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Abstract: Drug discovery strategies have advanced significantly towards prioritizing target selectiv-
ity to achieve the longstanding goal of identifying “magic bullets” amongst thousands of chemical
molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, in-
cluding the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal
chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized
the discovery of novel therapeutics in treatment regimens. The design, development, and optimiza-
tion of lead compounds represent an arduous and time-consuming process that necessitates the
assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating
functional, structural, and energetic properties. The present review focuses on specific method-
ologies and technologies aimed at advancing drug development with particular emphasis on the
role of thermodynamics in elucidating the underlying forces governing ligand–target interaction
selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC)
has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding
information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for
mining thermodynamic databases to critically examine and evaluate prospective drug candidates
on the basis of available metrics. The ultimate power and utility of thermodynamics within drug
discovery strategies reside in the characterization and comparison of intrinsic binding signatures
that facilitate the elucidation of structural–energetic correlations which assist in lead compound
identification and optimization to improve overall therapeutic efficacy.

Keywords: drug discovery; drug-target interactions; thermodynamic binding signatures; isothermal
titration calorimetry; lead optimization; fragment-based drug discovery; drug-like properties;
enthalpic efficiency; group efficiency; lipophilic efficiency

1. Introduction

Tracing the historical origins of drug discovery, scientists have long pursued the
paradigm of one-drug-for-one-disease as illustrated by the pioneering studies of Paul Ehrlich,
who inspired generations of medicinal chemists in the quest of identifying, modifying, and
optimizing lead compounds to achieve the desired potency, selectivity, and specificity (as
reviewed in [1]). For over a century, research has advanced towards prioritizing drug-target
selectivity by seeking “magic bullets” amongst thousands of prospective candidates. This
scenario has proven extremely challenging as the search for novel therapeutics to treat
existing and emerging diseases often relies on multi-targeting, repurposing, and/or refining
an approved drug [2]. In fact, growing awareness of the cellular interactome and increasing
complexity of networks controlling biological processes has recently invoked a broader
selectivity (i.e., shotgun) approach [3,4]. The latter explores complex diseases that often
implicate multiple targets as intervening therapies. Moreover, seemingly undruggable
targets that involve functionally important protein-protein interactions (PPIs) have been
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unraveled and the hotspots identified therein represent novel avenues for drug discovery
campaigns [5]. Irrespective of the approach, nature, and/or type of validated target,
drug discovery efforts continue to accelerate with the arsenal of available tools expanding
dramatically to facilitate improvements in drug efficacy while minimizing off-target effects.
Considering the strategies to tackle diseases of simple or complex etiology, one principle
remains unvaried, namely a drug must be designed to interact with the desired target(s)
specifically and elicit the appropriate response.

The studies described and reviewed herein are intended to rekindle the interest of
biochemists, biophysicists and molecular biologists on the importance of employing thermo-
dynamic information in drug design and development by assisting hit-to-lead progression
and optimization while facilitating identification and/or improvement of repurposed drugs.
Major health threats related to cancer, cardiovascular diseases, and neurodegeneration
remain the focus of ongoing research in immunology, virology, and a host of medical fields.
The recent emergence of SARS-CoV-2 as a global pandemic warrants development of effec-
tive therapeutics as a parallel path to assist immunization efforts and mitigate the impact
of vaccine resistant variants. An alarming increase in bacterial resistance has challenged
the research community and pharmaceutical industry to undertake immediate action by
developing the next generation of novel antibiotics and strategic approaches to obviate
an imminent risk with global repercussions. This review focuses on revisiting specific
accomplishments achieved in drug discovery during the past two decades particularly
with respect to the role of thermodynamics as an integral tool in providing unique insights
that assist decision making processes in drug design, development, and optimization [6].
The acquisition and critical assessment of thermodynamic binding signatures [7,8], in
conjunction with the elucidation of structural features at the molecular level, enhance our
understanding of ligand-target interactions and set the stage for improvement of predictive
capabilities. A combination of biological, structural, thermodynamic, and computational
approaches integrated within a multidisciplinary drug discovery strategy provides the most
effective and efficient route for developing future generations of improved therapeutics.

1.1. Scope of the Review

This review examines the utility of employing specific criteria and metrics to guide
decisions regarding the screening and selection of prospective lead compounds in the
drug design and development process. While biophysical approaches, such as isothermal
titration calorimetry (ITC), have been utilized to bolster drug discovery efforts, there are
instances in which the power of this technique has been underutilized, serving solely as
an alternate tool to derive binding affinities with the information-rich thermodynamic
signatures ostensibly overlooked. In the present review, we highlight studies that have
specifically explored and exploited the use of energetic binding signatures to augment
drug discovery strategies and discuss the wealth of information that has been gleaned
towards advancing the overall design and development process. We examine and evaluate
the fundamental role of thermodynamic-based metrics to assess the fate of a compound
along the drug discovery pathway. The latter is accomplished in part by seeking empiri-
cal correlations between specific physicochemical properties and experimentally derived
thermodynamic profiles deduced via analysis of biomolecular interactions deposited in
binding databases. Towards this end, we have scrutinized the biophysical properties
and binding energetics of over 800 ligand–target complexes curated from BindingDB
(http://www.bindingdb.org/bind/index.jsp, accessed on 24 April 2022) [9,10], Scorpio
(http://scorpio.biophysics.ismb.lon.ac.uk/scorpio.html, accessed on 24 April 2022) [11],
and PDBcal [12] tabulated within a single compiled master file [13]. The utility of em-
ploying thermodynamics-based metrics benefits from the availability of such binding data,
as one can evaluate general trends and/or specific correlations that may assist in drug
discovery. This review concludes by acknowledging the power of energetics in eluci-
dating fundamental aspects of biomolecular interactions and the need for accelerating
development of high-throughput technologies that integrate biological, biophysical, com-
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putational, and structural approaches in a multidisciplinary strategy to advance the design
and optimization of lead compounds as novel therapeutics.

1.2. Acknowledging Professor Breslauer’s Contributions to Drug Discovery

This review celebrates Professor Breslauer’s seventy-fifth birthday by reflecting on
his pioneering contributions towards characterizing the thermodynamic properties of bio-
logical systems and their fundamental role in accelerating drug discovery efforts. During
the past four decades, Professor Breslauer and his colleagues have focused their attention
on timely topics of biological relevance by conducting biophysical research studies that
assisted parallel biomedical efforts to identify effective treatment strategies for a number
of devastating diseases. Such efforts have culminated in characterizing the energetics of
drug–DNA interactions, particularly those directed towards the treatment of cancer and
related ailments [14–19], revealing insightful trends in terms of thermodynamic binding
signatures [18–22] and yielding invaluable information content for advancing drug dis-
covery strategies [23–25]. In a series of seminal studies, Professor Breslauer established
a database of nearest neighbor thermodynamics for canonical DNA duplexes [26], advanced
the concept of enthalpy-entropy compensation in ligand–target interactions [15] which
represents a formidable challenge in drug design efforts, explored the relevance of heat
capacity changes on DNA duplex energetics [27,28] and macromolecular processes [29],
and characterized the thermodynamics of template-directed polymerase synthesis [30].
In collaboration with Professors Grollman and Johnson at Stony Brook University, the
Breslauer research group has investigated oxidative DNA damage, which causes a myriad
of diseases including cancer and neurodegeneration. These efforts have complemented
biophysical studies of canonical DNA with detailed thermodynamic analysis of lesion
impacts on duplex energetics [31–42] as well as lesion recognition and repair by DNA
glycosylases [23,29,43,44]. While establishing the foundation required for understanding
the energetic basis of complex biological systems, the Breslauer research group has fo-
cused on gene transcription regulation, repair, and replication [29,30,39,45,46]. Professor
Breslauer’s impressive academic career spanning five decades is chronicled in a recent
retrospective [23] as his research group continues to pursue effective therapeutic interven-
tions for combating and treating infectious diseases such as the SAR-CoV-2 pandemic [47].
In summary, the indelible impact of Professor Breslauer’s pioneering contributions to the
field of biothermodynamics and their consequential impact on advancing drug discovery
strategies is gratefully acknowledged and recognized by a legion of peers.

2. Drug Discovery Strategies

The design, development, and optimization of prospective compounds as effective
therapeutic agents require broad-based drug discovery strategies that incorporate high
throughput screenings (HTS) in conjunction with multidisciplinary characterization pro-
tocols. HTS aims at generating selected hits from millions of compounds that are further
optimized into chemical leads. The identification of an ideal chemical lead and its overall
quality is dictated by a host of properties that extend well beyond inhibitory activities
and binding affinities. These include specific pharmacokinetic properties, such as absorp-
tion, distribution, metabolism, excretion, and toxicity that are collectively termed ADMET.
While deemed essential to ascertain a sustained therapeutic level upon oral administra-
tion, ADMET properties are generally more difficult to optimize than primary biological
activity [48]. Considering their fundamental role in evaluating drug efficacy, complemen-
tary approaches to HTS are instrumental for monitoring the optimal predicted performance
of a compound following in vivo administration. Drug discovery strategies are continually
expanding capabilities in terms of both restructuring facilities to experimentally access
and accelerate the production of hits [48] while intensifying the use of complementary
computational approaches to expedite compound screening. During the screening process,
several rules are imposed on the basis of selected criteria and/or metrics to categorize
the drug-likeness of a compound. Such criteria rely on a host of properties that assist in
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evaluating a compound based on its desired qualities as a pharmacophore in addition
to specific biological and ADMET characteristics. The criteria employed for screening
potential therapeutic agents are presented and reviewed within the context of information
gleaned from several publically accessible databases.

2.1. Fragment-Based Drug Discovery

The strategy of fragment-based drug discovery (FBDD) originated as a natural progres-
sion from a concept initially proposed by Jencks to characterize the binding energetics of
protein–ligand complexes [49]. Invoking this empirical approach, the binding free energy of
a ligand might be visualized as the sum of its component fragment interactions with specific
protein sub-sites. A subsequent study employed these principles to examine the differential
impact of tethered small molecules versus their isolated counterparts on protein-inhibitor
binding energetics [50]. Significantly, the tethered ligand exhibited a dramatic enhancement
in binding affinity approaching three orders of magnitude (i.e., nanomolar vs. micromolar).
This proof-of-principle demonstrated the potential utility of incorporating additivity in
target-directed research and effectively served as the predecessor of FBDD. A follow-up
study applied this methodology towards the screening of prospective papillomavirus E2
protein inhibitors and identified ligands that bind weakly to adjacent sites with the prospect
of tethering these molecules within a higher affinity compound [51]. Given the collective
success of such protocols in contrast with the limitations of prior approaches, FBDD has
advanced into a multidisciplinary endeavor (as reviewed in [52]) and is considered one of
the preferred strategies in current drug discovery programs [53]. FBDD essentially consists
of screening and identifying small molecules that bind proximal subsites in the target
protein, which are subsequently optimized and the resultant fragments linked to produce
higher affinity ligands with the desired biological activity/potency (as reviewed in [54]).
A schematic overview of FBDD presented in Figure 1 illustrates how low affinity molecules
that interact with subpockets of the binding site are subjected to biophysical screening and
the optimized fragments assembled into high affinity ligands [48].

Figure 1. Representative linking approach commonly employed in FBDD to generate an optimized
lead compound. (A) Several small fragments bind to the receptor within specific subpockets (as
represented by blue and magenta spheres, a green pentagon, and red square). (B) The fragments are
linked according to their spatial distribution within the binding site, which allows the resultant lead
molecule to interact with a larger surface and therefore exhibit a significantly higher affinity relative
to its constituent fragments [48].
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FBDD has been introduced as a powerful alternative and complementary technique
to traditional HTS strategies for the identification of lead molecules. Several new com-
pounds derived via FBDD have reached the clinical development stage with progressively
more attention devoted towards applying this method in drug discovery protocols [55].
Fragment libraries of relatively small molecular weight compounds (~100–300 Da) are
screened via a combination of structural, functional, and biophysical techniques. The
initial screening process in FBDD employs X-ray crystallography and/or nuclear magnetic
resonance (NMR) spectrometry to identify prospective target-fragment complexes. Subse-
quent characterization via biophysical and functional approaches yields the requisite frag-
ment binding affinities and inhibition activities. Optimization of the initial hits generates
a higher molecular weight ligand comprised of multiple fragments which exhibits both
enhanced affinity and potency. In most successful examples of fragment optimization,
discrete contacts are responsible for securing the anchoring fragments and these binding
modes are preserved throughout the optimization process. Specific details regarding the
various steps encompassing hit-to-lead-to-drug, the strategies utilized in FBDD, and opti-
mization of the final molecules are described and reviewed elsewhere [56]. Some of the
most successful applications of fragment-based methods have involved deconstructing
known leads and reassembling these to generate a new chemical series with improved
biological properties [57].

Despite the overall success achieved in identifying prospective lead compounds, FBDD
screening methodologies often encounter challenges when the binding mode of assem-
bled fragments within adjacent pockets are disrupted as a consequence of geometric con-
straints imposed by the linker [58]. This represents a potential shortcoming of FBDD as the
anticipated gain in potency may be impaired by the difficulty of linking fragments to form
an active compound [59]. Moreover, potential undesired physicochemical properties may
compromise a drug’s performance in vivo, despite its ability to bind the target and elicit
a desired effect in vitro. An experimental strategy that incorporates binding thermodynam-
ics and prediction metrics during the early stages of FBDD may therefore prove extremely
useful in terms of ensuring a successful outcome. Specifically, a rigorous thermodynamic
analysis may furnish invaluable information regarding biophysical properties that are often
overlooked when a molecule is evaluated solely in terms of binding affinities and inhibition
constants. The utility of thermodynamics in drug design, development, and optimization
is the focus of this review and discussed in subsequent sections.

2.2. Computational and Experimental Methods to Assess Drug Potential: Criteria and Metrics

A multitude of parameters for evaluating the quality of a molecule in terms of specific
“drug-likeness” attributes have been adopted over the years and are generally considered
as useful metrics to assess whether a compound fulfills basic physicochemical properties
that serve as a prerequisite for subsequent development into an effective therapeutic agent.
Several of the proposed metrics are better suited for a particular class of compounds, route
of administration, target location, or nature of the screening protocols (as reviewed in [60]).
These empirical criteria continue to evolve on the basis of advancements achieved in the
design, development, and optimization of successful lead compounds. In the following
sections, we discuss specific criteria and metrics that have been proposed and utilized as
cut-off filters in drug discovery strategies.

