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Abstract

The problem of constructing an optimal rooted phylogenetic network from an arbitrary set of rooted triplets is an NP-hard
problem. In this paper, we present a heuristic algorithm called TripNet, which tries to construct a rooted phylogenetic
network with the minimum number of reticulation nodes from an arbitrary set of rooted triplets. Despite of current
methods that work for dense set of rooted triplets, a key innovation is the applicability of TripNet to non-dense set of rooted
triplets. We prove some theorems to clarify the performance of the algorithm. To demonstrate the efficiency of TripNet, we
compared TripNet with SIMPLISTIC. It is the only available software which has the ability to return some rooted
phylogenetic network consistent with a given dense set of rooted triplets. But the results show that for complex networks
with high levels, the SIMPLISTIC running time increased abruptly. However in all cases TripNet outputs an appropriate
rooted phylogenetic network in an acceptable time. Also we tetsed TripNet on the Yeast data. The results show that Both
TripNet and optimal networks have the same clustering and TripNet produced a level-3 network which contains only one
more reticulation node than the optimal network.
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Introduction

Phylogenetic networks are a generalization of phylogenetic trees

that permit the representation of non-tree-like underlying histories.

A rooted phylogenetic network is a rooted directed acyclic graph

in which no node has indegree greater than 2 and the outdegree of

each node with indegree 2 is 1. Such nodes are called reticulation

nodes. In rooted phylogenetic networks the nodes with indegree 1

and outdegree 0 are called leaves and are distinctly labeled by a set

of given taxa. Mathematicians are interested in developing

methods that infer a phylogenetic tree or network from basic

building blocks. In the computation of a rooted tree or network,

one group of the basic building blocks are rooted triplets, the

rooted binary trees on three taxa [1].

In 1981, Aho et al., studied the problem of constructing a rooted

tree from a set of rooted triplets [2]. They proposed an algorithm

called BUILD algorithm which shows that, given a set of rooted

triplets, it is possible to construct in polynomial time a rooted tree

that all the input triplets are contained in it or decide that no such

tree exists.

When there is no tree for a given set of triplets one may try to

produce an optimal phylogenetic network. In this context, the goal

is to compute an optimal rooted phylogenetic network that

contains all the rooted triplets. One possible optimality criterion is

to minimize the level of the network, which is defined as the

maximum number of reticulation nodes contained in any

biconnected component of the network. The other optimality

criterion is to minimize the number of reticulation nodes [1]. In

[3] and [4] the authors considered the problem of deciding

whether, given a set of rooted triplets as input, is it possible to

construct a level-1 rooted phylogenetic network that contains all

the input triplets? They showed that, in general, this problem is

NP-hard. However, in [4] the authors showed that when the set of

rooted triplets is dense, which means that for each set of three taxa

there is at least one rooted triplet in the input set, the problem can

be solved in polynomial time. After their results, all research in this

new area has up to this point focused on constructing rooted

phylogenetic networks from dense rooted triplet sets.

LEV1ATHAN is an algorithm for generating a level-1 rooted

phylogenetic network from a set of rooted triplets [5]. Specifically,

it attempts to find a level-1 rooted phylogenetic network that

contains as many of the input rooted triplets as possible. This

problem is an NP-hard problem [5]. The algorithm by [6] can be

used to find a level-1 or a level-2 rooted phylogenetic network

which minimizes the number of reticulation nodes, if such a

network exists. In [6] the authors also showed that for a dense set

of rooted triplets t, if t is precisely equal to the set of rooted triplets

that are contained in some rooted phylogenetic network, then they

can construct such a rooted phylogenetic network with smallest

possible level in time O(|t|k+1), where k is a fixed upper bound on

the level of the network. In addition based on the ideas described

in [6], for a given dense set of rooted triplets t, the authors
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proposed the SIMPLISTIC algorithm which always returns some

rooted phylogenetic network that contains t. But it does not give

any minimality guarantees.

In [7] the authors showed that given a dense set of rooted

triplets t and a fixed number k, it is possible to construct in time

O(|t |k+1) a level-k rooted phylogenetic network that contains t or

decides that no such network exists.

In this paper we present a heuristic algorithm called TripNet for

constructing rooted phylogenetic networks with the minimum

number of reticulation nodes from an arbitrary set of rooted

triplets. Despite of current methods that work for dense set of

rooted triplets, a key innovation is the applicability of TripNet to

non-dense set of rooted triplets.

