE w e bsites ( 38 ), respecti v ely. 

Genome and gene partitions 

To partition the genome, we considered genomic regions
defined by the intervals annotated in the GENCODE
da tabase. A region tha t was not covered by any anno-
tated gene was classified as intergenic. The remaining re-
gions not covered by any annotated protein-coding gene
were classified as non-coding, and those covered by at least
one protein-coding gene were referred to as protein-coding.
Further, a region was classified as 5 

′ 
-UTR (respecti v ely, 3 

′ 
-

UTR) if it belonged to the 5 

′ 
-UTR (respecti v ely, 3 

′ 
-UTR) of

at least one annotated protein-coding transcript. The rest
of protein-coding regions were classified as ORFs, which
were further subdivided into exonic, intronic, and alterna-
ti v e r egions. A r egion was classified as constituti v e e xonic
(respecti v ely, intronic) if it belonged to exonic (respectively,
intronic) parts of all annotated transcripts that overlap the
region; otherwise, it was classified as alternati v e e xonic. Ter-
minal exons of protein-coding transcripts were excluded
from the alternati v e category. 

Identification of PAS from RNA-seq data 

GTEx RNA-seq data were downloaded from dbGaP (db-
GaP project 15872) in fastq format and aligned to the hu-
man genome assembly hg19 using STAR aligner version
2.7.3a in paired-end mode ( 39 ). PySAM suite was used
to extract uniquely mapped reads (NH:1) ( 40 ). To iden-
tify polyA reads, we considered all reads containing a soft
clipped region of at least 6 nts excluding reads with aver-
age sequencing quality below 13, which corresponds to the
probability 0.05 of calling a wrong base. We r equir ed that
the reported nucleotide sequence of the clipped region con-
tain at least 80% T’s if the soft clip was in the beginning
of the read, and 80% A’s if the soft clip was in the end of
the read. In fact, the requirement of 80% A’s or T’s was ex-
cessi v ely strict since 87% of soft clip regions consisted en-
tirely of A’s or T’s. Samples that contained an exception-
ally high number of polyA reads were excluded from analy-
sis (Supplementary Figur e S1). PolyA r eads wer e pooled by
the genomic position of the first non-templated nucleotide,
r eferr ed to as PAS position, resulting in read counts ( f i )
for each value of the overhang ( i ). Accordingly, each PAS
was characterized by the number of aligned polyA reads f
= 

∑ 

i f i and Shannon entropy of the overhang distribution
H = −∑ 

i 
p i log 2 p i , where p i = f i / f . 

To find optimal cutoffs, we repeated the above steps using
an array of thresholds on the minimal overhang length and
Shannon entrop y thr eshold H and computed the number
of annotated gene ends that are supported by PAS (Sup-
plementary Figure S2). The threshold H ≥ 2 in combina-
tion with the minimum overhang length of 6 nts appeared
to be optimal since it captured 85% annotated gene ends
and yielded 565 387 PAS, a number that corresponds by
the order of magnitude to the size of the PAS set reported
in PolyASite 2.0 ( 24 ). PASs that were located within 10 nts
of each other were merged into clusters (PASCs) using the
GenomicRanges package ( 41 ). 



NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 3 

P

T
(  

s
q
o
f
c
t  

t  

a
p
(
a
F
b
t
0
i  

G
R
P
u
m
t
d
l
r

R

F
y  

c  

p
p  

t
t
t
w
s

R

T
P
e
o
v
b
r
i

c
d
a
c
o
w

d
i
d  

t

w
g
T
r
i
p
a
t
s
i
S
d

a  

u
w
n
r

S

T
w
t  

p  

c  

s
l
s
u
u

C
d

C
G
G
w
p
t
2
c
s

U
s
c
a
t
a
v
t
s
tween introns. 
recision and recall 

he list of PASCs obtained from the GTEx RNA-seq data 

r eferr ed to as GTEx) was validated against two r efer ence
ets, the published set of PASCs inferred from the 3 

′ 
-end se- 

uencing (PolyASite 2.0, r eferr ed to as Atlas) and the set 
f annotated TEs provided by GENCODE consortium (re- 
erred to as GENCODE). First, GTEx and Atlas were both 

ompared to GENCODE so that a PASC was considered a 

rue positi v e if it was located within 100 nts from an anno-
ated TE, as in the previous studies ( 29 , 31 , 32 ). The precision
nd recall metrics varied depending on the number of sup- 
orting polyA reads (in GTEx) and the average expression 

in Atlas) reaching the optimal F 1 = 2( P 

−1 + R 

−1 ) −1 score 
t P = 0.57 − 0.58 and R = 0.49 − 0.51 (Supplementary 

igure S3, top left). The same metrics for PASCs weighted 

y polyA read support showed a better performance with 

he optimal F 1 score at P = 0.83 − 0.86 and R = 0.73 −
.76 (Supplementary Figure S3, bottom left). In compar- 
son to Atlas as a r efer ence set by the number of PASCs,

TEx showed a moderate performance with P = 0.66 and 

 = 0.30, especially in terms of recall, i.e., a large fraction of 
ASCs from Atlas were not detected (Supplementary Fig- 
re S3, top right). Howe v er, when the same comparison was 
ade by weighting PASCs by the number of polyA reads, 

he precision and recall were 0.92 and 0.97, respecti v ely, in- 
ica ting tha t the GTEx primarily misses PASCs with low 

e v el of read support (Supplementary Figure S3, bottom 

ight). 

elative position in the gene 

or each PASC, which is characterized by the interval [ x , 
 ] in the gene [ a , b ], where x , y , a , and b are genomic
oordinates on the plus strand, we defined p , the relati v e
osition in the gene as p = 

x−a 
( y −x ) −( b−a) + 1 for genes on the 

ositi v e strand, and used the value of 1 − p for genes on
he opposite strand. The values of p outside of the in- 
erval [0,1] indicate that the PASC is located outside of 
he annotated gene boundaries. PASC relati v e positions 
ith respect to exonic and intronic r egions wer e computed 

imilarly. 

ead co ver age and f old change 

o quantify the extent, to which CPA happen at a specific 
ASC in a specific tissue, we first calculated the read cov- 
rage genomewide for each GTEx sample by considering 

nl y uniquel y ma pped reads (MAPQ = 255 w hen processed 

ia STAR mapper) with bamCover ag e utility using flags – 

inSize 10 –minMappingQuality 255 ( 42 ) and averaged the 
ead coverage values between samples within each tissue us- 
ng wiggletools mean utility ( 43 ). 