2.2.1. Criteria for Selecting Prospective Lead Compounds

Among commonly adopted criteria to assess the overall fitness of a molecule as
a prospective drug, Lipinski’s rule of 5 (Ro5) [61] has been widely employed to predict
permeability and solubility characteristics, particularly in the case of compounds intended
for oral administration. Computational data have assumed a significant role in providing
general criteria and guidelines to determine whether a compound satisfies Ro5 strin-
gency. In specific terms, the limits for reasonable absorption and/or permeation require a
molecular weight (MW) no greater than 500, a maximum of 5 H-bond donors (HBD) and
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10 H-bond acceptors (HBA), a calculated LogP (CLogP) that does not exceed 5, and the
absence of toxic groups. Considered a useful parameter to analyze small molecules, LogP
corresponds to the logarithm of its partition coefficient between octanol and water (i.e.,
Log [Co]/[Cw]), and therefore represents a well-known measure of molecular hydropho-
bicity and/or lipophilicity [61,62]. LogP is determined to assess biological properties that
are relevant to drug performance, including lipid solubility, tissue distribution, receptor
binding, cellular uptake, metabolism, and bioavailability. LogP is commonly estimated via
parameterization methods and the calculated values (i.e., CLogP or AlogP) are routinely
used in the prediction of LogP with relatively comparable performance [63].

Although predictions are useful for evaluating related analog series, experimentally
derived binding energetics and solubility measurements are deemed essential to unequivo-
cally ascertain whether a molecule will perform as planned. Ro5 is insightful and serves as
a useful guideline or extra filter in screening prospective compounds. Nevertheless, the
fluidity of emerging data requires constant vigilance and updates to monitor novel classes
of compounds and targets identified in the drug discovery process. The ultimate goal of
achieving high potency and selectivity via application of specific metrics is paralleled by
the expectation that an ideal compound operates within a reasonable therapeutic window.
In this respect, basic drug-like properties must be viewed within the prism of achiev-
ing efficacy while precluding toxicity. The latter is accomplished by incorporating easily
conjugated (e.g., hydroxyl, amino, carbonyl), metabolically cleaved (e.g., ester, amide),
oxidizable, and excretable (e.g., methyl) groups/metabolites, all of which ensure maximum
efficacy and minimal side effects (as reviewed in [64]).

The need for standardized metrics to predict/evaluate compound potency is justified
due to the realization that screening processes are generally biased towards selecting
higher MW compounds [65] given their propensity to exhibit enhanced binding affinities.
An observable trend is that lead developments have progressively resulted in the selection
of compounds with increased molecular weight. In fact, this screening bias is evident as
ligand potency often tracks with molecular size as noted by inspection of pKd distribution
tendencies as a function of heavy atom (HA) number in Figure 2. Such qualitative trends are
quite visible in larger datasets and particularly striking when higher potency compounds
are selected for analysis [66]. On the basis of Ro5 guidelines and in view of anticipated
problems associated with drug solubility and biodistribution, lower molecular weight
compounds are typically the most effective therapeutic agents with an optimal MW below
400 Da.

Figure 2. Correlation of ligand potency and molecular size deduced via pKd distribution as a function
of ligand heavy atom (HA) number [13].
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A significant observation is that drug candidates and novel molecular entities (NME)
tend to exhibit increased hydrophobicity, generating concerns regarding their overall
biophysical properties and effectiveness [61]. Assessment of available data in terms of its
conformance with Ro5 criteria can be gleaned via inspection of LogP values as a function
of molecular weight. Viewing the graphical depiction in Figure 3, most of the approved
oral drugs are clustered within an area represented by the black box and thereby fulfill this
general rule (i.e., LogP ≤ 5). As with all metrics employed in the evaluation of an ideal
drug, there are successful outcomes that do not strictly comply with stringent rules [67]. In
such cases, the overall distribution extends beyond Ro5 [68] as evidenced by compounds
residing in the dashed blue box (Figure 3) which still appears densely populated. In the
specific example of HIV-protease inhibitors represented as light green diamonds (Figure 3),
the overall molecular size is in fact greater than 500 Da and LogP values are border line
Ro5 limits.

Figure 3. LogP (calculated as AlogP) values [13] plotted as a function of compound molecular
weight (MW). The black box delineates an area within which the majority of drugs approved for
oral administration are located. The blue dashed-box extends this area to higher molecular weight
compounds distributed over an expanded range of LogP which contains exceptions to the rules
(Log P ≤ 5 and/or MW < 500) yet results in approved drugs. The encircled green diamonds represent
some of the compounds employed successfully in anti-HIV therapeutics.

Another critical issue concerning the application of Ro5 in drug design pertains to HB
donors (HBD) and acceptors (HBA), the former of which has been scrutinized extensively
in lead optimizations. Inspection of available data suggests that most compounds appear
to abide within the limit of HBD < 5 as illustrated in Figure 4. Despite this evidence,
there has been a recent upsurge in the number of drugs approved for therapeutic use that
tend to violate HBD and pertinent Ro5 criteria [69–72]. In view of these developments,
suggestions to expand such limits have been considered and a modified version designated
as beyond Ro5 (bRo5) proposed [69]. In retrospect, compounds harboring bRo5 chemical
space already existed amongst natural products (NP), and the advent of semi-synthetic
as well as total synthesis protocols has expedited the availability of such molecules [73].
Inspired by nature, an increasing number of compounds isolated from plant or marine
sources have been investigated and their potential applications explored. These include
biologically active defense molecules and antimicrobial peptides that have been studied
and elaborated as future templates to combat the alarming rise in bacterial resistance [74,75].
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Figure 4. Molecular size distribution of compounds deposited in public databases [13] according to
the number of (A) hydrogen-bond donors (HBD) and (B) hydrogen-bond acceptors (HBA).

Given the recent emergence of SARS-CoV-2, chemists have resorted to evaluating
a myriad of novel, repurposed, synthetic, and/or NPs as prospective antiviral molecules [76].
A large number of compounds are now viewed beneath the umbrella of expanded criteria
and include targets with “difficult” binding sites that are commonly designated as difficult-
to-drug targets. The latter comprise large, highly lipophilic or polar, and/or flexible binding
sites [77]. This category includes protein–protein interaction (PPI) inhibitors, a rapidly ex-
panding class of compounds that are designed to disrupt the large protein-protein interface
and as a consequence do not fulfill basic Ro5 criteria. Moreover, recent advances in drug
discovery directed towards targets that comprise intrinsically disordered proteins (IDP),
which are implicated in a host of disorders including cancer [2] and neurodegenerative
diseases [78], have resulted in candidates evading traditional metrics. Unusual target sites
cannot accommodate conventional therapeutics, and thus require higher molecular weight,
lipophilic, or polar compounds that are more amenable to the bRo5 concept [68] or evade
any set of criteria/rules that define a drug-like molecule [67].

The drug-like properties of therapeutic compounds approved for oral administration
have been evaluated in terms of their molecular and physical properties [79]. The over-
all findings suggest that reduced flexibility, expressed in terms of rotatable bonds (i.e.,
ROTB ≤ 10), low polar surface area (i.e., PSA ≤ 140 Å2), or total hydrogen bond count (i.e.,
sum of HBD and HBA ≤ 12) are reasonable predictors of oral bioavailability, irrespective of
molecular weight. These observations underscore the need to critically assess and balance
pros versus cons when evaluating the overall degree of success exhibited by a drug, as
concurrent factors such as target affinity, selectivity, permeation, and clearance may benefit
from distinct or even opposing molecular properties. In this respect, the unanticipated
positive impact of molecular rigidity (i.e., reduced ROTBs) has to be considered in terms
of a shape that retains the ability to interact with a target, thereby enhancing activity and
selectivity to bind carrier/clearance proteins and optimally permeate membranes.

The optimization process in FBDD arises from a small fragment (e.g., MW~150 Da;
millimolar binding affinity) in which most atoms are involved in the desired target–ligand
interaction. Therefore, the size, complexity, and physical properties of the molecule are
more easily controlled relative to a higher-affinity compound containing groups that are not
essential for the desired binding (e.g., MW~400 Da; Kd~nM). Less potent fragments may
undergo high-quality interactions [48] that form the basis for optimization into larger drugs
exhibiting enhanced potency [80,81] (refer to Figure 1). Advancement of drug optimization
protocols led to the realization that Ro5 and/or bRo5 did not adequately address the
needs of FBDD, and therefore, other metrics have been introduced to fill this void. A newly
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proposed rule of 3 (Ro3) has been implemented to assist decision making processes involving
FBDD [82]. Analogous to Ro5 and based on prior successes, ideal fragments should adhere
to the following Ro3: MW < 300 Da; ClogP < 3; HBD < 3; HDA < 3; and, ROTB < 3. FBDD
employs fragment-sized compounds that usually comply with the Ro3 for initial screening
against a biomolecular target. In this respect, FBDD has better chances of hit identification
due to its more efficient sampling of the chemical space. An added advantage is that
smaller sized fragment hits are more amenable to structural optimization [82]. Challenges
associated with this strategy include the sensitivity of detection methods as discussed
in a subsequent section. A significant number of criteria and rules have been proposed
as metrics for evaluating prospective compounds in terms of achieving ideal drug-like
properties. Representative examples are summarized in Scheme 1 and a comprehensive list
is described elsewhere [83].

Scheme 1. Several commonly applied criteria/rules to identify and characterize the drug-like
properties of therapeutic compounds. A comprehensive and extensive list appears in [83] while
specific details of each rule are described accordingly: Ro5 [61]; Ro3 [84]; bRo5 [69]; 3/75 [85];
Bioavailability [79]; Ro4 [85].

2.2.2. Ligand Efficiency (LE)

The concept of ligand efficiency (LE) has been proposed [86] in accordance with the
observations of Kuntz and colleagues [87] to counter the common misperception that
larger molecules generally represent superior compounds. Ligand efficiency is a parameter
introduced to avoid the biases of molecular weight differences and normalize the binding
affinity on a MW basis [65]. LE is considered a useful indicator of compound quality [83]
since the measured binding affinity is normalized to the number of heavy atoms (HA).
The popularity of this metric is directly associated with the fact that FBDD has expanded
steadily, thereby necessitating emphasis on the optimization of low molecular weight
compounds. The binding energy per heavy atom or binding ‘efficiency’ of a ligand has
been deemed a useful parameter in the selection and development of a lead compound or
fragment irrespective of its molecular weight. The binding efficiency index (BEI) is another
metric based on a molecular weight scale [88] that provides a facile and effective ranking
en route to compound optimization. The overall utility of these parameters in the drug
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discovery process are visualized by plotting LE or BEI derived from available binding
databases as a function of molecular size. A graphical presentation of the resultant data in
Figure 5 reveals hyperbolic behavior with a tendency to reach a plateau at ~25 heavy atoms
and MW~400 [66]. Comparing lead compounds on the basis of LE/BEI might prove useful
to assess the potential for further optimization of particular ‘hits’ and chemical scaffolds,
providing LE is not employed as a definitive cut-off in the filtering process. The latter incurs
a risk of inadvertently overlooking and potentially discarding useful leads in the drug
development process.

Figure 5. Graphical representation of calculated ligand efficiency (LE) and binding efficiency index
(BEI) as a function of Molecular Weight (Da) and Heavy Atoms (HA) [66] curated from public
databases [13] and converted as follows: LE = ∆G/HA; BEI = IC50/MW (Da) [83,88].

A critical and fundamental observation is that these metrics rely on ∆G, Kd, Ki, or IC50
and thereby render the resultant parameters dependent on a concentration used to define the
standard state. Accordingly, a number of investigators have questioned their validity [89–91],
and several critics have concluded that LE should not be used in absolute terms for individual
compounds nor considered as a cut-off criterion [90]. In the midst of this ongoing debate [92]
and irrespective of warnings against overusing such metrics as an absolute filter in drug
development [91,93], several investigators have adopted a conciliatory approach by reiterating
the utility of this metric for specific applications [83,94–96]. Alternate metrics such as group
efficiency (GE) utilizes differential values (i.e., ∆∆G/∆HA or ∆pKd/∆HA) to assess the
impact of a fragment on compound affinity [93] as described below.

2.2.3. Group Efficiency (GE)

Group efficiency (GE) is a measure of the relative contribution that a specific group con-
fers to ligand potency and is evaluated systematically by differential (∆∆G) analysis [97,98]
involving the comparison of compounds harboring each successive substituent. The latter
is related to Free-Wilson relationships [99] that mathematically assess the contribution of
group substitutions via QSAR. Considered a more sensitive metric, GE bears the anchoring
principle in which ∆∆G refers to the fragment atoms (i.e., ∆HA) that form each succeeding
derivative via the following relation: GE = ∆∆G/∆HA or ∆pKd/∆HA. The interactions
between fragment and target should exhibit high ligand efficiency and favorable binding
thermodynamics to offset the rotational and translational freedom lost during complex
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association. Accordingly, fragment binding is generally enthalpy-driven to overcome the
loss of rigid-body entropy [57].

The evaluation of fragment binding efficiency to overall molecular performance is
deduced via the relation: ∆G = ∆Gint + ∆Grigid, where ∆Gint is the intrinsic binding free
energy and ∆Grigid is the free energy associated with loss of rigid body entropy upon
interaction with the target [97]. The latter has been estimated as 4.2 kcal·mol−1 [81,97]
and is incorporated in the initial scaffold fragment binding free energy as illustrated in
Figure 6. This particular GE analysis systematically evaluates and improves the potency
of pantothenate synthetase inhibitors against Mycobacterium tuberculosis [100] as drug
candidates in tuberculosis therapy. Inspection of the free energy landscape reveals that
compound 5 is dissected into its component fragments and the binding contributions
(∆∆G) calculated from these building blocks. The resultant ∆∆G (−8.2 kcal·mol−1) for the
indole group (i.e., compound 1) includes an unfavorable entropy loss upon binding [i.e.,
∆G = ∆Gint (−8.2 kcal·mol−1)− ∆Grigid (+ 4.2 kcal·mol−1) =−4.0 kcal·mol−1]. The addition
of successive sulfoamyl, pyridine-methyl, and acetic acid fragments significantly enhances
ligand binding free energy. Fragment linking approaches utilizing GE as a metric therefore
facilitate the optimization of these compounds, leading to improved inhibitor potency
against pantothenate synthetase.