In ‘‘unpublished data’’ the authors applied TripNet on both real

and simulated data. Here TripNet algorithm is described in

details, some theorems are proved, and one simulation is

performed to show the accuracy of TripNet. Also TripNet is

tested on the Yeast data. This paper is organized as follows. In

section 2, first some definitions and notation are presented. Then

we describe BUILD algorithm. Finally a new method called TCD,

is introduced for constructing rooted triplets from (biological)

sequences. In section 3 we compare TripNet with SIMPLISTIC

on the triplets sets that are obtained from TCD method. Then we

test TripNet on the Yeast data. In section 4 we discuss the

performance of TripNet. In the last section the directed graph Gt
related to a set of triplets t is introduced. Then we show that if

either a set of triplets is obtained from a set of sequences using

TCD method or a set of triplets is consistent with a tree, then Gt is

a DAG. This property has a key role in solving the Integer

Programming system which is introduced in the remaining, in

polynomial time. Then the concept of the height function of a

rooted phylogenetic network is introduced, and an efficient

method for obtaining a height function ht for a given set of

rooted triplets t is explained. It is shown that the condition of

consistency of a rooted phylogenetic network N with the height

function ht can be a good alternative for the condition of

consistency of N with t. To show this, firstly we define the Integer

Programming system in such a way that its constraints intuitively

force the consistency of N with t. Secondly, we show that if t is

consistent with a tree T, then T is consistent with ht and T can be

constructed using this height function. In the last section we

present TripNet algorithm.

Preliminaries

Here first we present some definitions and notation. Then we

describe BUILD algorithm. Finally a new method called TCD, is

introduced for constructing rooted triplets from a set of sequences.

2.1 Definitions and notation
Let X be a set of taxa. A rooted phylogenetic tree (tree for short)

on X is a rooted unordered leaf labeled tree whose leaves are

distinctly labeled by X and every node which is not a leaf has at

least outdegree two. A directed acyclic graph (DAG) is a directed

graph that is free of directed cycles. A DAG G is connected if there

is an undirected path between any two nodes of G. It is biconnected
if it contains no node whose removal disconnects G. A biconnected

component of a graph G is a maximal biconnected subgraph of G.

A rooted phylogenetic network (network for short) on X is a rooted

DAG in which the root has indegree 0 and outdegree 2 and every

node except the root satisfies one of the following conditions:

a) It has indegree 2 and outdegree 1. These nodes are called

reticulation nodes.

b) It has indegree 1 and outdegree 2.

c) It has indegree 1 and outdegree 0. These nodes are called

leaves and are distinctly labeled by X.

A reticulation leaf is a leaf whose parent is a reticulation node. A

network is said to be a level-k network if each of its biconnected

components contains at most k reticulation nodes. A tree can be

considered as a level-0 network.

A rooted triplet (triplet for short) is a rooted binary unordered

tree with three leaves. We use ij|k to denote a triplet with taxa i
and j on one side and k on the other side of the root (Figure 1a). A

set of triplets t is called dense if for each subset of three taxa, there

is at least one triplet in t. A triplet ij|k is consistent with a network

N or equivalently N is consistent with ij|k if the leaf set of ij|k is a

subset of the leaf set of N, and N contains a subdivision of ij|k, i.e.

if N contains distinct nodes u and v and pairwise internally node-

disjoint paths u R i, u R j, v R u and v R k. Figure 1b shows an

example of a network consistent with ij|k. A set t of triplets is

consistent with a network N if all the triplets in t are consistent

with N. We use the symbols t(N) and LN to represent the set of all

triplets that are consistent with N and the set of labels of its leaves

respectively. For any set t of triplets define L(t) =|t[tLt. The set t
is called a set of triplets on X if L(t) = X.

2.2 BUILD algorithm
Let t be a set of triplets. BUILD is a top-down algorithm,

constructs a tree consistent with t if such a tree exists. The

algorithm is guided by the Aho graph.

Definition 1. (Aho graph) Let X be a set of taxa and t be a set

of triples on X. The Aho graph AG(t) = (V,E) associated with t has

node set V = X and any two nodes i and j are connected by an

edge in E if and only if there exists a triplet ij|k M t [1].

BUILD algorithm: Given a non-empty set of rooted triples t on

X, the aim is to construct a rooted phylogenetic tree T on X that is

consistent with t, if one exists. If AG(t) has only one connected

component, then the algorithm reports fail. Else, for each node set

U of a connected component of AG(t), determine the set t|U

which denotes the set of all triplets in t whose leaves are in U and

recursively compute the rooted phylogenetic subtree T(t|U) which

denotes the tree constructed with BUILD algortihm consistent

with t|U. Finally, create a root node r and combine all computed

subtrees by connecting r to the root of each of them [1]. For an

example see Figure 2.

Figure 1. A triplet and a network consistent with it. (a) The triplet
$ij|k$, (b) The triplet ij|k is consistent with the given network.
doi:10.1371/journal.pone.0106531.g001

TripNet: A Method for Constructing Networks from Triplets
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2.3 Triplets construction method
There exist different methods like Maximum Parsimony or

Maximum Likelihood for constructing triplets from (biological)

sequences [6]. In this section a method for constructing triplets is

presented. Suppose that X is a set of n taxa, and D = [Dij] be an

n6n distance matrix on X. For each three taxa i, j, and k M X, and

the entries Dij, Dik, and Djk, we assign the triplet ij|k if Dij , min

{Dik, Djk}. We name this method Triplets Construction with

Distance; TCD for short. In this paper we use TCD method for

constructing triplets.