Next, we calculated the mean read coverage per nu- 
leotide in 150-nt windows starting 10 nts upstream and 

ownstream of each PASC in each tissue (referred to as wi 1 
nd wi 2 ) using multiBigwigSummary utility ( 42 ). The fold 

hange ( wi 1 / wi 2 ) metric was computed using a pseudocount 
f 10 

−3 . To take into account the variation between samples 
hen assessing PASC expression, we followed the approach 
escribed previously ( 11 ) by detecting significant differences 
n read counts between the upstream and downstream win- 
ows ( P adj < 10 

−3 ) using DESeq2 ( 44 ), separately in each
issue. 

Intronic P ASCs (iP ASCs) were defined as PASCs located 

ithin at least one annotated intron of a protein-coding 

ene > 200bp away from the closest annotated splice site. 
he read coverage in w e 1 and w e 2 was computed with 

espect to the shortest intron containing the iPASC. An 

PASC located within 100 nts from an annotated TE of a 

rotein-coding transcript ( n = 3188) was categorized as an 

nnotated STE (respecti v ely, CTE) if the terminal exon of 
he transcript fully belonged to the containing intron (re- 
pecti v ely, contained the interval from the 5 

′ 
-splice site to 

PASC). This ca tegoriza tion yielded 1136 CTEs and 1948 

TEs; 104 PASCs located near multiple TEs were excluded 

ue to the conflicting annotation. 
To estimate the mean read coverage in constituti v e e xons, 

lternati v e e xons , and introns , the total read coverage val-
es per nucleotide in GTEx samples were averaged between 

indows located in the respecti v e regions, resulting in the 
ormalization factors of 3.3 × 10 

6 , 3.2 × 10 

6 and 8.0 × 10 

4 , 
especti v ely. 

plicing metrics 

o quantify tissue-specific alternati v e splicing associated 

ith intronic PASCs, we computed split read counts using 

he IPSA pipeline ( 33 , 45 ). The counts of split reads were
ooled within each tissue to compute the � = a / ( a + b +
 ) metric, where a , b , and c ar e the number of split r eads
upporting the canonical splicing, the number of split reads 
anding before iPASC, and the number of continuous reads 
panning the exon-intron boundary, respectively. The val- 
es of � with the denominator below 30 were discarded as 
nreliable. 

leav e-seq 5 

′ 
-end cov erage and 3 

′ 
-RNA capping and pull- 

own data 

leave-seq data in HeLa cells were downloaded from 

ene Expression Omnibus under the accession number 
SE165742 (samples GSM5566266–GSM5566269) in big- 
ig format ( 46 ). The per-bin Cleave-seq signal was com- 
uted around 5 

′ 
-splice sites using deeptools computeMatrix 

ool with the following parameters r efer ence-point -a 150 -b 

0 -bs 5 –nanAfterEnd –missingDataAsZero –skipZeros and 

onsequently averaged between replicas and introns for vi- 
ualization. 

The 3 

′ 
-RN A ca pping and pulldown (3 

′ 
-PD) data in 

2OS cells ( 47 , 48 ) were downloaded from Gene Expres- 
ion Omnibus under the accession number GSE84068 in- 
luding thr ee 3 

′ 
-PD r eplicas (GSM2226722–GSM2226724) 

nd three total pol yA 

+ RN A-seq replicas for normaliza- 
ion (GSM2226713–GSM2226715). The per-bin coverage 
round 5 

′ 
-splice sites was computed as for Cleave-seq. For 

isualization, the 3 

′ 
-PD coverage values were averaged be- 

ween replicates, normalized to the respecti v e total RNA- 
eq coverage in each bin of each intron, and averaged be- 
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Statistical analysis 

The data were analyzed using R statistics software version
3.6.3. One-sided non-parametric tests were performed using
normal approximation with continuity correction. In all fig-
ures, the significance le v els of 5%, 1% and 0.1% are denoted
by *, ** and ***, respecti v el y; w hiskers denote standard de-
viation; log denotes base-10 logarithm. 

RESULTS 

The identification of PAS 

The majority of short reads in the output of pol yA 

+ RN A-
seq protocols align perfectly to the genome, but a small
fraction ma p partiall y due to stretches of non-templated
adenines generated by CPA. Since RNA-seq reads with in-
complete alignment to the genomic r efer ence tend to map to
multiple locations, we took a conservati v e approach by ana-
l yzing onl y uniquel y ma pped reads from 9021 GTEx RN A-
seq experiments ( 33 ) with additional restrictions on se-
quencing quality (see Methods). We extracted polyA reads,
defined as short reads containing a soft clipped region of at
least six nucleotides that consists of 80% or more adenines,
excluding reads aligning to adenine-rich genomic tracks
and omitting samples with exceptionally large numbers of
polyA r eads (Supplementary Figur e S1). Out of ∼356 bil-
lion uniquel y ma pped reads, ∼591 million (0.17%) pol yA
r eads wer e obtained. At that, the average adenine content
in soft clipped regions of polyA reads was 98% despite the
original 80% threshold, confirming that the selected short
reads indeed contain polyA tails. 