Figure 6. Utility of employing group efficiency (GE) as a metric in lead optimizations [100]. The
binding affinity acquired via ITC measurements yields the corresponding free energy (∆G) for each
derivative. The resultant ∆∆G and heavy atom (HA) numbers facilitate calculation of group efficiency
(GE) via the relation GE = ∆∆G/HA. Compound 5 is deconstructed into its constituent fragments
(i.e., 1 = indol (purple); 3 = 1 + sulfamoyl (red); 4 = 3 + pyridine-methyl (magenta); 5 = 4 + Acetic acid
moiety (blue). * The ∆∆G of −8.2 kcal·mol−1 includes an initial ∆Grigid (i.e., 4.2 kcal·mol−1) that is
added to the measured ∆G of −4.0 kcal·mol−1.

2.2.4. Lipohilic Ligand Efficiency (LLE)

Based on the original hypothesis advanced nearly 35 years ago [101] that advocated
for enhancing drug hydrophilicity while preserving overall efficacy, the LLE concept has
withstood the test of time as a molecular descriptor in drug design and development [86].
Ligand lipophilic efficiency (LLE) or LipE has received significant attention recently, as
this metric combines potency and lipophilicity in such a manner that drug efficiency is
normalized to its degree of lipophilicity (as reviewed in [102]). LipE is considered a metric
that predicts the quality of a compound and encapsulates both lipophilicity and potency.
This parameter is defined according to the relation: LipE (LLE) = pKd (pIC50) − LogP
(aLogP, cLogP), where the terms in parentheses are interchangeable with those in the
equation. LipE therefore provides an estimate of ligand affinity that is primarily derived
from polar interactions as opposed to its hydrophobicity characteristics. In contrast with
LE, which has been the subject of significant scrutiny for a number of aforementioned
reasons [91,93], LipE is broadly accepted and considered a reliable metric in the overall
drug screening and optimization process [102].
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The utility of estimating LLE (LipE) may be illustrated by the hypothetical representa-
tion in Figure 7 that depicts a compound undergoing optimizations to acquire potencies
greater than 8 (e.g., 10 nM affinity) yet maintaining low LogP values (e.g., <3) with a conse-
quent enhancement in overall lipophilic efficiency [103]. While the LLE metric represents an
excellent criterion to guide compound optimizations, there are competing factors, such as
membrane permeability, that must be considered when assessing overall drug quality. This
realization infers that there is a limit to which optimizations should focus solely on potency
and low LogP, as there is a delicate balance between lipophilicity and solubility to achieve
both potency and suitable ADMET properties [104].

Figure 7. Hypothetical representation of a compound exhibiting a potency (pKd) of 8 and octanol-
water partition coefficient (cLogP) of 3 resulting in a LipE of 5 (i.e., LipE = pKd − cLogP). The
horizontal green dotted line projects outcomes where LogP increases without changes in affinity
yielding a significant reduction in lipophilic efficiency. Alternatively, the vertical green dotted line
demonstrates how potency increases at constant cLogP resulting in enhanced lipophilic efficiency.
A magenta arrow represents the direction for improvement of compound properties.

2.2.5. Enthalpic Efficiency (EE)

Thermodynamics has been employed extensively to assist decision making processes
in drug design and development. Considering the relevance of employing thermodynamic
signatures in lead optimizations [6,105–112], the metric of enthalpic efficiency (EE) has been
proposed as a primary decision criterion in drug discovery [113]. This metric is calculated
using the measured binding enthalpy (i.e., ∆H) that is normalized to the number of non-
hydrogen (NNH) or heavy atoms (HA) (i.e., EE = ∆H/NNH) in the molecule. The foundation
of this approach is based on the seminal findings published by Freire and colleagues [114],
who demonstrated that drug performance may be optimized more effectively via detailed
knowledge of the binding thermodynamics. Based on these findings, the energetic signa-
tures of ligand–target interactions represent a core metric for evaluating lead compound
quality and accelerating drug design efforts [110,115,116].

Several of the metrics described in previous sections incorporate affinity (Ka) and/or
inhibition (Ki, IC50) data derived from a host of methodologies that are subsequently con-
verted to the binding free energy (∆G). In contrast, the EE metric requires rigorous determi-
nation of complete thermodynamic binding parameters [i.e., free energy (∆G), enthalpy
(∆H), and entropy (T∆S)] via model-independent analytical techniques, such as isothermal
titration calorimetry (ITC). An alternative approach is to employ model-dependent van’t
Hoff optical measurements or robust computational methods [117] as substitutes for the
more precise calorimetric instrumentation.
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The proliferation of thermodynamic binding parameters has facilitated curation of
energetic databases that are useful for observing specific correlations and/or trends that
may be evaluated to identify commonalities and develop further predictive capabilities.
As an example, inspection of published databases reveals a qualitative trend in which the
binding enthalpy (∆H) decreases with MW as illustrated in Figure 8A. Conversely, the
entropic (−T∆S) term depicted in Figure 8B exhibits a favorable correlation with increasing
size, an observation that is consistent with the burial of larger surface areas upon binding.
As a direct consequence, binding-induced apolar surface area desolvation is characterized
by a slight increase of ∆G as observed in Figure 8C. While the binding enthalpies tend to
gradually decrease as a function of MW, one observes a sharp molecular weight-dependent
reduction when the ∆H values are converted to EE, as visualized in Figure 9.

Figure 8. Correlation of ligand-target thermodynamic binding parameters in Panels (A) Enthalpy,
(B) Entropy, and (C) Free Energy as a function of Heavy Atom (HA) number curated from public
databases [13]. Inspection of the respective plots reveals qualitative trends including a slight reduction
in favorable enthalpy and enhancement in both favorable entropy and free energy with increasing
number of heavy atoms.

Figure 9. Enthalpic efficiency (EE) calculated using the measured binding enthalpy (∆H) normalized
to number of non-hydrogen (NNH) or heavy atoms (HA) (i.e., EE = ∆H/NNH). This approach is
based on the finding that drug performance may be optimized more effectively via knowledge of
binding thermodynamics [114] in which the energetic signatures of ligand-target interactions assist
drug design efforts.

Subsequent efforts to guarantee an unbiased hit selection and further hit-to-lead
progression have culminated in the development of a size independent enthalpic efficiency
(SIHE) metric [13], which normalizes EE by the number of heavy atoms as illustrated
in Figure 10. SIHE is defined as pKH/40·HA0.3, where pKH = ∆H/(2.303·RT) and HA
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is the number of heavy atoms [13]. This metric has been proposed on the basis of its
relevance to monitor enthalpic gains/losses during lead optimization while simultaneously
normalizing the data to molecular size. SIHE represents an informative metric for analyzing
MW-independent trends in binding enthalpies following normalization for molecular size.

Figure 10. Size-independent enthalpic efficiency (SIHE) defined as pKH/40 · HA0.3 where
pKH = ∆H/(2.303 · RT) and HA is the number of heavy atoms [13].

Since binding affinities and inhibition constants may miss important physical proper-
ties of a lead compound, complementary approaches that exploit thermodynamic binding
properties provide an additional level of critical information which has proven enlight-
ening in the drug discovery process. The compilation of thermodynamic databases has
facilitated evaluation of binding energetics as a core metric in lead compound develop-
ment, resulting in a number of interesting qualitative observations (as reviewed in [13]),
namely: (a) drug binding affinities tend to increase with MW; and, (b) enhanced bind-
ing free energies are generally accompanied by a reduction in enthalpy and increase in
entropy. These findings suggest that EE has a fundamental role in FBDD optimization
approaches as the initial screening process should focus on identifying enthalpy-dominated
binding fragments [53,118,119] to overcome the natural tendency for a size-dependent
reduction in enthalpic efficiency. The early stages of lead development and optimiza-
tion therefore benefit from a rigorous assessment and characterization of thermodynamic
binding signatures.

2.2.6. Exploiting LipE and EE as Core Metrics to Achieve Optimal Success

Considering the strengths and weaknesses of specific metrics discussed in the pre-
ceding sections, the number of available analytical tools to assist decision making in the
drug discovery process allows a robust lead evaluation. The combined efforts of structural,
computational, and biophysical methods, in conjunction with desired biological proper-
ties, provide assurance that drug discovery protocols achieve the ultimate goal of hitting
a specified target. Following two decades of establishing rules and metrics as guidelines in
the drug discovery arena, several criteria stand the test of time for evaluating lead com-
pound quality during the early stages of development and subsequent optimization into
a successful therapeutic agent. Although the use of a metric does not necessarily guarantee
or increase the probability of success, a wealth of evidence suggests that LipE might be
viewed as a core metric that best describes compound quality (as reviewed in [67]). Remark-
ably, considering its emphasis on polarity and lipophilicity control, this metric serves as
a gauge of ADMET properties and therefore tracks with the EE of a ligand [120]. An exam-
ple of their collective utility is depicted in Figure 11 for HIV protease inhibitors whereby
one observes a reasonable correlation between LipE and EE. Significantly, both of these
metrics track with drug development, thereby corroborating the notion that LipE and EE
reflect ligand properties to a similar degree [67].
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Figure 11. Correlation of enthalpic (EE) and lipophilic (LipE) efficiencies for HIV protease inhibitors
retrieved from the PDcal database. The overall distribution reveals that ligands characterized
by higher LipE generally exhibit a more favorable enthalpic contribution upon association with
the target.

Enthalpic optimization has proven invaluable at early stages of drug discovery, given
its unique power and versatility in discriminating compounds on the basis of selectivity
and improved ADMET properties. Collectively, the LipE and EE metrics exhibit reasonable
correlation and generally represent efficient criteria for discriminating between selective
versus promiscuous ligands. The application of these core metrics at the outset of lead
optimization may therefore assist in achieving successful outcomes. A detailed review [120]
using available binding databases critically evaluates correlations between LipE and other
metric indices, including enthalpic efficiency of ligand–target systems, and documents the
advantages and caveats of these approaches. Scheme 2 summarizes the core metrics that
are commonly employed in drug design and lead optimization protocols. The reader is
referred to a detailed review that contains a comprehensive and extensive listing of drug
discovery metrics [83].

Scheme 2. Several commonly employed drug design metrics applied to prioritize hit/lead com-
pounds and their respective formulations. Specific details of each metric are reported elsewhere:
LE [65]; BEI [88]; GE and related calculations [98]; SIHE [13]; SILE [121]: EE [113]; ADMET Efficiency
Index [122]; LipE (or LLE) [123]; LogP [61].
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2.2.7. Pre-Screening Library Fragments Conserves Resources/Time and Is “PAIN-Less”

Initial fragment libraries contain a myriad of potential therapeutic compounds that
must be evaluated in accordance with specific criteria and metrics designed to identify
prospective leads. The resultant screening process is resource/time intensive and often
compromised by “bad actors” that may ultimately prolong drug discovery protocols [57].
These “misbehaving” molecules may include nonspecific ligands, reactive modifiers, chela-
tors, and/or aggregating compounds that represent undesirable false positive hits [124].
An initial pre-screening inspection of prospective fragments can ascertain whether a specific
library contains molecules that are formally included in the PAINS (Pan-Assay Interference
Compounds) database [125]. There are a number of recommendations for pre-cleaning
fragment libraries prior to initiating compound screenings [57] and several PAINS pre-
filters have been proposed as described elsewhere [126]. PAINS filters may assist the
drug screening process by eliminating promiscuous and reactive compounds that are
“frequent hitters” and unlikely to represent useful leads. Orthogonal approaches are recom-
mended as caution should be exercised whenever implementing cut-off filters to ensure
that an otherwise potentially innovative drug candidate bearing possible PAINS alerts is
inadvertently overlooked.

3. Insights Gleaned from Thermodynamic Binding Signatures
3.1. Enthalpy-Entropy Plots

Protein–ligand binding databases provide valuable insights regarding the thermody-
namic properties of drug-target interactions. Critical analysis of available binding data
furnishes information on the utility of obtaining thermodynamic parameters in drug dis-
covery efforts. An instructive example of this strategy appears in Figure 12A which depicts
a subset of binding data cast in the form of ∆H/T∆S linear plots divided into four quad-
rants. Based on this graphical representation, it is possible to visualize the density of
interactions that are either entropy-driven (top left quadrant) or enthalpy-driven (bot-
tom right quadrant), versus those that are both enthalpically and entropically favorable
(bottom left quadrant). As proposed by Freire [110], an ideal scenario is to optimize en-
thalpic contributions to the interaction such that a compound achieves a greater selectivity
towards its target, with the added advantage of preferred physical properties vis-à-vis
solubility characteristics.

Figure 12. Distribution of compounds retrieved from databases of protein-ligand complexes accord-
ing to their corresponding enthalpic (∆H) and entropic (−T∆S) signatures. (A) Linear correlation of
∆H and −T∆S reflecting interactions that are enthalpically unfavorable and entropically favorable
(top-left quadrant); enthalpically and entropically favorable (bottom-left quadrant); enthalpically
favorable and entropically unfavorable (bottom-right quadrant). (B) Linear correlation of ∆H and
−T∆S highlighting HIV-protease inhibitor interactions as magenta spheres spanning the top- and
bottom-left quadrants. The strategy of enthalpic optimization is signified by a gradual shift in
distribution of these compounds towards the lower quadrant.
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An example of applying enthalpy-entropy plots to track drug development is illus-
trated in Figure 12B for a series of HIV protease inhibitors against wild type and mutant
variants (highlighted in magenta). This representation of the data reveals that binding
interactions are distributed within two major groups, namely those that are entropy-
driven (∆H > 0; −T∆S <0) and those that are both enthalpy- and entropy-driven (∆H < 0;
−T∆S < 0). In a retrospective analysis spanning 12 years since the commercialization of
these drugs, it is interesting to note that binding data corresponding to the introduction of
newer compounds progressively populated the lower quadrant, which comprises enthalpi-
cally favorable interactions, as noted in Figure 12B. This finding is consistent with enthalpic
optimization [24,109], a strategy that has gained momentum since the original proposi-
tion over two decades ago [109,114]. Freire and colleagues [115] have further illuminated
the roadblocks to drug optimization (as reviewed in [24]) visualized through the lens of
an optimization funnel as discussed below.