Results

In this section to show the performance of TripNet on the

triplets sets which are obtained from TCD, we compare TripNet

with SIMPLISTIC. Also we test TripNet on the Yeast data. It is

the only published triplets data that are obtained from biological

data.

3.1 Comparing SIMPLISTIC and TripNet
SIMPLISTIC is the only available software which has the

ability to return some rooted phylogenetic network consistent with

a given dense set of rooted triplets. But it does not give any

minimality guarantees [6].

SplitsTree is a valuable tool for constructing an special kind of

unrooted phylogenetic networks from different types of data as

input. This program converts a given set of sequences X into a

distance matrix DX to compute the resulting network. The distance

matrix DX is reported as one of the output of SplitsTree [8].

Let tDX
be the set of triplets that is obtained from DX using

TCD, and consider it as the input for TripNet.

Figure 2. An example of BUILD algorithm for the given set {bc |a, ac |d, de |b} of triplets.
doi:10.1371/journal.pone.0106531.g002

TripNet: A Method for Constructing Networks from Triplets
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Note that tDX
is not necessarily dense, since for some three taxa

i, j, and k we might have DXij
= DXjk

,DXik
. In this case one of the

triplets ij|k or jk|i is assigned to i, j, and k to obtain a dense set

of triplets tXdense
as the input of SIMPLISTIC. Also if

DXij
= DXjk

= DXik
, then randomly one of the three possible triplets

related to i, j and k is assigned to them.

To perform the simulation we generate 160 different sets of

sequences are generated using TREEVOLVE. TREVOLVE is a

software which simulate the evolution of DNA sequences under a

coalescent model [9]. TREEVOLVE contains many input

parameters which one can adjust them. In this study we adjust

the Number of samples, the Number of sequences, and the Length
of sequence, and for the other parameters the default values are

adjusted. In this study the Number of sequences is 10, 20, 30, and

40. For each input parameter the Number of sequences the Length
of sequence is 100, 200, 300, and 400. For each case the Number of
samples is set to 10.

In this study we run both methods on a PC with an Intel

DuallCore processor running at 1.80 GHz.

Table 1. SIMPLISTIC and TripNet network results.

Number of sequences 10 20 30 40

Number of samples 40 40 40 40

Number of the TripNet networks M Nfinite 40 40 40 40

Number of the SIMPLISTIC networks M Nfinite 40 38 13 0

TripNet avg runningtime for networks M Nfinite (Sec) 1 1.75 200 775

SIMPLISTIC avg runningtime for networks M Nfinite (Sec) 1 306 2675 -

TripNet avg number of reticulations for networks M Nfinite 0.65 2.275 7.4 15.825

SIMPLISTIC avg number of reticulations for networks Nfinite 2.325 6.95 11.275 -

TripNet avg level for networks Nfinite 0.65 1.825 6.95 15.25

SIMPLISTIC avg level for networks Nfinite 2.05 4.2 6.95 -

160 different sets of sequences are generated using TREEVOLVE. the parameters Number of samples, the Number of sequences, and the Length of sequence are adjusted,
and for the other parameters the default values are adjusted. Number of sequences is 10, 20, 30, and 40. For each input parameter the Number of sequences the Length of
sequence is 100, 200, 300, and 400. For each case the Number of samples is set to 10. Nfinite is the set of networks for which the running time is less than 6 hours.
doi:10.1371/journal.pone.0106531.t001

Figure 3. Resulting networks from Yeast triplets. (a) LEVEL2 algorithm result. (b) TripNet algorithm result.
doi:10.1371/journal.pone.0106531.g003

TripNet: A Method for Constructing Networks from Triplets
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We set the running time restriction 6 hours for methods. Let

Nfinite be the set of networks for which the running time is less than

6 hours.

The results of the comparison between TripNet and SIMPLIS-

TIC on the three most important parameters i.e. running time of

both methods, number of the reticulation nodes and the level of

the final networks, are shown in Table 1.