The alignment of a polyA read is characterized by the ge-
nomic position of the first non-templated nucleotide, which
pr esumably corr esponds to a PAS, and the length of the soft
clip r egion, her e r eferr ed to as overhang (Figur e 1 A). Con-
sequently, each PAS is characterized by the number of sup-
porting polyA r eads, r eferr ed to as polyA read support, and
the distribution of their overhangs. Our confidence in PAS
correlates not only with polyA read support, but also with
the di v ersity of the ov erhang distribution ( 33 ), which is mea-
sured by Shannon entropy H . Out of 9.6 million candidate
PASs, 2.1 million (22%) had H ≥ 1 and 565 387 (6%) had
H ≥ 2 (Supplementary Figure S2). PASs located near an-
notated transcript ends tend to have higher H values com-
pared to other PASs (Supplementary Figure S4A). In fur-
ther analysis, we chose to use the threshold H ≥ 2 in order
to obtain a list of PASs that matches by the order of mag-
nitude the consolidated atlas of polyadenylation sites from
3 

′ 
-end sequencing ( 24 ) and captures sufficiently many an-

notated gene ends (Supplementary File 1). Out of 565 387
PASs with H ≥ 2, 331 563 contained a sequence motif simi-
lar to the canonical consensus CPA signal (NAUAAA, AN-
U AAA, or AAU ANA) in the 40-nt upstr eam r egion ( 49 , 50 ).
The latter PASs will be r eferr ed to as PASs with a signal. 

To characterize the occurrence of PASs in different ge-
nomic regions, we subdivided the human genome into a
disjoint union of intervals corresponding to protein-coding
genes , non-coding genes , and intergenic regions. In total,
336 045, 49 665 and 179 677 PASs were detected in these
respecti v e regions; of these 69%, 61%, and 39% were PASs
with a signal, respecti v ely. The le v el of polyA read sup-
port in different genomic regions also varied, e.g. 25.5%,
14% and 7% PASs were supported by 100 or more polyA
reads in protein-coding, non-coding, and intergenic regions,
respecti v ely (Figure 1 B). As expected, protein-coding re-
gions had the largest density of PASs per megabase. How-
e v er, a large absolute number of PASs in intergenic regions,
including PASs without canonical consensus CPA signals,
indica tes tha t a substantial number of RNA Pol II tran-
scripts are transcribed from them, in accordance with cur-
rent hypotheses on pervasi v e transcription ( 51–53 ). 

An example of a gene that is highly covered by polyA
reads is RPL5 (Figure 1 C). We identified se v eral PASs in the
vicinity of its annotated transcript end (TE), some of which
were supported by as many as 100 000 polyA reads with
more than 20 different overhangs. While instead of a sin-
gle peak we observed a relatively dispersed cluster of PASs
spanning twelve nucleotides, the majority of polyA reads
supported CPA at only two closely located positions. The
3 

′ 
-seq read coverage in RPL5 locus also followed this pat-

tern (Supplementary Figure S4B). Remar kab ly, the number
of polyA reads decayed with increasing the length of the
overhang (Figure 1 C, bottom). This decrease could result
from the mapping bias, in which a lower fraction of reads
with larger soft clip regions can be mapped uniquely, or be
a consequence of degradation of the substrates possessing
multiple terminal adenines by exonucleases ( 54 ). 

PAS clusters 

The variability of PASs positions in RPL5 motivated us to
explore the distribution of distances from each PAS to its
closest annotated TE in protein-coding genes (Figure 2 A).
Among PASs that were located within 100 nts from an an-
notated TE, 71% fell within 10 nts, and 78% of PASs with a
signal did so. We ther efor e chose to cluster PASs that were
located within 10 nts of each other (Figure 2 B). This yielded
318 898 PAS clusters (PASCs), of which 90% had length be-
low or equal to 10 nts, 72% consisted of a unique PAS, and
99% consisted of less than 10 individual PASs (Supplemen-
tary File 2). In comparison, PASCs deri v ed from the 3 

′ 
-end

sequencing tend to be wider (Supplementary Figure S4C).
In what follows, a PASC will be r eferr ed to as PASC with a
signal if it contains at least one individual PAS with a sig-
nal; the polyA read support of a PASC is defined as the total
number of supporting polyA reads of its constituent indi-
vidual PASs. 

We next asked how PASCs identified from GTEx RNA-
seq data correspond to those in the consolidated polyadeny-
la tion a tlas (PolyASite 2.0 ( 24 ), in what follows r eferr ed to
as Atlas) and TEs annotated by the GENCODE consor-
tium ( 38 ). To assess this, we surrounded TEs from GEN-
CODE by 100-nt windows and analyzed pairwise intersec-
tions of the three respecti v e sets (Figure 2 C). The precision
of GTEx with respect to GENCODE, i.e., the proportion of
PASCs from GTEx that were located within 100 nts of an
annotated TE, was higher than that of PolyASite 2.0, while
the recall, i.e., the proportion of annota ted TEs tha t are sup-
ported by at least one PASC from GTEx within 100 nts, was
lower. Conversely, the precision of GTEx with respect to
PolyASite 2.0 was lower compared to that of GENCODE,
while the recall was higher. A similar interplay between
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Figure 1. The identification of PAS. ( A ) The alignments of short reads with non-templated adenine-rich ends (polyA reads). The genomic position of the 
first non-templated nucleotide corresponds to a PAS. The length of the soft clip region is referred to as overhang. ( B ) The polyA read support of PAS in 
protein-coding genes, non-coding genes, and intergenic regions. The number of PASs in each group is indicated in the inset. ( C ) The 3 