3.2. The Optimization Funnel

In the pursuit of novel therapeutic agents, a common goal is to identify high affinity
potent compounds, and the design of optimization filters can represent an informative
metric for monitoring the drug development process [115]. An observation gleaned over
the years is that the optimization of a chemical scaffold results in high affinity/high potency
compounds. Generally speaking, micromolar binding affinities (Kd) are enhanced three to
six orders of magnitude (i.e., nano or picomolar) with a corresponding binding free energy
increase of ∆∆G ~ 4–7 kcal·mol−1 [115]. A practical demonstration of ligand optimization
is easily visualized by inspection of the enthalpic (∆H) contribution to net binding free
energy (∆G) as the affinity of a compound is optimized [24]. In the absence of optimization,
low affinity compounds can exhibit a broad range of ∆H/T∆S combinations [115] as
a consequence of intrinsic hydrophobic and polar interactions. As the binding affinity
increases due to compound optimization, the range of available combinations narrow
and converge, resembling a funnel as illustrated in Figure 13A. Significantly, optimization
funnels are observed in databases containing a wide range of compounds and unrelated
targets as the number of enthalpic-entropic combinations is reduced and the average
compound affinity increases. By overlaying specific examples within the global data,
one observes sub-funnels, such as that of trypsin inhibitors in Figure 13B (green dots) as
well as different generations of HIV protease inhibitors complexed to protease variants
in Figure 13C (magenta dots). While the average ∆H/∆G ratio changes with each system
studied, a characteristic and common feature is conversion of higher affinity complexes to
a narrower distribution within the optimization funnel.

Figure 13. Optimization funnels generated by plotting pKd as a function of ∆H/∆G ratios for
(A) protein-ligand interactions (red) derived from thermodynamic databases [13] highlighting
(B) trypsin inhibitors (green) and (C) HIV protease inhibitors (magenta).
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4. Biophysical Methods Employed in Drug Discovery

Valuable information can be gained from the judicious inspection of molecular in-
teractions that document outcomes based on compound hits derived from library screen-
ings. There are a multitude of experimental methodologies and techniques available for
initial screenings of fragment libraries [48,53,127]. These include nuclear magnetic res-
onance (NMR), surface plasmon resonance (SPR), thermal shift assay (TSA), capillary
electrophoresis (CE), microscale thermophoresis (MST), biolayer interferometry (BLI), weak
affinity chromatography (WAC), grating-coupled interferometry (GCI), cryo-electron mi-
croscopy (CEM), photoaffinity probes, fluorescence-based techniques, and isothermal
titration calorimetry (ITC). This review specifically focuses on the use of ITC both in terms
of its unique advantages and experimental challenges.

4.1. Characterization of Ligand-Target Interactions via ITC

ITC is widely regarded as an essential tool in the repertoire of biophysicists for charac-
terizing the energetics of macromolecular interactions. Since its introduction to the scientific
community approximately three decades ago, ITC has gained critical acclaim as the ex-
perimental technique of choice for the quantitative assessment of association processes.
ITC is routinely applied in drug design and therapeutic strategies for the discovery of lead
compounds that target specific macromolecules. In drug discovery protocols, ITC assays
are typically performed employing millimolar and micromolar concentrations of lead com-
pounds and targets, respectively. The most significant advantage afforded by ITC is that
a single well-designed experiment facilitates the precise determination of the association
constant (Ka), Gibbs free energy (∆G), enthalpy (∆H), entropy (∆S), and stoichiometry (n)
of a binding interaction.

The simultaneous assessment of binding affinity (Ka) and energetic driving forces (∆H,
∆S) renders ITC an indispensable technique for characterizing ligand-target interactions [6].
A complete thermodynamic binding profile assists in elucidating the interrelationships
between ligand affinity and overall biophysical properties. Following data acquisition and
analysis via specialized methods and programs [128–130], the resultant thermodynamic
signatures are employed to evaluate the efficacy of prospective compounds on the basis
of binding energetics. In addition to the intrinsic value afforded by another layer of
information, ITC-derived thermodynamic signatures have been recognized as an invaluable
metric in drug design, development, and optimization given their integral role for assessing
enthalpic efficiency (refer to the discussion on EE and SIHE in Section 2.2.5).

The thermodynamic parameters describing a particular ligand-target association pro-
cess are a function of specific contributions that can be attributed to molecular interactions
and driving forces. Parsing the Gibbs free energy into its enthalpic and entropic com-
ponents permits identification of favorable/unfavorable interactions and discrimination
of primary driving forces. Specifically, the binding enthalpy is comprised of favorable
(e.g., hydrogen bonding and van der Waals) and unfavorable (e.g., polar group desol-
vation) ligand–target interactions. Conversely, the binding entropy includes favorable
(e.g., desolvation and release of water molecules to bulk solvent) and unfavorable (e.g.,
conformational and/or motion restrictions) contributions arising from both the ligand and
target (as reviewed in [8]). Acquisition of the requisite thermodynamic binding profiles as
a function of temperature affords evaluation of heat capacity changes (∆Cp) accompany-
ing the binding process [131,132]. This extra-thermodynamic information is essential for
elucidating binding processes that are coupled with desolvation and/or folding.

4.2. Overview of ITC Methodology

The basic principle of operation in an ITC experiment involves the use of a thermostat-
ted titration syringe to dispense precise aliquots of a ligand into the sample cell containing
a prospective receptor. The addition of titrant is accompanied by a measurable reaction heat
due to ligand dilution and potential interactions with the target. Each ligand injection is
characterized by the absorption or evolution of heat, triggering a difference in temperature
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between the sample and reference cells as illustrated in Figure 14A. The resultant temper-
ature differential causes a feedback system to either lower or raise the thermal power as
a means of compensating for this temperature imbalance. The experimental protocol is
designed to allow sufficient time between successive injections to restore the temperature
balance and thereby ensure that the system achieves equilibrium.

Figure 14. (A) ITC schematic depicting basic instrument components housed within an adiabatic
jacket that includes a titration syringe delivering precise aliquots of ligand into a sample com-
partment containing the target solution under constant stirring conditions with the reaction signal
detected via thermopiles strategically positioned on the exterior faces of sample and reference cells.
(B) A representative ITC profile depicting exothermic reaction heats (top panel) integrated and
normalized into enthalpy as a function of molar ratio (bottom panel). Non-linear least squares
analysis (red line) yields the binding affinity (Ka), enthalpy (∆H), and stoichiometry (n). (C) Resultant
thermodynamic binding signatures derived via analysis of the ITC reaction profile: ∆G (blue), ∆H
(green), and −T∆S (red).

The thermal signal is detected via thermopiles that are strategically positioned on
the exterior faces of the sample and reference cells. An electrical impulse is transmit-
ted to the computer and the heat deflection is registered in the form of an integratable
peak per injection, yielding a titration profile that is fit to a binding isotherm (red line)
as depicted in Figure 14B. Detailed reviews containing complete method descriptions are
available elsewhere [128]. The ITC method is sufficiently robust to accommodate a diverse
range of interacting species within biological processes, irrespective of their biochemical
and physicochemical properties. ITC analysis affords the evaluation of small molecule
interactions with a target macromolecule, as the resultant binding parameters provide
an energetic description of the association process in the form of characteristic thermody-
namic signatures (i.e., ∆G, ∆H, and T∆S), as illustrated in Figure 14C.

5. Thermodynamic Binding Signatures as a Metric of Drug Potency, Selectivity,
and Adaptability
5.1. Achieving Superior Lead Compound Selectivity

In addition to several lines of evidence that suggest favorable enthalpic interactions
optimize compound efficacy, a potential link between thermodynamic signatures and
drug selectivity has been proposed [115] and reviewed extensively [133]. These findings
infer that improved shape complementarity is directly correlated with enthalpically-driven
interactions, which create a bias towards specific targets versus off-targets, thereby en-
hancing overall selectivity [115]. As a case in point, lead compounds targeting distinct
aldose-reductases exhibit high selectivity towards a particular species with the interaction
accompanied by a significant enthalpic advantage [134]. In searching for compounds that
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selectively interact with and inhibit a specific aldose reductase, small molecules harbor-
ing a common 3-benzyluracil-1-acetic acid scaffold containing a chloronitrobenzyl group
substituent selectively inhibit an aldose reductase (AR), which is implicated in diabetes. In
contrast, a compound containing bulkier ortho/meta substitutions targets the cognate en-
zyme AKR1B10, an aldose reductase associated with cancer. The latter occurs conceivably
via displacement of disordered water that is trapped in the enzyme hydrophobic pocket.
As a consequence, each of the enzyme–inhibitor complexes exhibits optimal selectivity
and their interactions are characterized by greater enthalpic contributions relative to the
remaining ligands. These differential preferences afforded selectivity in cell cultures as the
first inhibitor can potentially prevent sorbitol accumulation in retinal cells, whereas the
second blocks the proliferation of cancer cells.

5.2. Achieving In Vivo Efficacy

While binding affinities toward a target tend to correlate with the desired biological
property of a ligand, there are cases in which such correspondence is not readily apparent.
In fact, there are examples documenting the utility of acquiring thermodynamic binding
signatures in addition to seeking improved efficiency, selectivity, and ADMET properties.
A study on CD4/gp120 inhibitors [116] has reported correspondence between HIV-1 cell in-
fectivity inhibition and ∆H/T∆S ratios for various compounds, despite modest differences
in the overall binding free energies. The rationale for these results resides in the realization
that unwanted conformational effects contribute to modulate the ∆H/T∆S balance, the
latter serving as a reporter in the selection of compounds that do not elicit such undesired
effects. Therefore, thermodynamic optimization has proven of significant value for the
selection of compounds that form complexes with the target protein in a “pre-organized”
conformation, a finding that can be confirmed via thermodynamic signatures.

In cases where structural information is neither available nor sufficiently reliable to de-
termine whether conformational changes might impact an outcome for a series of inhibitors,
the ∆H/T∆S balance may serve as an indicator/predictor of structural alterations. It is
interesting to evaluate the applicability of such a hypothesis on a selected class of peptidyl-
nitrile compounds against T. cruzi strains [135] for which cruzain binding thermodynamics
have been derived [136]. Despite the lack of correlation between cruzain affinity/inhibition
and trypanocidal activity, the binding enthalpies (and corresponding enthalpic efficiencies)
vary linearly with the PEC50 values (r2 ~ 0.98) for a series of compounds studied. These
findings suggest that a certain degree of conformational constraint is predicted based on the
∆H/T∆S balance measured for this congeneric series of compounds, whereby comparable
affinity ligands may exhibit conformational preferences leading to a differential outcome
in situ.

5.3. Achieving Adaptability to Drug Resistance Mutations

In general, engineering effective therapeutic agents harboring potent antiviral prop-
erties requires identification of specific factors that dictate selectivity and minimize sus-
ceptibility to mutations via adaptability (as reviewed in [8]). In drug discovery strategies,
an ideal molecule is evaluated in terms of its potency, selectivity, specificity, selectivity,
and adaptability to mutations, thereby preventing drug resistance [137]. Collectively, these
characteristic properties can be achieved via knowledge of the enthalpic and entropic
contributions to inhibitor-target interactions. In fact, such lead optimizations require
an inhibitor to maintain interactions with conserved residues that do not normally undergo
mutations, while simultaneously acquiring some flexibility to allow interactions with less
stable, variable regions in the target that commonly undergo mutations. Although the
design of adaptive ligands may incur an enthalpic penalty as a consequence of subopti-
mal complementarity, such interactions retain an enthalpic character with compensating
favorable entropy, thereby maintaining the desired binding affinity to variant targets and
exhibiting effective anti-viral activity.
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6. ITC in Drug Discovery, Development, and Optimization
6.1. ITC in FBDD: Case Studies

During the past decade, several reports have documented the use of ITC as a strategic
approach in the initial hit-to-lead phases of fragment-based drug design. There is ample
evidence to suggest that selection of fragments on the basis of enthalpic efficiency irrespec-
tive of binding affinity leads to superior molecules [118]. As a validation technique in drug
development and optimization, ITC has proven invaluable as it furnishes novel information
on lead compounds for which thermodynamic properties have not been assessed from the
outset. Specific examples on the use of ITC in fragment optimization include the identifica-
tion of ligands for acetylcholine-binding protein (AChBP) [138] and the characterization of
small molecule carriers for siRNA [139]. ITC has been utilized in the validation of fragment
hits derived from screenings of ligands targeting the anti-apoptotic protein target Bcl-x(L)
via automated mass spectrometry [140]. In a subsequent study, investigators employed
ITC to evaluate the binding of compounds generated during FBDD campaigns against
two functionally distinct proteins, the X-linked inhibitor of apoptosis protein (XIAP) and
cyclin-dependent kinase 2 (CDK2) [141].

Alternate drug discovery strategies have been proposed including one developed in an
academic setting yet suitable for industrial scale applications [142]. This protocol consists
of a fragment screening cascade to identify hits employing a combination of differential
scanning fluorimetry (DSF), validation by NMR spectroscopy, and final characterization
of binding fragments via ITC and X-ray crystallography. Along these lines, ITC has been
utilized in the hit validation of halogen-enriched fragments that exhibit low micromolar
affinities and high ligand efficiencies [143]. FBDD strategies have been employed to identify
suitable antibiotic candidates targeting tRNA (m1G37) methyltransferase (TrmD) from
Mycobacterium abscessus (Mab) [144], a rapidly growing multidrug resistant mycobacteria.
The screening for compound prioritization involved DSF followed by ITC validation,
yielding a lead compound comprised of two merged fragments bound to the active site.

In a quest to identify therapeutic agents against the opportunistic pathogen Pseudomonas
aeruginosa, investigators recently designed and optimized a series of compounds to interact
with pseudomonas quinolone signal receptor (PqsR) [145], a key transcription factor that
controls bacterial pathogenicity. Hit optimizations monitored via SPR and ITC evaluated
the corresponding enthalpic efficiency (EE) of introducing flexible in lieu of rigid linkers in
these compounds. While apparently counterintuitive, the finding that flexible linkers boost
PqsR activity and enhance anti-virulence potency can be rationalized on the basis of their
respective thermodynamic binding profiles [145].