′ 
-end of the RPL5 

gene is highly covered by polyA reads. Top: the positional distribution of the number of polyA reads (in log scale) and the number of staggered polyA 

reads (i.e. the number of different overhangs). Bottom: the distribution of overhangs at the indicated positions (in log scale). 
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r ecision and r ecall values was observed when short- 
ning the window around TEs to 50 nts and also 

or a subset of PASCs located intronically (Supplemen- 
ary Figure S5). This comparison indicates that GTEx 

NA-seq data yields a slightly more conservati v e set 
f PASCs than PolyASite 2.0. The benefit of using 

TEx PASCs is that RNA-seq provides a snapshot of 
lternati v e splicing and polyadenylation assessed in the 
ame conditions. Additional analysis of the relation- 
hip between precision and recall for GTEx and PolyA- 
ite 2.0 weighted by the polyA read support confirmed 

hat the two sets are largely consistent (Supplementary 

igure S3). 
Since 85% of newly identified PASCs did not have an an- 

otated TE within 100 nts, we focused on this group of 
ASCs (r eferr ed to as unannotated PASCs) and explored 

heir relati v e position within the gene length, which is equal 
o 0% and 100% for the 5 

′ 
-end and 3 

′ 
-end of the gene, re-

pecti v ely (Figure 2 D). Despite TEs no longer being consid- 
red, we observed a considerable increase in PASC density 

owards the 3 

′ 
-end for those with and without a signal, and 

 much weaker, but noticeable increase in the 5 

′ 
-end. This 

ecapitulates the general tendency of PASCs to occur more 
requently towards the 3 

′ 
-end of the gene, a pattern that is 

lso observed for unannotated PASCs from Atlas (Supple- 
entary Figure S6). Of note, 89% of PASCs documented in 

tlas also did not have an annotated TE within 100 nts, thus 
aising a concern about the biological relevance of these 
nannotated PASCs and their role in pr ematur e transcrip- 

ion termination. 
AS clusters in protein-coding regions 

e next focused on a subset of 164 497 PASCs that were 
ocated in protein-coding genes and explored their attribu- 
ion to gene parts, namely to the 5 

′ 
-untranslated region (5 

′ 
- 

TR), the 3 

′ 
-untranslated region (3 

′ 
-UTR), and the cod- 

ng part (ORF). Each ORF region was further subdivided 

nto intronic, constituti v e e xonic , and alternati v e e xonic
arts (see Methods). Since these regions differ by length, 
e quantified PASCs not only by absolute number but also 

y density, i.e., the number of PASCs per nucleotide. Ad- 
itionally, we quantified the expression of PASCs by taking 

nto account their polyA read support, in which each PASC 

as weighted by the number of supporting polyA reads 
Figure 3 ). 

As expected, PASCs were quite frequent in 3’UTRs and 

RF by absolute number, but their density was the highest 
n 3 

′ 
-UTRs since ORF regions are also longer than UTRs 

Figure 3 A). The enrichment in 3 

′ 
-UTRs was more promi- 

ent when taking into account the number of supporting 

ol yA reads. Similarl y, PASCs were most frequent in introns 
y absolute number, but their density was the lowest after 
ormalization (Figure 3 B). The positional distribution of 
ASCs had a pronounced peak in the end of exonic regions 
nd in the beginning of intronic regions (Supplementary 

igure S7), and similar peaks were also observed for Poly- 
Site 2.0 (Supplementary Figure S8). Howe v er, despite low 

ensity, intronic PASCs were still quite frequent by absolute 
umber, and among them there could be PASCs leading to 

r ematur e CPA. 
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Figure 2. PAS clusters in protein-coding genes. ( A ) The distribution of distances from each PAS to its closest annotated transcript end (TE) for PAS with ( n 
= 122 448) and without a signal ( n = 22 361). ( B ) PAS located < 10 bp from each other are merged into P AS clusters (P ASCs). ( C ) Pairwise comparison of 
PASs inferred from GTEx, PolyASite 2.0 (Atlas), and GENCODE. Left: the proportion of PASC from GENCODE that are supported by Atlas or GTEx 
(precision) and the proportion of PASC from Atlas or GTEx that are supported by GENCODE (recall). Right: the proportion of PASC from Atlas that 
are supported by GENCODE or GTEx (precision) and the proportion of PASC from GENCODE or GTEx that are supported by Atlas (recall). ( D ) The 
relati v e positions of unannotated PASCs (i.e., ones not within 100 bp of any annotated TE) along the gene length. 0% and 100% correspond to the 5 

′ 
-end 

and 3 
′ 
-end of the gene, respecti v ely. The inset shows distribution of absolute positions of unannotated PASCs around the gene end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current models assume that introns containing PASs
cannot undergo splicing after they are cleaved and
polyadenylated ( 1 ). Here we challenge this assumption by
supposing that splicing and CPA machineries can oper-
ate on the same pre-mRN A sim ultaneousl y, and that the
spliceosome, once assembled on the intron, is able to com-
plete intron excision even after CPA has already occurred
in it. In this case, some of the intronic CPA e v ents would
still be visible in RNA-seq as intronic polyA reads despite
intron removal. The extent, to which it happens, may de-
pend on intron debranching and degradation rates as well
as on other intron-specific factors such as RNA secondary
structure or G-quadruplex formation ( 55 , 56 ). 

To estimate the CPA rate, at which it acts on the nascent
pre-mRNA, and to take into account the bias arising from
intron degradation, we normalized the number of polyA
reads to the average read coverage in exons and introns and
found that the relati v e density of polyA reads in introns is
substantially larger than that in exons (Figure 3 C). Further-
more , we matched introns , constituti v e, and alternati v e e x-
ons by the read coverage (Supplementary Figure S9A) and
selected a subset of intervals of each type that were cov-
ered by a pproximatel y the same number of reads (133 ± 6.7
reads per kb per sample). Then, we computed the number
of polyA reads in these matched subsets and, again, found
a prominent enrichment of polyA reads in introns as com-
pared to exons both in terms of the number of polyA reads
(Figure 3 D, left) and their density per nt (Figure 3 D, right).
This enrichment remained significant in other read cover-
age ranges (Supplementary Figure S9B, C). In sum, this
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Figure 3. PAS clusters in protein-coding regions. ( A ) The distribution of PASCs in 5 
′ 
-UTRs, ORF, and 3 

′ 
-UTRs. Shown are the total number of PASC 

(P ASC count), P ASC density per Kb (PASC density), the total number of polyA reads (polyA read count), the total number of polyA reads per kb (polyA 

read density). ( B ) The distribution of PASCs from ORF in introns, constituti v e e xons, and alternati v e e xons. PASC located within 2bp of e xon bor ders were 
excluded. ( C ) The number of polyA reads normalized to the average read coverage in each region (defined as the number of polyA reads per million aligned 
reads; see Methods for details). ( D ) The number of polyA reads in segments matched by the read coverage density. Whiskers denote standard deviation. 

i  

i  

t
e

T

W
i
G
n
o
P
b
t
w
w
q
w
P
w
(

c
G
f
d
3
w

p
a
w
g
n
p
n
n

w
o  

D
t
(
o
i
o  

e

e
g  

S
w
P
a
n
a
P
D

ndica tes tha t if introns and exons wer e equally r epr esented
n the RNA-seq data, the frequency of CPA e v ents in in-
rons would have appeared se v eral times larger than that in 

xons. 

issue-specific polyadenylation 

hile PASC positions can be robustly identified by pool- 
ng hundreds of millions of polyA reads across the entire 

TEx dataset, the rate of their tissue-specific usage can- 
ot be assessed in the same way due to insufficient number 
f polyA reads in individual samples. Instead, the rate of 
ASC expression in tissues can be measured by coverage- 
ased methods, as their positions have been already iden- 
ified. Here, we adapted a simple procedure from ( 11 ), in 

hich the average read coverage was measured in 150-nt 
indows, wi 1 and wi 2 , before and after each PASC. To 

uantify PASC expression, we used log 10 ( wi 1 / wi 2 ) metric, 
 hich ca ptures the magnitude of read coverage drop at a 

ASC, and a more elaborate method based on DESeq2 ( 44 ), 
 hich additionall y accounts for variation between samples 

Figure 4 A). 
First, we analyzed the set of 164 497 PASCs in protein- 

oding genes by pooling read coverage pr ofiles acr oss all 
TEx samples and excluding PASCs located within 200 nts 

rom splice sites to avoid measuring the read coverage 
rop at exon-intron boundaries. In the resulting set of 126 

10 PASCs (Supplementary File 3), the read density in 

i 1 and wi 2 averaged to 8.8 and 3.7 reads per nucleotide 
er sample, respecti v ely, indica ting a t least twofold aver- 
ge drop after PASCs. Consistently, the wi 1 / wi 2 distribution 

as skewed towards positive values with a noticeably big- 
er skewness for PASCs with a signal and PACSs near an- 
otated TEs (Figure 4 B). Remar kab ly, the number of sup- 
orting polyA reads was positi v ely correlated with wi 1 / wi 2 
ot only for PASCs near annotated TEs, but also for unan- 
otated PASCs with a signal (Figure 4 C). 
For each PASC, we computed the average read density in 

i 1 and wi 2 separately in each tissue. Out of 126 310 PASCs, 
n average 18 470 per tissue (15%) had wi 1 / wi 2 > 10, while
ESeq2 analysis has identified a significant difference be- 

ween read coverage in wi 1 and wi 2 for on average 43 615 

35%) of PASCs per tissue. In each tissue, on average 90% 

f PASCs with wi 1 / wi 2 > 10 were also significant accord- 
ng to DESeq results. Since the results of the two methods 
verlapped, we chose to call a PASC with wi 1 / wi 2 > 10 as
xpressed in the corresponding tissue. 

We next compared the set of expressed PASCs to a ref- 
rence set containing 689 346 PASs in 3 

′ 
-UTRs of human 

enes that was deri v ed from the GTEx using DaPars ( 34 ).
ince the exact positions of PASCs in 3 

′ 
-UTRs may vary, 

e selected 3 

′ 
-UTRs that contain at least one expressed 

ASC and matched them against 3 

′ 
-UTRs that were called 

s expressed by DaPars in genes with more than one an- 
otated 3 

′ 
-UTR. On average 85% of 3 

′ 
-UTRs containing 

n expressed PASC were also called as expressed by Da- 
ars, and vice versa 50% of 3 

′ 
-UTRs called as expressed by 

aPars contained at least one expressed PASC. That is, the 
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Figure 4. Coverage-based metrics of PASC expression. ( A ) The average read coverage was measured in 150-nt upstream and downstream windows, wi 1 
and wi 2 , around PASC. ( B ) The distribution of log 10 ( wi 1 / wi 2 ) metric for annotated ( n = 37 194, top) and unannotated PASCs ( n = 89 116, bottom). A 

PASC is r eferr ed to as annotated if it is within 100 bp of an annotated TE. The dashed line r epr esents the cutoff wi 1 / wi 2 = 10. ( C ) The log 10 ( wi 1 / wi 2 ) 
metric positi v el y correlates with the number of supporting pol yA reads not onl y f or annotated, but also f or unannotated PASCs with a signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expression of PASCs in tissues as measured by the wi 1 / wi 2
metric and the results obtained by DaPars are consistent on
a subset of PASCs in 3 

′ 
-UTRs. 

Previous studies have extensively characterized tissue-
specific polyadenylation in the GTEx dataset using
cov erage-based methods, howe v er f ocusing on polyaden y-
lation in 3 

′ 
-UTRs ( 31 , 34–36 ). Here, we specifically

considered intronic PASCs (iPASCs) identified by using
polyA reads and examined the relationship between IPA
and AS by juxtaposing the information on polyA reads to
identify PASC positions, metrics based on split reads to
measure AS rate, and the read coverage to assess IPA rate. 