6.2. ITC in FBDD: Experimental Challenges

Upon combining the selected fragments discovered via FBDD approaches, the ulti-
mate objective is to derive a lead compound with high ligand efficiency. Pursuing this
strategy, the initial fragments are expected to exhibit affinities spanning the range of
100 µM–10 mM to generate a final product with affinities on the order of 10 nM [48]. Spe-
cialized analytical techniques are therefore required to screen the low affinity fragments.
Biophysical methods commonly employed in the fragment screening process include NMR
spectroscopy, X-ray diffraction analysis, mass spectrometry, surface plasmon resonance,
fluorescence-based techniques, and isothermal titration calorimetry. Since FBDD requires
detection of low-potency hits, a caveat on the use of most biophysical techniques is to obtain
sufficient amounts of purified protein target (>10 mg) and fragments that are soluble at the
concentrations needed (mM) for screening and optimization. Standard operating practice
is to acquire ITC measurements on systems that exhibit a moderate range of affinities (i.e.,
103 > Ka > 107 M−1) with target solution concentrations at least tenfold greater than the
ligand dissociation constant (Kd). Despite these recommended guidelines, a well-designed
ITC experiment may yield informative results with significantly less material and/or
lower affinities.
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While the thermodynamic data acquired via ITC is invaluable in FBDD, the tendency
is to employ this technique later in the drug development process for compound optimiza-
tion given its lower sample throughput and higher target protein requirements relative to
other biophysical techniques. Considering these experimental caveats, there are success
stories in which ITC has assumed a lead role in the entire drug discovery process. Under
specific conditions, ITC has furnished valuable information in FBDD decision making
processes [138–140,142,145–148]. Although ITC might pose an experimental challenge in
initial FBDD screenings, this technique represents a powerful method during the secondary
screening stage and might retrospectively provide important clues that assist further im-
provements and optimization of the starting fragment candidates. Given the material and
time constraints associated with ITC characterization of ligand–target interactions, con-
tinuing efforts are devoted towards enhancing overall sample throughput and sensitivity.
Recent studies have focused on overcoming such experimental limitations by developing
enthalpy screening methods with the goal of accelerating data acquisition [149,150] and
expanding the high-throughput capabilities of calorimetric instrumentation.

6.3. Protein-Protein Interactions (PPI) as Targets in Drug Discovery

Drug discovery programs focusing on protein-protein interaction (PPI) inhibitors are
challenging and relatively few FBDD approaches have tackled these projects to identify
active small molecules against a number of chemotherapeutic targets (as reviewed in [151]).
Considering the fundamental role of PPIs in disease, conventional wisdom has postulated
that these interactions might be ‘undruggable’, thereby rendering drug discovery efforts
targeting these macromolecular systems particularly cumbersome [152]. Recent develop-
ments have challenged this notion, as the physicochemical properties of small-molecule PPI
modulators undergoing clinical trial progressively demonstrate typical characteristics of
drug-like molecules. These findings suggest that future drug discovery campaigns aimed
at targeting PPIs may follow traditional design parameters, albeit along the lines of bRo5
space described in Section 2.2.

One successful example of a PPI inhibition by small molecules involves interactions
between tumor suppressor BRCA2 and recombination enzyme RAD51 [153]. In this case,
fragment hits capable of interacting with the PPI interface have been validated by ITC,
NMR, and X-ray approaches. Another relevant approach in drug design is to identify
PPI inhibitors that are essential for a particular cellular function/dysfunction and re-
sponsible for a number of pathological conditions. In order to develop treatments for
oxidative stress-related diseases, a recent study [154] focused on inhibiting the interaction
of transcription factor Nrf2 with its negative regulator Keap1, thereby upregulating Nrf2
transcriptional activity. Seeking to identify inhibitors of these PPI interactions, a num-
ber of lead compounds inspired by a natural molecule that interacts with Keap1 have
been developed and evaluated via multiple approaches including detailed structural and
thermodynamic analysis.

This combined structural-energetic strategy led to improvement of the compound
series by introducing chemical modifications that impact solvation and residue flexibil-
ity. One of the binding modes involved displacement of a coordinated water molecule,
which resulted in an additional entropic gain, complementing the favorable enthalpic
contributions of productive key residue interactions. This series of compounds is clearly
distinct in terms of respective energetic signatures, as manifest in a striking reduction
of the entropic penalty incurred by binding-induced desolvation of the interaction site,
as visualized in Figure 15A where entropically favored compounds are designated with
a red line (i.e., entries 60–78). The accompanying ∆H/T∆S plot in Figure 15B reveals
that these compounds (magenta dots) are clustered in the region of lower −T∆S values
(−2.5 < −T∆S < 2.5 kcal·mol−1) and variable levels of favorable enthalpic contributions
(−12 < ∆H < −7 kcal·mol−1). Significantly, the broad variation in thermodynamic sig-
natures occurs via a simple substitution in the ligand as depicted in Figure 15C that
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conceivably dislodges a coordinated water molecule bridging residues S508 and R415
of Keap1.

Figure 15. Impact of binding-induced desolvation on the energetic signatures of PPI inhibitors.
(A) Selected compounds reported in [154] are sorted according to original ID number (1–78) and com-
prise two distinct ligand classes on the basis of their respective thermodynamic signatures. Inhibitors
1–47 exhibit a higher entropy penalty (red histograms) relative to compounds 60–78, (underlined
by a solid red line) that are characterized by enhanced affinity as reflected in the higher binding
free energy (blue histograms) due to reduced entropic penalty despite the lower binding enthalpy
(green histograms). (B) An enthalpy-entropy plot discriminates between higher affinity compounds
exhibiting lower unfavorable entropy (magenta circles) versus lower affinity compounds (purple
circles) characterized by higher unfavorable binding entropies (−T∆S ≥ 3 kcal·mol−1). (C) Structure
of compounds with a substituent R in the ortho-position that exhibit improved binding energetics.
Inhibitors 67, 68, and 72−78 contain either a carboxyl or tetrazole group on an aromatic moiety
attached at the ortho-position of the phenylene ring. The entropy gain observed for compounds
60–78 may arise from dislodging a coordinated water molecule that bridges residues S508 and R415
of Keap1.

Along the lines of modulating PPI interactions as therapeutic interventions, strategies
have been developed with the assistance of computational approaches, affording the design
of enzyme-inhibiting peptides that transiently convert an active enzyme into a proenzyme.
The latter is co-delivered with a pro-drug substrate to specific target sites for subsequent
activation by local proteases [155]. This approach eliminates the risks of systemic toxicity as
the pro-drug is harmless to the body in its latent form and only converted to an active toxic
agent by the accompanying pro-enzyme in local target tissues. Applying this strategy to the
therapeutically relevant protein carboxypeptidase G2 (CPG2), a combination of biochemical,
computational, structural, and thermodynamic methods has assisted in identifying optimal
peptide candidates to fulfill the role of a transient enzyme inhibitor.
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6.4. Emerging Infectious Diseases: SARS-CoV-2 Therapeutic Interventions

The emergence of highly infectious diseases such as the SARS-CoV-2 pandemic repre-
sents a global health threat that requires development of effective therapeutic treatment
regimens. While efforts have intensified to immunize the world population through ad-
ministration of vaccines, SARS-CoV-2 likely represents a long-lasting endemic that will
continue to evolve with the appearance of novel variants evading immunization proto-
cols. In an effort to address this void, therapeutic interventions are urgently needed and
recent developments towards this goal have resulted in the approval of several drugs
and anti-inflammatory agents. Despite limited progress on this front, specific targets of
viral or host origins have been identified for further exploration in the development of
prospective therapeutic agents. Current drug discovery strategies have employed a diverse
array of biophysical approaches including ITC to assist in validating hits from HTS and
characterizing the efficacy of new and repurposed drugs as antiviral therapeutics against
SARS-CoV-2 targets.

The coronavirus designated SARS-CoV-2 encodes two proteases, namely 3CLpro (or
Mpro) and PLpro, both of which are considered as primary antiviral research targets in
SBDD and drug repurposing strategies (as reviewed in [156]). CL-Pro is a class of proteases
for which a host of promising molecules have been developed against other coronaviruses.
A representative example of these therapeutic agents is GC376 that has already been used to
treat feline coronavirus and subsequently evaluated against several SARS-CoV variants. In
a recent study, the efficacy of this compound has been validated by ITC and proven specific
against SARS-CoV-2 MPro [157]. A separate study reported on the design and synthesis of
dipeptidyl inhibitors with novel P3 scaffolds exhibiting potent inhibitory activity against
SARS-CoV 3CLpro and nanomolar affinities measured via ITC [158]. The SARS-CoV-2 target
PLpro is a papain-like protease with deubiquitinating and deISGylating activities [156]. By
removing the ubiquitin-like ISG15 (interferon-stimulated gene 15 protein) modifications
from host proteins, this viral protease causes suppression of the innate immune response
and promotes viral replication. PLpro is effectively inhibited by GRL0617, a non-covalent
inhibitor that interacts with and blocks the association of PLpro with ISG15 [159]. As
a consequence, this small molecule inhibits viral replication while potentially promoting
anti-viral immunity [160].

Several of the SARS-CoV viral nonstructural proteins including nsp12 (i.e., RdRp)
and nsp7-8 (i.e., auxiliary proteins) assemble to form an active replication transcription
complex. Employing a combination of biochemical and biophysical approaches, investiga-
tors are currently evaluating a number of repurposed compounds against RdRp. Inspired
by studies conducted on protein synthesis inhibitors over five decades ago [161], these
lead compounds have demonstrated the ability to interact with SARS-CoV-2 RdRp and
inhibit ribosomal protein synthesis [47]. The screening and characterization of prospective
SARS-CoV-2 therapeutics have been documented including a HTS using the nsp10-nsp16
complex. Repurposed drugs have been assessed for emergency use to treat SARS-CoV-2
infection [162] and the positive hits validated by ITC.

One of the mechanisms underlying SARS-CoV-2 mediated suppression of interferon
responses occurs due to orf9b interactions with host cell components. This includes the
Hsp90/TOM70 complex for which interactions have been explored structurally and thermo-
dynamically [163,164]. A recent study employing ITC reported on the allosteric inhibition
of macromolecular interactions by orf9b [165]. Remarkably, the binding affinity of Hsp90
EEVD motif to TOM70 NTD is reduced by ~29-fold when orf9b occupies the TOM70
CTD pocket, supporting the proposition that orf9b allosterically inhibits Hsp90/TOM70
interactions. This finding sheds light on the mechanism underlying SARS-CoV-2 orf9b
mediated suppression of interferon responses [166], thereby providing opportunities for
therapeutic interventions.

Another potential SARS-CoV-2 target that has recently received attention is the DC-
SIGN (dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin),
a C-type lectin receptor that mediates infection and dissemination of numerous viruses [167].
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Since the SARS-CoV-2 spike protein is heavily glycosylated, its interaction with DC-SIGN
represents a potential ACE2-independent infection route of innate immune cells. Inhibition
of virus binding to DC-SIGN therefore represents an attractive host-directed strategy to at-
tenuate overshooting innate immune responses and prevent disease progression. In a recent
study, ligand optimization has been monitored via biophysical approaches and calorimetric
determination of the resultant thermodynamic signatures for DC-SIGN–glycopolymer
interactions revealed a correlation of potency with ligand binding enthalpies [168].

An alternate strategy has been pursued to identify aptamers that efficiently bind DNA-
susceptible peptide structures in SARS-CoV-2 proteins critical for infectivity such as the
receptor binding domain (RBD) of spike protein and SARS-CoV-2 RdRp. By repurposing
existing aptamers, investigators have identified positive hits validated by a number of
techniques including ITC [169]. The number of studies documenting new anti SARS-CoV-2
candidates published on a daily basis suggest that the use of existing/repurposed drugs,
natural chemicals, and/or novel entities has progressively increased since the pandemic
onset in 2019. Multiple targets of viral or host origin have already been selected for treat-
ment, as drug repurposing offers an attractive prospect in terms of accelerated therapeutic
development. In retrospect, significant progress has been achieved during an abbreviated
timeframe given the identification of protease inhibitors and selection of prospective candi-
dates undergoing clinical trials to evaluate their antiviral efficacy against SARS-CoV-2. The
arsenal of potential leads and repurposed drugs has advanced dramatically [170–172] with the
promise of developing more effective SARS-CoV-2 therapeutics to counter an ever-expanding
array of novel viral variants.

7. Parsing Thermodynamic Binding Signatures
7.1. Role of Solvation on Binding Energetics

Numerous studies have succeeded in elucidating the forces driving protein–ligand
interactions with particular emphasis on the role of hydration, which is often obscured
during static structural analysis or overlooked via computational techniques that do not
implicitly or explicitly incorporate solvation models (as reviewed in [173]. The power of
computational methods is enhanced by rigorous evaluation of theoretical predictions based
on experimental data. In fact, armed with experimental thermochemical and thermophysi-
cal data (e.g., ThermoML) [174], molecular simulations can predict specific physicochemical
properties of compounds such as infinite dilution activity coefficients (IDAC), which essen-
tially reflect interactions between a single solute molecule surrounded by solvent and may
therefore provide valuable insights regarding the solvation energies of compounds [175].
The powerful combination of structural [153,176,177], computational [178,179], and experi-
mental biophysical methods, including calorimetric techniques [180], can furnish invaluable
information on the molecular forces driving ligand–target interactions, including the role
of solvation in binding energetics.

In principle, ITC measurements yield global thermodynamic signatures that can-
not resolve the contributions of each water molecule participating or displaced upon
protein–ligand complex formation, and sometimes presents a challenge in overall data
interpretation [181]. Examples include certain thrombin–ligand complexes that exhibit
nearly identical binding enthalpies despite distinct HB patterns and water networks. This
is presumably due to associated structural changes within the interaction site that mask
differential binding modes of these compounds [182]. The role of water molecules in
ligand recognition is multifactorial, a primary reason why predictions of binding energetics
represent a formidable challenge even when structural and thermodynamic information
is available [183]. A well-designed multiparametric strategy incorporating systematic
group substitutions in the ligand [184,185] and/or amino acid replacements in the target
protein [186] may resolve hydration contributions to a ligand-target interaction at the
molecular level.

In conjunction with this approach, the acquisition of ITC measurements under rigorous
experimental conditions should provide clarification on the origins of net thermodynamic
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binding signatures. Examples include the use of multiple buffers with distinct ionization
enthalpies at different pH to determine intrinsic ligand-target binding enthalpies [187–189],
and multiple assay temperatures to assess heat capacity changes [132,190]. Some molec-
ular binding events that are detectable at the enthalpy/entropy level are not necessarily
reflected in the binding free energy due to enthalpy/entropy compensations as illustrated
by oligosaccharide interactions with a number of mutant proteins [186]. The energetics of
protein–ligand complexes may be modulated by introducing specific functional groups
resulting in enhancement of either the ligand binding enthalpy or entropy. As an example,
target–ligand complexes can be stabilized by inserting H-bonding functional groups that
interact with or replace interfacial water molecules resulting in a favorable contribution
to binding enthalpy. Conversely, the introduction of certain functional groups within
a ligand may promote expulsion of surface waters into bulk solvent thereby increasing
binding entropy.