Intr onic polyaden ylation and splicing 

Accor ding to ( 9 ), alternati v e terminal e xons that are gen-
erated through IPA can be categorized into two classes,
skipped terminal exons (STE), which may be used as ter-
minal exons or excluded, and composite terminal exons
(CTE), which result from CPA in a retained intron (Fig-
ure 5 A, right). To distinguish between these possibilities, we
estimated the average read coverage in two additional win-
dows, w e 1 and w e 2 , a t the exon-intron boundary (Figure 5 A,
left). For simplicity, the read coverage values in the four win-
dows will also be denoted by w e 1 , w e 2 , wi 1 and wi 2 . We ex-
pect that, in addition to a large wi 1 / wi 2 ratio, STE must be
characterized by a large w e 1 / w e 2 ra tio, w hile CTE m ust be
characterized by a small w e 1 / w e 2 ra tio. 

To quantify the rate of splicing, we computed the num-
ber of split reads starting at the intron 5 

′ 
-end and landing

before iPASC ( b ), after iPASC at the canonical 3 

′ 
-splice site
( a ), and the number of continuous reads ( c ) that span the
exon-intron boundary (Figure 5 A, left). These metrics were
combined into the � = a / ( a + b + c ) ratio, r eferr ed to as
the rate of canonical splicing, where � � 1 indicates that
the canonical splicing ( a ) prevails, while � � 0 indicates the
presence of AS e v ents before iP ASC. W e expect that both
STE and CTE are characterized by � � 0 due to the lack of
canonical splicing, with prevailing b in the case of STE and
prevailing c in the case of CTE. 

In what follows, we confined the analysis to iPASCs
with a signal only. The values of w e 1 , w e 2 , wi 1 , wi 2 , and � 

were computed for 1,115,690 iPASC-tissue pairs compris-
ing 35 990 iPASCs in 31 tissues. We observed a significant
negati v e association between � and IPA rate measured by
polyA r ead support (Figur e 5 B) or log 10 ( wi 1 / wi 2 ) (Supple-
mentary Figure S10A). Of note, � is a relati v e quantity,
which is not influenced by the read coverage. This associ-
ation also manifested itself as a negati v e ske w in the distri-
bution of Pearson correla tion coef ficients of � and IPA ra te
across tissues as compared to the background distribution,
in which the tissue labels were shuffled (Figure 5 C, left, and
Supplementary Figure S10B). The read coverage at iPASC
changed two orders of magnitude when � increased from
25% to 100% in some remar kab le cases (Figure 5 C, right).
These observations reconfirm that splicing and CPA natu-
r ally counter act each other. 

Further, we considered 75 501 iPASC-tissue pairs with
a substantial read coverage drop at iPASC ( wi 1 / wi 2 > 10)
and a substantially high read coverage in the upstream in-
tronic window ( wi 1 > 0.1 we 1 ). The bivariate distributions
of log ( we 1 ) and log ( we 2 ) for 1136 annotated CTEs and
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Figure 5. Intronic polyadenylation and splicing. ( A ) Exonic ( we 1 and we 2 ) and intronic ( wi 1 and wi 2 ) 150-nt windows. ( B ) The polyA read support of 
iPASCs in four � quartiles; *** denotes the 0.1% significance le v el. ( C ) Pearson correlation coefficients of � and log 10 ( wi 1 / wi 2 ) for n = 12 261 iPASCs 
compared to the label-shuffled control (left). Negati v e association between � and log 10 ( wi 1 / wi 2 ) in the SORBS2 gene. ( D ) Bivariate distribution of we 1 
versus we 2 in PASC-tissue pairs for CTE ( n = 1136), STE ( n = 1948), and other iPASCs ( n = 32 906). The dashed line corresponds to w e 2 / w e 1 = 0.25. ( E ) 
The distribution of � for CTE, STE, and other iPASCs; +TE ( −TE) denote iPASCs within (not within) 100 nts of an annotated TE. ( F ) The distribution 
of w e 2 / w e 1 (left) and w e 2 / w e 1 (right) values for CTE, STE and SPI. The vertical dashed line denotes w e 2 / w e 1 = 0.25. ( G ) The Cleav e-seq 5 

′ 
-end cov erage 

in introns with ( n = 21 230) iPASC and without iPASC ( n = 199 978) under XRN2 knockdown (see Supplementary Figure S10D for the wild type). 
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1948 annotated STEs were separated by the line we 2 =
0.25 we 1 , with the former expectedly clustering above, and
the latter clustering below the line (Figure 5 D, left and
middle). iPASCs other than CTE or STE formed a mix-
ture of the two distributions (Figure 5 D, right). A simi-
lar pattern was observed for the bivariate distributions of
log ( wi 1 ) and log ( we 2 ) (Supplementary Figure S10C). How-
e v er, while � values of CTE and STE were characterized
by a single peak at � � 0 indicating the absence of canon-
ical splicing (Figure 5 E, left and middle), the � values of
iPASC other than CTE or STE had a pronounced second
peak at � � 1 formed mostly by iPASCs without the TE
support (Figure 5 E, right). This peak is incompatible with
CTE and STE models because it implies that IPA coexists
with the canonical splicing. To further clarify this, we fo-
cused on introns substantially supported by split-reads ( a
+ b + c ≥ 30) and containing iPASCs with � > 0.9, termed
here as Spliced Polyadenylated Introns (SPI), and compared
w e 2 / w e 1 and w e 2 / wi 1 distributions among STE, CTE, and
SPI (Figure 5 F). 