The relevance of solvation in molecular recognition events is evident based on numer-
ous observations reported over the years [46,183,191–199]. The critical role of solvation is
clearly illustrated within the context of drug design and development by citing a classic
example of the serine protease family, which includes a number of disease-associated
enzymes that have been used as targets in drug discovery campaigns. Klebe and col-
leagues [183] have provided an illustrative example of individual water molecules eliciting
dramatic impacts on the thermodynamic binding signatures of compounds interacting
within the enzyme S1 pocket. Specifically, the binding of a compound in which the ben-
zamidine anchor has been removed is accompanied by expulsion of one water molecule,
a favorable enthalpic event that enhances the overall binding affinity. These results set
the stage for development of several orally available anticoagulants designed on the basis
of important thermodynamic findings [183]. In summary, there is considerable interest
regarding the fundamental role of solvent in modulating thermodynamic signatures of
ligand–target interactions, information that is not readily gleaned from structural studies.
Solvent molecules may play a significant role in binding energetics and therefore represent
a major force in driving a ligand to its desired target.

7.2. Conformational Impacts: Ligand Preorganization

The combined efforts of structural and energetics studies may facilitate the design
of ligands with improved affinities by lowering their entropic cost of association due to
immobilization. In this respect, thermodynamic characterization of ligand-target interac-
tions assists in the overall design process by monitoring a decrease in the entropic penalty
to identify compounds with enhanced binding energetics. Ligands that adopt bioactive
conformations during late-stage optimization by introducing structural constraints may
exhibit greater affinity/potency over their flexible counterparts [200]. The rationale for this
improvement relates to entropic advantages assigned to rigid versus flexible ligands. Such
techniques have been used to design peptide ligands by conformationally constraining
their unbound structural freedom [201]. There are numerous approaches to achieve this
goal, which are often performed chemically or enzymatically [202,203].

In terms of drug discovery strategies, thermodynamic analysis at late-stage lead
optimizations have yielded significant insights into the role of ligand preorganization on
interaction affinity and potency of small molecules [200,204]. The ultimate goal is to identify
a preferred bound geometry of ligand within the binding site and simulate its conformation
in the solution state via chemical modifications. The latter may include intramolecular
hydrogen bonds, cyclization, and other means to shift the ensemble of ligand conformations
towards a bioactive form. One particular challenge resides in ensuring that the free ligand-
populated conformation faithfully reproduces the active bound state in such a manner that
both the conformational strain and entropic penalty are alleviated. An example in which
such approaches have been applied to small molecules is the class of BACE inhibitors
involving introduction of cyclopropane moieties in the ligand molecular structure [205].
The cyclopropane substituted aminopyrimidone-type BACE-1 inhibitors exhibit improved
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activity relative to a non-restricted ethylene linker compound. These data correlate well
with the resultant entropic gain derived from imposition of conformational constraints due
to incorporation of the cyclopropane ring.

7.3. Impact of Cooperativity on Binding Energetics

Systematic group substitutions in the ligand [184,185], and/or amino acid replace-
ments in the target protein [186] provide insights into the origins of net thermodynamic
binding signatures at the molecular level. The strategy underlying FBDD involves assem-
bling several low affinity fragments with the appropriate geometry and attachment pattern
to generate a high affinity ligand that specifically recognizes the target. Deconstruction of
the resultant ligand into its respective fragments may or may not yield a binding affinity that
reflects the sum of its constituents, which represents a measure of cooperativity [206]. The
impact of cooperativity or nonadditivity on binding energetics has been assessed by methyl
group substitutions, a popular approach that aims at improving ligand geometry and
complementarity in the bound state [207]. The concept of nonadditivity can be appreciated
when evaluating congeneric series of compounds [184], where hydrophobic contacts and
hydrogen-bond formation between various substituents elicit cooperative effects. A typical
example of nonadditivity involving double functional group replacement is presented in
Figure 16 for thrombin inhibitors [208]. Inspection of the schematic reveals that single site
substitutions of an amino group or benzyl side chain result in binding free energy enhance-
ments (∆∆G) of −1.2 and −2.1 kcal·mol−1, respectively. The simultaneous introduction of
both functional groups yields a binding free energy enhancement of −4.3 kcal·mol−1, rep-
resenting a positive cooperativity (i.e., nonadditivity) of ∆∆G = −1.0 kcal·mol−1 relative to
the sum of individual substitutions (∆∆G = −3.3 kcal·mol−1). It is interesting to note that
the order in which group replacements are introduced may play a significant role in the
eventual outcome [185].

Figure 16. Cooperativity (nonadditivity) of hydrogen bond formation and hydrophobic contacts in
a set of thrombin inhibitors analyzed via double replacement cycle. Introduction of a lipophilic side
chain (upper horizontal arrow) increases the affinity by 1.2 kcal·mol−1. Addition of an amino group
(left vertical arrow) increases the affinity by 2.1 kcal·mol−1. The combined chemical group substitu-
tions yield a binding free energy enhancement of 4.3 kcal·mol−1 (diagonal red arrow) representing
a positive cooperativity of ∆∆G = 4.3 − 2.1 − 1.2 = 1.0 kcal·mol−1. (Data derived from [208]).
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8. Challenges Associated with Interpretation of Thermodynamic Data

The concept of incorporating thermodynamic measurements within the drug discov-
ery arena initially elicited an enthusiastic response that has been tempered by guarded
optimism. A notable milestone is the proposal of employing thermodynamic binding sig-
natures as an additional metric in lead optimizations [109], which has been embraced with
the expectation that real-time experimental observables might potentially drive the drug
development process more effectively. Indeed, such measurements represent a valuable
tool for drug development and design, based on the premise that enthalpically driven
binders are considered superior ligands in terms of aqueous solubility, decreased toxicity,
and higher selectivity [7]. A successful case history that proves this point is illustrated by
the various generations of anti-HIV drugs introduced commercially over time, as discussed
in Sections 3.1 and 3.2. Significantly, one observes a general trend in which the newer
drugs acquire a thermodynamic signature that gradually shifts from entropy-driven to
enthalpically favorable (see Figure 12B).

The most compelling evidence for dissemination of this concept is the recognition
that enthalpically driven ligands with polar characteristics retain an added advantage of
exhibiting superior pharmacokinetic properties and thereby score additional points in terms
of ADMET criteria. As reviewed herein, this paradigm in drug discovery and optimization
remains a matter of prioritization in current design strategies yet requires judicious planning
and analysis, which integrates rigorous buffer-dependent thermodynamic assessments
with high resolution structural capabilities to define binding energetics at the molecular
level (refer to additional relevant reviews on this topic [8,209]). Given these constraints
and guidelines, contributions arising from solvation, ligand preorganization, cooperativity,
and linked processes must be considered explicitly when interpreting thermodynamic
signatures within the context of structural data. A clearly defined structural–energetic
correlation finally emerges following successful resolution of potential competing events
and extrinsic factors that may mask the intrinsic thermodynamic parameters. In this section,
we present several caveats associated with the use of thermodynamics in drug discovery
strategies and offer suggestions to rationalize some of the unanticipated findings.

8.1. Resolving Paradoxes in Thermodynamic Characterizations

Given the increasing use of ITC as an indispensable biophysical tool in drug discovery,
coupled with the availability of comprehensive thermodynamic databases, a number of
questions have arisen as a consequence of several studies reporting unanticipated outcomes.
This prompted serious re-evaluation of available data to corroborate the assumption that
enthalpy-driven binders are favored in drug development [7]. Additional concerns and queries
regarding method protocols, the role of solvation, and impact of ligand conformational
constraints [182,210], must be addressed and reassessed [117,211]. Following a period of
relative euphoria with the prospect of achieving a successful structural-energetics consen-
sus, a certain level of skepticism has surfaced as drug design laboratories seeking rapid and
straightforward decision criteria often face the realization that critical data are lacking for
a complete interpretation [7]. One of the caveats associated with employing ITC as a tool in
drug development originated as a consequence of the variability observed when conduct-
ing measurements under disparate solution conditions, thereby hampering comparison of
calorimetric data on an absolute scale. The implementation of rigorous and stringent exper-
imental protocols reduced overall variability and ensured systematic evaluations to resolve
intrinsic thermodynamic binding parameters for ligand-target interactions [138,212–214].

While ITC is a model-independent technique that provides a direct measure of the
heat absorbed/released upon ligand–target association, the resultant enthalpy may be the
result of multiple events that occur concomitantly to the binding process. The latter may
include and is not restricted to coupled protonation/deprotonation reactions [105,215],
and binding-induced conformational changes amongst a host of heat absorbing/releasing
events [216]. These linked processes require additional measurements to resolve intrinsic
thermodynamic parameters [189,217]. In this respect, ITC protocols must be designed to
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derive the requisite intrinsic thermodynamic data by conducting measurements in an array
of buffers with distinct ionization enthalpies at various pH. The calorimetric experiments
should be conducted over a sufficiently broad temperature range to account for heat
capacity changes involved in the association process (as reviewed in [131]).

The finding that binding parameters routinely measured in drug discovery campaigns
generally do not represent intrinsic thermodynamic signatures has created some reluctance
in applying ITC for time-sensitive lead optimizations and drug development [182]. A range
of experimental parameters, including temperature and solution conditions (e.g., buffer,
solute effects), can significantly influence the observed thermodynamic signatures and must
be explicitly considered to derive intrinsic binding enthalpies. Moreover, structural flexi-
bility and allosteric mechanisms may lead to obfuscation in the intrinsic thermodynamic
parameters, rendering the latter experimentally inaccessible. The utility of thermodynamics
as a core metric to evaluate the potential for success and accelerate drug discovery efforts
has been enthusiastically embraced. Nevertheless, a number of unforeseen challenges have
hampered the desire to adopt this technique as a routine strategy. A critical review of
specific intricacies associated with the use of ITC in drug discovery [182] suggests that
while enthalpy and entropy should not be viewed as direct end points, the latter may
significantly enhance our understanding of ligand–target interactions when employed in
conjunction with structural and/or computational approaches.

8.2. Caveats Associated with the Design of a Constrained Ligand

Ligand preorganization may represent a useful strategy in thermodynamic approaches
designed to improve binding affinities by reducing entropic penalties associated with
conformational strain (Refer to Section 7.2). Considering its potential utility, several unan-
ticipated experimental outcomes led to the realization that additional factors must be
considered when designing a “bioactive conformation”. As a case in point, studies on Grb2
SH2 domain-peptide interactions [201] reveal that designed ligands adopting a bound-like
geometry are characterized by unexpected improvements in binding enthalpies yet exhibit
unfavorable entropic contributions relative to the original flexible conformers [200,211].
These findings suggest a counterproductive outcome when attempting to improve ligand
potency by purposely avoiding entropic penalties due to binding-induced conformational
strain. A plausible explanation for this apparent discrepancy has been offered by assessing
the conformational energetics computationally [117]. Specifically, the conformationally-
constrained ligands might further reduce binding site residue entropies, thereby offering
a counterargument to the expected improvement in overall binding entropy upon ligand
pre-organization.

In the final analysis, thermodynamic binding signatures must explicitly consider mul-
tiple factors and parameters in order to enable reliable predictions. Along these lines,
the inventory of water molecules involved in a ligand-target interaction is an important
consideration [200,211], as solvation plays a fundamental role in the binding energetics and
overall enthalpy/entropy balance. The general consensus is to introduce some constraints
in the small molecule that create a pre-organized state, which is poised to interact with the
binding site while introducing no major strain. In principle, this represents a reasonable
approach yet requires a number of important assumptions, namely: (a) the constrained
ligand conformation is equivalent to the final bound state; and, (b) hydration and hydro-
gen bond donor/acceptor capabilities are intact. Under these conditions, the resultant
energetic signatures are characterized by an entropy gain and enhanced binding affinity.
In practice, there are systems in which the entropy gain is balanced by an enthalpy loss
resulting in marginal improvement of the binding affinity. Conceivable origins for such
unexpected outcomes associated with conformationally constrained ligands may reside in
violation of specific conditions related to the integrity of hydration and/or hydrogen bond
donor/acceptor capabilities as a consequence of ligand design.
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8.3. Origins of Enthalpy-Driven Hydrophobic Interactions

The well described hydrophobic effect suggests that the burial of non-polar surfaces
represents an entropically favorable process, implying that addition of non-polar residues to
small molecules enhances the binding affinity via entropy gain. Although typically viewed
as an entropy-driven process, examples of hydrophobic interactions that are enthalpic in
nature have been documented in a comprehensive review on this topic [218]. There are
several plausible explanations for enthalpy-driven hydrophobic effects including binding-
induced release of water molecules from the hydrophobic environment to bulk water [219].
Conversely, an opposing entropic component arises due to the elimination of solvent
fluctuations inside the binding pocket. Such contributions override the favorable entropic
effects of extracting a small non-polar ligand from bulk solvent.

Water molecules that form non-optimal hydrogen-bonds within a hydrophobic surface
are released upon ligand binding and optimally hydrogen-bonded in the bulk solvent which
is an enthalpically favorable process. Another possibility arises when the binding pocket of
an apo protein is suboptimally hydrated. In such situations, solute-solvent dispersion inter-
actions in the hydrated complex might not be completely offset by dispersion interactions
for the hydrated protein and ligand. The concomitant increase in dispersive interactions
upon complexation may therefore result in a favorable enthalpic contribution. An excellent
example is the interaction between major urinary protein (MUP-1) and primary alcohols of
various chain length in which a combination of calorimetric, structural, and computational
studies reveal that the association process is enthalpy-driven, despite the hydrophobicity
of interacting species [220]. The authors rationalize these findings as conceivably arising
from favorable solute-solute dispersion interactions following protein–ligand complexation.
Indeed, the apo-MUP-I pocket is suboptimally hydrated [221], which implies an inequality
between solute–solvent dispersion interactions prior to protein–ligand binding versus
solute–solute dispersion interactions in the associated complex.

Several studies involving congeneric ligands highlight some of the challenges asso-
ciated with understanding how adding nonpolar surface area to small molecules affects
their protein-binding energetics. An intriguing example in which increased non-polar
surface area modulates the thermodynamic binding signature is illustrated in Figure 17 for
a series of thermolysin inhibitors [222]. These enzyme inhibitors have been designed via
P2′ substitutions, as noted in the inset of Figure 17A. Inspection of the enthalpy-entropy
plot in Figure 17A and resultant thermodynamic signatures sorted by molecular size in
Figure 17B reveals that while compounds 1–3 exhibit an increased enthalpic contribution
as a function of size, ligands 4–5 are virtually indistinguishable thermodynamically, and
compounds 6–9 exhibit the expected size-dependent enhancement in binding entropy as
deduced from increased surface area burial. In the latter group, entropy gains are balanced
by reduced enthalpic interactions, which is consistent with a structural loss of definition
and increased motion in some complexes. An overall evaluation of the enthalpy/entropy
balance reveals that whereas enthalpy prevails for smaller substituents, the entropic com-
ponent dominates ∆G for larger substituents. It is interesting to note that ligands with
medium-sized P2′ -substituents (i.e., compounds 4 and 5) exhibit the highest affinities. In an
effort to rationalize these observations, inspection of the water geometries adjacent to P2′

via X-ray crystallography [222] suggests correlation between an optimal solvation network
and the resultant thermodynamic profiles. These findings underscore the importance
of performing systematic evaluations within congeneric compounds to establish correla-
tions between structural and energetic properties, as useful information can be gleaned
from such comparisons [223], including the paradoxical nature of enthalpically driven
hydrophobic interactions.



Life 2022, 12, 1438 31 of 42

Figure 17. (A) Enthalpy-entropy plot for a congeneric series of thermolysin inhibitors harboring
distinct substitutions at the P2′ position with each compound identified according to entry number
(1–9) and respective group substituent; (B) Thermodynamic binding signatures [i.e., ∆G (blue),
∆H (green), and −T∆S (red)] for the thermolysin inhibitors presented in Panel A. Ligands with
medium-sized P2

′ substituents (i.e., compounds 4 and 5) exhibit the highest affinities as a consequence
of favorable enthalpy and entropy contributions. (Data derived from [222]).

9. Potential of Structure-Energetic Correlations in Accelerating Drug
Design Predictions

Elucidation of biomolecular interactions at the atomic level is extremely complex as
these involve formation and/or disruption of multiple non-covalent bonds between the
interacting molecules as well as solvent [113]. Despite several decades of experimental stud-
ies and extensive analyses, a complete understanding of the thermodynamic driving forces
governing biomolecular interactions remains elusive. While ITC provides the most accurate
and reliable experimental technique to achieve a complete thermodynamic characterization,
the utility of such information in drug design and development still represents a challenge.
Correlations between thermodynamic data and structural features yield invaluable insights
on biomolecular interactions and computational tools have empowered such correlations
at the molecular level. Incorporation of multiparametric approaches in drug discovery
strategies represents a powerful infrastructure for the development of future treatment
regimens exhibiting enhanced efficacy. Thermodynamics can still provide the requisite
input into decision-making processes as the goal of rational drug design is to identify small
molecule substitutions that increase compound efficiency, potency, and specificity while
minimizing overall toxicity. Thermodynamics may assist in this endeavor by gauging
the progress achieved or drawbacks encountered when certain molecular manipulations
tend to elicit an unfavorable response. Specifically, characterization of the binding en-
ergetics associated with chemical modifications/substitutions facilitates assessment of
group-group interactions, conformational constraints, and accommodation within the bind-
ing site. The resultant thermodynamic signature in conjunction with a high-resolution
structure furnishes a complete molecular description of biomolecular interactions within
the ligand-target complex.

There is a fundamental need to expand predictive capabilities based on experimen-
tal structural-energetics data that inform decisions regarding the selection of hits worth
pursuing at the next level of drug design and development. In order to identify the most
promising candidates for lead optimization, predictive biophysical parameters are required,
and thermodynamic data can furnish valuable insights to achieve this goal. Approaches
towards this direction have been pursued and score functions derived from structural
and calorimetric data [224]. ITC experiments provide direct access to ∆G, ∆H, T∆S and
∆H/T∆S compensation as a function of specific experimental variables including buffer,



Life 2022, 12, 1438 32 of 42

temperature, osmolytes, and pH [188]. Resolving intrinsic thermodynamic parameters is
therefore essential for an unbiased structural-energetic analysis. While the current review
mines available thermodynamic databases as an illustration of overall trends and provides
insights on the interplay between experimental observables and design metrics, it is highly
advisable to evaluate differential binding profiles across specific data sets comprising con-
generic ligand series for precise interpretations [223]. Such systematic evaluations have
proven particularly illuminating by resolving apparent paradoxes and gaining a more
detailed understanding of the forces driving specific ligand target interactions at both the
structural and thermodynamic levels.

A considerable body of evidence has demonstrated that ligand preorganization abro-
gates the entropic penalty associated with structural rearrangements. Conversely, entropi-
cally favorable interactions arising from residual mobility of ligand or target in the bound
state is often compensated by an unfavorable enthalpic term. In most cases, desolvation
is an entropically favorable process, yet there are instances in which such interactions are
enthalpically favored. An unexpected observation is that the role of local water structure
may dramatically alter the thermodynamic binding signatures without any appreciable
impact on ligand affinity. These findings underscore the need to evaluate biomolecular
interactions thermodynamically, as characterization of binding affinities alone may miss
important molecular events that are only distinguished in the enthalpic and/or entropic
terms. Intrinsic thermodynamic binding parameters should be correlated with high resolu-
tion crystallographic data, as low resolution structures lack fundamental aspects related
to water inventory, thereby precluding optimal structural-energetic correlations at atomic
resolution [7].

Despite the challenges of correlating specific fragment substitutions and design
changes in small molecules with their respective thermodynamic binding profiles, the
latter provide additional layers of valuable information to elucidate the forces governing
specific ligand-target interactions. Computational studies aimed at complementing these
assessments rely on experimental databases that are incomplete yet necessary to correlate
specific biophysical properties at a molecular level with the net thermodynamic conse-
quences of chemical modifications/substitutions. A critical review of progress achieved
spanning three decades suggests that there is a fundamental role for thermodynamics
in drug discovery strategies. Although thermodynamic signatures might not necessarily
constitute endpoints for lead optimizations such as cases in which a multitude of complex
events hamper resolution of the driving forces [225], thermodynamic profiling combined
with high resolution structural data represent an enormous asset to accelerate drug de-
velopment and optimization [182]. The collective efforts of dedicated thermodynamicists,
structural biologists, and computational scientists armed with the requisite biomolecular
data and biophysical parameters should improve overall predictive capabilities whereby
structure informs biology and energetics provides the foundation for decision making on
hit-to-lead optimizations in drug design and development.

10. Concluding Remarks

This manuscript presents an overview of experimental approaches employed in drug
discovery strategies to identify and develop prospective molecules for further optimiza-
tion as lead compounds in treatment regimens. Particular emphasis is focused on the
fundamental role of thermodynamics in drug design and optimization by applying calori-
metric methods to characterize the forces driving ligand-target association processes in
solution. Considering the relevance of utilizing direct model-independent calorimetric
data to elucidate macromolecular binding energetics, ongoing efforts are concentrated
on the development of high-throughput methodologies aimed at deriving rapid yet ac-
curate thermodynamic parameters while employing minimal quantities of biomaterials.
The necessity and urgency of devising novel technological approaches to evaluate the
biological/biophysical properties of lead compounds for the express purpose of optimizing
their efficacy in terms of bioavailability, potency, and specificity is readily apparent. Drug
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discovery technologies rely on high throughput screenings whereby hit-to-lead decisions
and compound optimization inevitably requires validations by combining structural and
functional methodologies. Energetics-based approaches successfully bridge the gap be-
tween structure and function as calorimetric data fill the void by furnishing a complete
description of biomolecular interactions via the elucidation of thermodynamic binding
signatures and driving forces.
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Abbreviations

ADMET Absorption, Distribution, Metabolism, Excretion, Toxicity
AlogP Computationally Derived LogP
BEI Binding Efficiency Index
BLI Biolayer Interferometry
bRo5 Beyond Rule of Five
CE Capilary Electrophoresis
ClogP Computationally Derived LogP
CryoEM Cryo-Electron Microscopy
DSF Differential Scanning Fluorimetry
EE Enthalpic Efficiency
FBDD Fragment-Based Drug Discovery
GCI Grating-Coupled Interferometry
GE Group Efficiency
HA Heavy Atoms
HBA Hydrogen Bond Acceptors
HBD Hydrogen Bond Donors
HTS High Throughput Screening
IDP Intrinsically Disordered Protein
ITC Isothermal Titration Calorimetry
LE Ligand Efficiency
LipE Lipophilic Efficiency
LLE Ligand Lipophilic Efficiency
LogP Logarithm of Octanol/Water Partition Coefficient
MST Microscale Thermophoresis
NME New Molecular Rntities
NMR Nuclear Magnetic Resonance
NNH Number of non-hydrogen atoms
NP Natural Products
PAINS Pan-Assay Interference Compounds
PSA Polar Surface Area
QSAR Quantitative Structure-Activity Relationships
Ro3 Rule of Three
Ro5 Rule of Five
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ROTB Rotatable Bonds
SBDD Structure-Based Drug Design
SIHE Size Independent Enthalpic Efficiency
SPR Surface Plasmon Resonance
TPSA Topological Polar Surface Area
TSA Thermal Shift Assay
WAC Weak Affinity Chromatography

References
1. Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008, 8, 473–480. [CrossRef]

[PubMed]
2. Rizzuti, B.; Lan, W.; Santofimia-Castaño, P.; Zhou, Z.; Velázquez-Campoy, A.; Abián, O.; Peng, L.; Neira, J.L.; Xia, Y.; Iovanna,

J.L. Design of Inhibitors of the Intrinsically Disordered Protein NUPR1: Balance between Drug Affinity and Target Function.
Biomolecules 2021, 11, 1453. [CrossRef] [PubMed]

3. Erickson, R.P. From “magic bullet” to “specially engineered shotgun loads”: The new genetics and the need for individualized
pharmacotherapy. Bioessays 1998, 20, 683–685. [CrossRef]

4. Saenz-Méndez, P.; Eriksson, L.A. Exploring Polypharmacology in Drug Design. In Rational Drug Design; Humana Press:
New York, NY, USA, 2018; Volume 1824, pp. 229–243. [CrossRef]

5. Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent advances in the development of protein–protein interactions
modulators: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2020, 5, 1–23. [CrossRef] [PubMed]

6. Campoy, A.V.; Freire, E. ITC in the post-genomic era. . . ? Priceless. Biophys. Chem. 2005, 115, 115–124. [CrossRef] [PubMed]
7. Klebe, G. Broad-scale analysis of thermodynamic signatures in medicinal chemistry: Are enthalpy-favored binders the better

development option? Drug Discov. Today 2019, 24, 943–948. [CrossRef]
8. Claveria-Gimeno, R.; Vega, S.; Abian, O.; Velazquez-Campoy, A. A Look at Ligand Binding Thermodynamics in Drug Discovery.

Expert Opin. Drug Discov. 2017, 12, 363–377. [CrossRef]
9. Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry,

computational chemistry and systems pharmacology. Nucleic Acids Res. 2015, 44, D1045–D1053. [CrossRef]
10. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined

protein-ligand binding affinities. Nucleic Acids Res. 2007, 35, D198–D201. [CrossRef]
11. Olsson, T.S.; Williams, M.A.; Pitt, W.R.; Ladbury, J.E. The Thermodynamics of Protein–Ligand Interaction and Solvation: Insights

for Ligand Design. J. Mol. Biol. 2008, 384, 1002–1017. [CrossRef]
12. Li, L.; Dantzer, J.J.; Nowacki, J.; O’Callaghan, B.J.; Meroueh, S.O. PDBcal: A Comprehensive Dataset for Receptor–Ligand

Interactions with Three-dimensional Structures and Binding Thermodynamics from Isothermal Titration Calorimetry. Chem. Biol.
Drug Des. 2008, 71, 529–532. [CrossRef] [PubMed]
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118. Ferenczy, G.G.; Keserű, G.M. On the enthalpic preference of fragment binding. MedChemComm 2015, 7, 332–337. [CrossRef]
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142. Mashalidis, E.H.; Śledź, P.; Lang, S.; Abell, C. A three-stage biophysical screening cascade for fragment-based drug discovery.
Nat. Protoc. 2013, 8, 2309–2324. [CrossRef] [PubMed]

143. Dammann, M.; Kramer, M.; Zimmermann, M.O.; Boeckler, F.M. Quadruple Target Evaluation of Diversity-Optimized Halogen-
Enriched Fragments (HEFLibs) Reveals Substantial Ligand Efficiency for AP2-Associated Protein Kinase 1 (AAK1). Front. Chem.
2022, 9, 815567. [CrossRef]

144. Whitehouse, A.J.; Thomas, S.E.; Brown, K.P.; Fanourakis, A.; Chan, D.S.-H.; Libardo, M.D.J.; Mendes, V.; Boshoff, H.I.M.; Floto,
R.A.; Abell, C.; et al. Development of Inhibitors against Mycobacterium abscessus tRNA (m1G37) Methyltransferase (TrmD) Using
Fragment-Based Approaches. J. Med. Chem. 2019, 62, 7210–7232. [CrossRef]

145. Zender, M.; Witzgall, F.; Kiefer, A.F.; Kirsch, B.; Maurer, C.K.; Kany, A.M.; Xu, N.; Schmelz, S.; Börger, C.; Blankenfeldt, W.; et al.
Flexible Fragment Growing Boosts Potency of Quorum-Sensing Inhibitors against Pseudomonas aeruginosa Virulence.
ChemMedChem 2019, 15, 188–194. [CrossRef]

146. Orgován, Z.; Ferenczy, G.G.; Keseru, G.M. Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR)
Modulators. Curr. Top. Med. Chem. 2019, 19, 1768–1781. [CrossRef] [PubMed]

147. Scott, A.D.; Phillips, C.; Alex, A.; Flocco, M.; Bent, A.; Randall, A.; O’Brien, R.; Damian, L.; Jones, L.H. Thermodynamic
Optimisation in Drug Discovery: A Case Study using Carbonic Anhydrase Inhibitors. ChemMedChem 2009, 4, 1985–1989.
[CrossRef] [PubMed]

148. Zender, M.; Witzgall, F.; Drees, S.L.; Weidel, E.; Maurer, C.K.; Fetzner, S.; Blankenfeldt, W.; Empting, M.; Hartmann, R.W.
Dissecting the Multiple Roles of PqsE in Pseudomonas aeruginosa Virulence by Discovery of Small Tool Compounds. ACS Chem. Biol.
2016, 11, 1755–1763. [CrossRef]

149. Schön, A.; Freire, E. Enthalpy screen of drug candidates. Anal. Biochem. 2016, 513, 1–6. [CrossRef]
150. Baggio, C.; Udompholkul, P.; Barile, E.; Pellecchia, M. Enthalpy-Based Screening of Focused Combinatorial Libraries for the