Similarly to STEs, SPIs were characterized by a low cov-
erage in the intron 5 

′ 
-end relati v e to the exon, yet a suffi-

ciently high coverage upstream of iPASC relati v e to the in-
tron 5 

′ 
-end. We hypothesized that iPASCs with � � 1 rep-

r esent pr ematur el y pol yadenylated and spliced introns and
hence expected them to have a monophosphate at the 5 

′ 
-

end (5 

′ 
-p) resulting from the branchpoint (BP) cleavage by

RNA debranching enzyme DBR1 ( 57 , 58 ). Then, the lin-
earized product of CPA at an iPASC upstream of BP would
consist of two separate molecules, one corresponding to the
intronic RNA upstream of PAS with both 5 

′ 
-p and polyA

tail, and the other corresponding to the intron part down-
stream of PAS. Consistently with this, the 5 

′ 
-end coverage of

RNAs identified by Cleave-seq, a method designed to cap-
ture 3 

′ 
-polyadenylated RNAs with 5 

′ 
-p ( 46 ), was substan-

tially larger in introns with iPASCs than in introns with-
out iPASCs (Figure 5 G) and, among the former, it was the
largest in SPI (Supplementary Figure S10D). A similar en-
richment in the 5 

′ 
-end was also observed in 3 

′ 
-pull down

in vitro capping experiments (Supplementary Figure S10E–
G). Taken together, these results indica te tha t SPIs undergo
both splicing and CPA and are not 3 

′ 
-ends of distinct Pol II

transcripts initiated and terminated within the same intron.
Next, w e follow ed up a few cases of tissue-specific splic-

ing and CPA (Figure 6 ). The iPASC in the MEGF8 gene,
which encodes a membrane protein associated with Carpen-
ter syndrome ( 59 ), is an example of a CTE supported by in-
tronic read coverage in absence of AS before PASC, most
remar kab ly in thyroid tissue (Figure 6 A). In the Attractin
( ATRN ) gene, which encodes a tr ansmembr ane protein as-
sociated with kidney and li v er abnormalities in mice ( 60 ),
an iPASC is expressed in muscle along with the elevation of
read coverage in wi 1 and activation of a splice site at its bor-
der, likely r epr esenting an unannotated STE (Figure 6 B).
Both these iPASCs are supported by CSTF2 eCLIP peaks
and PolyASite 2.0. In contrast, iPASC in the ATRX gene,
which encodes a chromatin remodeler linked to a range of
diseases ( 61 ), e xhibits ele vated read cov era ge in wi 1 , b ut it
lacks AS e v ents that could support STE, or RNA-seq reads
in the beginning of the intron that could support CTE (Fig-
ure 6 C). The only possible explanation for it would be that
the canonical splicing and IPA co-exist and operate concur-
r ently r esulting in SPI. 

To characterize further the abundance of IPA e v ents, we
considered a strict set of iPASC-tissue pairs described above
and categorized them as CTE, STE, and SPI according to
the following criteria: � ≤ 0.9 and w e 2 > 0.25 w e 1 (CTE), � 

≤ 0.9 and we 2 ≤ 0.25 we 1 (STE), and � > 0.9 (SPI), respec-
ti v ely (Supplementary File 4). We categorized an iPASC as
CTE, STE, and SPI if it belonged to the respecti v e class for
at least one iPASC-tissue pair. This yielded 2846, 2251 and
1482 iPASCs corresponding to STE, CTE and SPI, respec-
ti v ely, with 63% of SPIs also supported by PolyASite 2.0 and
> 75% of SPIs having more than 200 reads in the � denomi-
nator. The number of iPASCs attributed to the three classes
varied moderately across tissues, presumably reflecting the
fact that the bulk of IPA e v ents are not regulated (Supple-
mentary Figure S11A). Accordingly, SPIs exhibit the lowest
variation of the relati v e e xpr ession measur ed by the wi 1 / we 1
ratio among the three classes (Supplementary Figure S11B),
tend to occur in longer introns, and have a slight pr efer ence
to the 5 

′ 
-end of the gene (Supplementary Figure S11C, D).

Furthermore, a pproximatel y 13% of genes expressing more
than one iPASC contain a SPI. We conclude that SPIs r epr e-
sent semi-stable intermediates that can be detected by polyA
reads and 3 

′ 
-end sequencing. They constitute a minor, yet

consider able fr action of IPA e v ents and contribute to the
observed landscape of intronic polyadenylation. 

DISCUSSION 

Thousands of r ecurr ent and dynamically changing IPA
e v ents hav e been identified by 3 

′ 
-end sequencing methods,

but the matched data to study the interplay between IPA
and AS in the same biological condition are currently in
high demand ( 11 ). The GTEx dataset r epr esents an ideal re-
source for studying this interplay because the information
on the positions and tissue-specific expression of intronic
PASs, which is captured by polyA reads, is complemented
by tissue-specific splicing rates inferred from split reads that
align to splice junctions. 

In this work, we used for the first time the approach based
on polyA reads, one that was applied previously to much
smaller datasets ( 29 , 30 ), for the identification of PASs at
the scale of GTEx project and combined it with a coverage-
based method to assess the IPA ra te. W hile RNA-seq is
known to have a limited sensitivity when detecting PASs due
to the short read length, the magnitude of the GTEx dataset
allows for a dramatic improvement, making the results com-
parable to those of PolyASite 2.0. However, the polyA-read-
based approach also has limitations related to the mappa-
bility of reads with long soft clip regions. The positional dis-
tribution of PASCs in constituti v e e xons and introns has a
pronounced peak in the end of exonic and in the beginning
of intronic regions (Supplementary Figure S7) resembling
clusters of CAGE tags near internal exons and occurrence
of polyA-seq peaks close to exon boundaries ( 62 , 63 ). These
anomalies likely arise from erroneous mappings of split
reads that contain the pol yA tail, e.g. w hen the adenine-
rich part of the read or a short segment between splice
junction and the stretch of non-templated adenines are
incorrectly attributed to the soft clip region (example in
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Figure 6. Case studies. ( A ) The iPASC between exons 1 and 2 of MEGF8 generates a CTE. The eCLIP peaks of CSTF2 and PASC from PolyAsite 2.0 
are indicated in the track below. Arcs represent tissue-specific AS. ( B ) The iPASC between exons 25 and 26 A TRN genera tes a STE with tissue-specific 
expression in heart and muscle. ( C ) The iPASC between exons 1 and 2 likely generates a SPI because the intron 5 

′ 
-end is not covered, wi 1 is covered, but 

there is no evidence of STE. 
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Figur e 7. Spliced Pol yadenyla ted Intron (SPI). W hen the CPA ra te exceeds the splicing rate, IPA leads to the generation of a truncated transcript isoform 

(left). When the splicing rate exceeds the CPA rate, the intron is spliced out and PAS is degraded as a part of a laria t (right). W hen the CPA and splicing 
machinery operate at the same rate, the intron is cleaved and pol yadenylated w hile it is being spliced (middle) resulting in SPI. The lariat is debranched 
producing two separate RNAs (inset) corresponding to intron fragments upstream and downstream of PAS, where the upstream part contains both 5 

′ 
-p 

and polyA tail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S12). Howe v er, these details do not
invalidate the polyA read strategy since PASCs obtained by
other protocols, e.g. in PolyASite 2.0, have similar peaks
near exon boundaries (Supplementary Figure S8). The
alignment of split reads with a short exonic part appears
to be a common problem of all methods. 

The widespr ead natur e of IPA has been appr eciated r e-
cently with the de v elopment of 3 

′ 
-end sequencing ( 64 ).

Functionally important IPA cases have been described in
specific genes ( 10 , 65–69 ), howe v er most transcripts har-
boring incomplete reading frames translate into potentially
deleterious, truncated proteins that may pose a hazard to
the cell ( 70 ). In eukaryotes, they usually lack normal termi-
nation codons and are ra pidl y degraded via nonsense me-
diated decay or nonstop decay pathways ( 71 , 72 ). We found
that the majority of polyA reads align to 3 

′ 
-UTRs, but a siz-

able fraction (5–8%) still map to the coding part. Intrigu-
ingly, PASs within the coding part appear to be more fre-
quent in introns than in exons, which is partly explained
by the higher GC content and stronger evolutionary con-
str aints against gener ating the canonical AATAAA consen-
sus sequence in ex ons. Ho wever, a remarkably lar ge num-
ber of intronic PASs raises concerns about their implica-
tion in pr ematur e transcription termination ( 73 ) and hints
at the existence of a mechanism that counteracts their ac-
tivity. How could it be that 87% of human protein-coding
transcripts contain an intronic PAS, but cells are still able
to produce full-length transcripts? 

Here, we argue that a sizable fraction of intronic PASs
observed in polyA read analysis (and also in 3 

′ 
-end se-

quencing) r epr esent SPIs, intermedia tes tha t are genera ted
by the spliceosome and the CPA machinery operating con-
currently with each other and with the elongating transcrip-
tion (Figure 7 ). If CPA occurs first, then it will lead to the
generation of a truncated transcript with CTE. If splicing
happens first, then the intron containing PAS will be spliced
out, and PAS will be degraded as a part of the lariat. How-
e v er, if PAS-mediated cleavage in the intron starts after the
spliceosome has assembled on it and is committed to splic-
ing, then the second catalytic step of the splicing reaction
will remove the lariat and all CPA products within it, re-
sulting in SPI (Figure 7 middle). Consequently, SPIs are in-
tronic RNAs spanning from the 5 

′ 
-splice site to PAS that

contain both 5 

′ 
-p due to lariat debranching and the polyA

tail. They must be degraded from the 5 

′ 
-end by cellular ex-

onucleases, as evidenced in many cases as a characteristic
noisy ramp in the read coverage that gradually increases
from the 5 

′ 
-splice site to PAS (Figure 6 C). Nonetheless, a

fraction of SPIs are visible through polyA reads due to the
presence of the polyA tail. Our conservati v e estimate is that
they constitute almost a quarter of all IPA e v ents, and two
thirds of them are supported by PolyASite 2.0. This suggests
that 3 

′ 
-end sequencing methods may overestimate the rate

of IPA, and that their results require careful interpretation.
The enrichment of PASs in introns and the existence

of SPIs together suggest that cotranscriptional pre-mRNA
splicing may have a possible side function of rescuing eu-
karyotic transcripts from pr ematur e transcription termina-
tion. This hypothesis challenges the assumption that when
an intronic PAS is used, the surrounding intron can no
longer be spliced. The spliceosome that is committed to
splicing still can remove the intron that is being cleaved and
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olyadenylated, thus functioning as rescue. Temporal and 

patial interactions of splicing and CPA ar e or chestrated by 

 multitude of factors playing dual roles, which recognize 
ignals that are located in the nascent pre-mRNA and bind 

he same substrates at the same time ( 14 , 74 , 75 ). It is there-
ore not impossible that evolution allowed for the genera- 
ion of dispensable intronic PASs, which are spliced out co- 
ranscriptionally and manifest themselves as SPIs in both 

NA-seq and the 3 

′ 
-end sequencing da ta. W hether or not 

PIs are functional on their own remains a matter of further 
nvestigation. 

ONCLUSION 

assi v e amounts of RNA-seq data in the GTEx dataset 
ffered a unique possibility to analyze tissue-specific splic- 

ng and polyadenylation. The observed patterns of intronic 
olyadenylation and splicing reconfirm that splicing and 

olyadenylation are two inseparable parts of one consoli- 
ated pre-mRNA processing machinery, leading to the con- 

ecture that co-transcriptional splicing is a natural mech- 
nism of suppression of premature transcription termina- 
ion. 
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