Identification of Potent and Selective Ligands. ACS Chem. Biol. 2017, 12, 2981–2989. [CrossRef]
151. Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein-protein interaction

challenge. Nat. Rev. Drug Discov. 2016, 15, 533–550. [CrossRef]
152. Truong, J.; George, A.; Holien, J.K. Analysis of physicochemical properties of protein–protein interaction modulators suggests

stronger alignment with the “rule of five”. RSC Med. Chem. 2021, 12, 1731–1749. [CrossRef] [PubMed]
153. Scott, D.E.; Ehebauer, M.T.; Pukala, T.; Marsh, M.; Blundell, S.T.L.; Venkitaraman, A.R.; Abell, C.; Hyvönen, M. Using a

Fragment-Based Approach To Target Protein-Protein Interactions. ChemBioChem 2013, 14, 332–342. [CrossRef]
154. Begnini, F.; Geschwindner, S.; Johansson, P.; Wissler, L.; Lewis, R.J.; Danelius, E.; Luttens, A.; Matricon, P.; Carlsson, J.;

Lenders, S.; et al. Importance of Binding Site Hydration and Flexibility Revealed When Optimizing a Macrocyclic Inhibitor of the
Keap1–Nrf2 Protein–Protein Interaction. J. Med. Chem. 2022, 65, 3473–3517. [CrossRef]

155. Yachnin, B.J.; Azouz, L.R.; White, R.E.; Minetti, C.A.S.A.; Remeta, D.P.; Tan, V.M.; Drake, J.M.; Khare, S.D. Massively parallel,
computationally guided design of a proenzyme. Proc. Natl. Acad. Sci. USA 2022, 119, e2116097119. [CrossRef]

156. Tan, H.; Hu, Y.; Jadhav, P.; Tan, B.; Wang, J. Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease.
J. Med. Chem. 2022, 65, 7561–7580. [CrossRef] [PubMed]

157. Wang, Y.C.; Yang, W.H.; Yang, C.S.; Hou, M.H.; Tsai, C.L.; Chou, Y.Z.; Hung, M.C.; Chen, Y. Structural basis of SARS-CoV-2 main
protease inhibition by a broad-spectrum anti-coronaviral drug. Am. J. Cancer Res. 2020, 10, 2535. [PubMed]

158. Thanigaimalai, P.; Konno, S.; Yamamoto, T.; Koiwai, Y.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Akaji, K.; Chen, S.E.; Naser-
Tavakolian, A.; et al. Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: Design,
synthesis, biological evaluation, and docking studies. Eur. J. Med. Chem. 2013, 68, 372–384. [CrossRef]

http://doi.org/10.1371/journal.pntd.0003916
http://doi.org/10.1016/j.biocel.2004.02.021
http://www.ncbi.nlm.nih.gov/pubmed/15183345
http://doi.org/10.1021/ja110571r
http://doi.org/10.1111/j.1747-0285.2011.01249.x
http://www.ncbi.nlm.nih.gov/pubmed/21981778
http://doi.org/10.1021/jm201347k
http://doi.org/10.1177/2472555218775921
http://doi.org/10.1038/nprot.2013.130
http://www.ncbi.nlm.nih.gov/pubmed/24157549
http://doi.org/10.3389/fchem.2021.815567
http://doi.org/10.1021/acs.jmedchem.9b00809
http://doi.org/10.1002/cmdc.201900621
http://doi.org/10.2174/1568026619666190808150039
http://www.ncbi.nlm.nih.gov/pubmed/31393248
http://doi.org/10.1002/cmdc.200900386
http://www.ncbi.nlm.nih.gov/pubmed/19882701
http://doi.org/10.1021/acschembio.6b00156
http://doi.org/10.1016/j.ab.2016.08.023
http://doi.org/10.1021/acschembio.7b00717
http://doi.org/10.1038/nrd.2016.29
http://doi.org/10.1039/D1MD00213A
http://www.ncbi.nlm.nih.gov/pubmed/34778774
http://doi.org/10.1002/cbic.201200521
http://doi.org/10.1021/acs.jmedchem.1c01975
http://doi.org/10.1073/pnas.2116097119
http://doi.org/10.1021/acs.jmedchem.2c00303
http://www.ncbi.nlm.nih.gov/pubmed/35620927
http://www.ncbi.nlm.nih.gov/pubmed/32905393
http://doi.org/10.1016/j.ejmech.2013.07.037


Life 2022, 12, 1438 40 of 42

159. Fu, Z.; Huang, B.; Tang, J.; Liu, S.; Liu, M.; Ye, Y.; Liu, Z.; Xiong, Y.; Zhu, W.; Cao, D.; et al. The complex structure of GRL0617 and
SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 2021, 12, 488. [CrossRef]

160. Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.;
Tascher, G.; et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587, 657–662.
[CrossRef]

161. Grollman, A.P. Aurintricarboxylic Acid—Unique Inhibitor of Initiation of Protein Synthesis. Pharmacologist 1969, 11, 284.
162. Perveen, S.; Yazdi, A.K.; Devkota, K.; Li, F.L.; Ghiabi, P.; Hajian, T.; Loppnau, P.; Bolotokova, A.; Vedadi, M. A High-Throughput

RNA Displacement Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex toward Developing Therapeutics for COVID-19.
Slas Discov. 2021, 26, 620–627. [CrossRef]

163. Young, J.C.; Hoogenraad, N.J.; Hartl, F. Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import
Receptor Tom70. Cell 2003, 112, 41–50. [CrossRef]

164. Zanphorlin, L.M.; de Lima, T.B.; Wong, M.J.; Balbuena, T.S.; Minetti, C.; Remeta, D.; Young, J.C.; Barbosa, L.; Gozzo, F.C.; Ramos,
C.H.I. Heat Shock Protein 90 kDa (Hsp90) Has a Second Functional Interaction Site with the Mitochondrial Import Receptor
Tom70. J. Biol. Chem. 2016, 291, 18620–18631. [CrossRef]

165. Gao, X.P.; Zhu, K.X.; Qin, B.; Olieric, V.; Wang, M.T.; Cui, S. Crystal structure of SARS-CoV-2 Orf9b in complex with human
TOM70 suggests unusual virus-host interactions. Nat. Commun. 2021, 12, 2843. [CrossRef]

166. Ayinde, K.S.; Pinheiro, G.M.S.; Ramos, C.H.I. Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70
prevents its interaction with chaperone HSP90. Biochimie 2022, 200, 99–106. [CrossRef] [PubMed]

167. Cramer, J.; Aliu, B.; Jiang, X.; Sharpe, T.; Pang, L.; Hadorn, A.; Rabbani, S.; Ernst, B. Poly-l-lysine Glycoconjugates Inhibit
DC-SIGN-mediated Attachment of Pandemic Viruses. ChemMedChem 2021, 16, 2345–2353. [CrossRef] [PubMed]

168. Cramer, J.; Lakkaichi, A.; Aliu, B.; Jakob, R.P.; Klein, S.; Cattaneo, I.; Jiang, X.; Rabbani, S.; Schwardt, O.; Zimmer, G.; et al. Sweet
Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2. J. Am. Chem. Soc.
2021, 143, 17465–17478. [CrossRef] [PubMed]

169. Weisshoff, H.; Krylova, O.; Nikolenko, H.; Dungen, H.D.; Dallmann, A.; Becker, S.; Gottel, P.; Muller, J.; Haberland, A. Aptamer
BC 007—Efficient binder of spreading-crucial SARS-CoV-2 proteins. Heliyon 2020, 6, e05421. [CrossRef] [PubMed]

170. Ma, C.L.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.M.; Szeto, T.; Zhang, X.J.; Tarbet, B.; Marty, M.T.; Chen, Y.; et al. Boceprevir,
GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020, 30,
678–692. [CrossRef]

171. Shigdel, U.K.; Lee, S.-J.; Sowa, M.E.; Bowman, B.R.; Robison, K.; Zhou, M.; Pua, K.H.; Stiles, D.T.; Blodgett, J.A.V.;
Udwary, D.W.; et al. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable
protein surface. Proc. Natl. Acad. Sci. USA 2020, 117, 17195–17203. [CrossRef]

172. Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.;
Abranyi-Balogh, P.; et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun.
2020, 11, 5047. [CrossRef]

173. Gilson, M.K.; Zhou, H.-X. Calculation of Protein-Ligand Binding Affinities. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 21–42.
[CrossRef]

174. Frenkel, M.; Chirico, R.D.; Diky, V.; Brown, P.L.; Dymond, J.H.; Goldberg, R.N.; Goodwin, A.R.H.; Heerklotz, H.; Königsberger,
E.; Ladbury, J.E.; et al. Extension of ThermoML: The IUPAC standard for thermodynamic data communications (IUPAC
Recommendations 2011). Pure Appl. Chem. 2011, 83, 1937–1969. [CrossRef]

175. Matos, G.D.R.; Calabrò, G.; Mobley, D.L. Infinite Dilution Activity Coefficients as Constraints for Force Field Parametrization and
Method Development. J. Chem. Theory Comput. 2019, 15, 3066–3074. [CrossRef]

176. Dias, D.M.; Van Molle, I.; Baud, M.; Galdeano, C.; Geraldes, C.; Ciulli, A. Is NMR Fragment Screening Fine-Tuned to Assess
Druggability of Protein–Protein Interactions? ACS Med. Chem. Lett. 2013, 5, 23–28. [CrossRef] [PubMed]

177. Silvestre, H.L.; Blundell, T.L.; Abell, C.; Ciulli, A. Integrated biophysical approach to fragment screening and validation for
fragment-based lead discovery. Proc. Natl. Acad. Sci. USA 2013, 110, 12984–12989. [CrossRef]

178. Ben-Shalom, I.Y.; Lin, C.; Radak, B.K.; Sherman, W.; Gilson, M.K. Fast Equilibration of Water between Buried Sites and the Bulk
by Molecular Dynamics with Parallel Monte Carlo Water Moves on Graphical Processing Units. J. Chem. Theory Comput. 2021, 17,
7366–7372. [CrossRef]

179. Heinzelmann, G.; Gilson, M.K. Automation of absolute protein-ligand binding free energy calculations for docking refinement
and compound evaluation. Sci. Rep. 2021, 11, 1–18. [CrossRef]

180. Salillas, S.; Galano-Frutos, J.J.; Mahia, A.; Maity, R.; Conde-Gimenez, M.; Anoz-Carbonell, E.; Berlamont, H.; Velazquez-Campoy,
A.; Touati, E.; Mamat, U.; et al. Selective Targeting of Human and Animal Pathogens of the Helicobacter Genus by Flavodoxin
Inhibitors: Efficacy, Synergy, Resistance and Mechanistic Studies. Int. J. Mol. Sci. 2021, 22, 10137. [CrossRef] [PubMed]

181. Geschwindner, S.; Ulander, J. The current impact of water thermodynamics for small-molecule drug discovery. Expert Opin.
Drug Discov. 2019, 14, 1221–1225. [CrossRef] [PubMed]

182. Geschwindner, S.; Ulander, J.; Johansson, P. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip? J. Med. Chem.
2015, 58, 6321–6335. [CrossRef]

http://doi.org/10.1038/s41467-020-20718-8
http://doi.org/10.1038/s41586-020-2601-5
http://doi.org/10.1177/2472555220985040
http://doi.org/10.1016/S0092-8674(02)01250-3
http://doi.org/10.1074/jbc.M115.710137
http://doi.org/10.1038/s41467-021-23118-8
http://doi.org/10.1016/j.biochi.2022.05.016
http://www.ncbi.nlm.nih.gov/pubmed/35643212
http://doi.org/10.1002/cmdc.202100348
http://www.ncbi.nlm.nih.gov/pubmed/34061468
http://doi.org/10.1021/jacs.1c06778
http://www.ncbi.nlm.nih.gov/pubmed/34652144
http://doi.org/10.1016/j.heliyon.2020.e05421
http://www.ncbi.nlm.nih.gov/pubmed/33163683
http://doi.org/10.1038/s41422-020-0356-z
http://doi.org/10.1073/pnas.2006560117
http://doi.org/10.1038/s41467-020-18709-w
http://doi.org/10.1146/annurev.biophys.36.040306.132550
http://doi.org/10.1351/PAC-REC-11-05-01
http://doi.org/10.1021/acs.jctc.8b01029
http://doi.org/10.1021/ml400296c
http://www.ncbi.nlm.nih.gov/pubmed/24436777
http://doi.org/10.1073/pnas.1304045110
http://doi.org/10.1021/acs.jctc.1c00867
http://doi.org/10.1038/s41598-020-80769-1
http://doi.org/10.3390/ijms221810137
http://www.ncbi.nlm.nih.gov/pubmed/34576300
http://doi.org/10.1080/17460441.2019.1664468
http://www.ncbi.nlm.nih.gov/pubmed/31502891
http://doi.org/10.1021/jm501511f


Life 2022, 12, 1438 41 of 42

183. Schiebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.; Schrader, T.E.; Cavalli, A.; Ostermann, A.; Heine, A.; Klebe, G. Intriguing
role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun. 2018, 9, 1–15.
[CrossRef]

184. Baum, B.; Muley, L.; Smolinski, M.; Heine, A.; Hangauer, D.; Klebe, G. Non-additivity of Functional Group Contributions
in Protein–Ligand Binding: A Comprehensive Study by Crystallography and Isothermal Titration Calorimetry. J. Mol. Biol.
2010, 397, 1042–1054. [CrossRef]

185. Biela, A.; Betz, M.; Heine, A.; Klebe, G. Water Makes the Difference: Rearrangement of Water Solvation Layer Triggers Non-
additivity of Functional Group Contributions in Protein-Ligand Binding. ChemMedChem 2012, 7, 1423–1434. [CrossRef]

186. Kunstmann, S.; Gohlke, U.; Broeker, N.K.; Roske, Y.; Heinemann, U.; Santer, M.; Barbirz, S. Solvent Networks Tune Thermody-
namics of Oligosaccharide Complex Formation in an Extended Protein Binding Site. J. Am. Chem. Soc. 2018, 140, 10447–10455.
[CrossRef] [PubMed]

187. Krimmer, S.G.; Klebe, G. Thermodynamics of protein-ligand interactions as a reference for computational analysis: How to assess
accuracy, reliability and relevance of experimental data. J. Comput. Aided Mol. Des. 2015, 29, 867–883. [CrossRef] [PubMed]
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