The results show that when the number of input taxa is 10, both

methods always return a network in at most one second. For the

number of input 20, in 5% of cases SIMPLISTIC returns no

results in less than 6 hours. For the remaining 95% of the cases,

the SIMPLISTIC running time is on average 306 seconds, while

in all cases on average the TripNet running time is at most

2 seconds. But by increasing this parameter to 30, in 67.5% of the

cases, SIMPLISTIC has not the ability to return a network in less

Figure 4. The steps of constructing Tt from the given set t = {kl |j, kl |i, jk |i, jl |i}, using HBUILD. (a) The graph Gt, (b) The graph (G,h), (c)
Removing maximum weights from the graph (G,h), (d) Constructing Tt using step c.
doi:10.1371/journal.pone.0106531.g004

Figure 5. An example of binarization. The binary tree is a
binarization of the non-binary tree.
doi:10.1371/journal.pone.0106531.g005

Figure 6. Two different networks with the same height
function. For the given network N and tree T, hN = hT = h. h(j,k) = 1,
h(i,j) = h(i,k) = 2 and h(i,l) = h(j,l) = h(k,l) = 3.
doi:10.1371/journal.pone.0106531.g006
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than 6 hours. For the remaining 22.5% of the cases on average

SIMPLISTIC outputs a network in 2675 seconds, while in all

cases the TripNet running time is on average 200 seconds.

Moreover when this parameter is set to 40, in all cases

SIMPLISTIC fails to return any network in less than 6 hours,

while on average TripNet outputs a network in 775 seconds.

Totally for all 160 input triplets sets on average TripNet outputs a

network in less than 250 seconds, while on average in 57% of the

SIMPLISTIC networks which belong to Nfinite, the running time is

near to 750 seconds.

Also the results show that in all cases the number of the

reticulation nodes and the level of TripNet networks are less than

SIMPLISTIC networks. Note that for the number of input 40, on

average the number of the reticulation nodes and the level of the

TripNet networks are 15.825 and 15.25, while for these data

SIMPLISTIC can not return any network in less than 6 hours.

3.2 Yeast data
The Yeast data is a dense set of triplets generated using real

yeast data, obtained from the Fungal Biodiversity Center in

Utrecht. This data set which contains information about 21 species

is available online from (http://skelk.sdf-eu.org/level2triplets.

html). Based on the algorithm developed in [10]. Steven Kelk

has developed a software application, called LEVEL2, for

constructing level-2 networks from dense sets of triplets. LEVEL2

is not applicable to general triplet sets and it produces a network

only if there exists a level-2 network consistent with the input

triplets. However, LEVEL2 has the advantage that it always

produces the best possible network which also minimizes the

number of reticulation nodes. LEVEL2 network for the Yeast data

is a 21-leaf level-2 network which is given in Figure 3a [10]. As our

only chance for comparing TripNet networks with the best

possible networks we repeated the analysis of Yeast data using

TripNet. The TripNet network for the Yeast dataset is given in

Figure 3b. As one can see, TripNet produced a level-3 network

which contains only one more reticulation node than the network

obtained by LEVEL2. The running time of both algorithms is

nearly one second.

Discussion

In this paper we introduced TripNet which is the software that

has the ability to return some network consistent with an arbitrary

given set of triplets.TripNet and supplementary files are freely

available for download at (www.bioinf.cs.ipm.ir/software/tripnet).

Unlike previous methods which only work on dense triplet sets,

our method works on any set of triplets. Some theorems were

proved to clarify the rationale behind the steps of TripNet. In this

paper the TCD method was introduced for constructing triplets.

In order to study the performance of TripNet on the triplets that

are obtained from TCD method we performed a simulation on

160 different sets of triplets, and compared TripNet with

SIMPLISTIC.

The results showed that in all 160 cases TripNet outputs an

appropriate network in an acceptable time, while just in 57.5% of

these cases SIMPLISTIC has the ability to return some network in

less than 6 hours. Also on average in all cases TripNet outperforms

SIMPLISTIC on the number of the reticulation nodes, and the

level of the output network.

Also by increasing the number of input taxa, the running time of

SIMPLISTIC exceeds abruptly, such that for the input taxa 40, it

could not return any network in less than 6 hours.

These results showed that for large size input data that are

obtained from TCD method, SIMPLISTIC is not a practical

method for constructing networks, while TripNet works well in all

cases.

To establish the performance of TripNet on real datasets, we

tested TripNet on Yeast data, and compared our results with those

of LEVEL2. For Yeast data TripNet produced a level-3 network

which contains only one more reticulation node than the optimal

network obtained by LEVEL2. Both networks have the same

clustering and represent the same evolutionary relationship

between taxa. While TripNet has been designed for general

triplet sets (not necessarily dense or consistent with a restricted

Figure 7. A counter example for the reverse of Theorem 2. ij|k is
consistent with the given network, but h(i,j) = h(i,k) = 3 and h(j,k) = 2.
doi:10.1371/journal.pone.0106531.g007
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Figure 8. An example to show how TripNet works to find a reticulation leaf by applying step 5. Edges with weight 6 are shown by dotted
lines. (a) t= {ij|l, jk|i, kl|j, kl|i, no|m, lo|k, jl|o, mn|l, mn|j, no|k, mo|i, jk|n, ij|o, ik|m, il|n} is not consistent with a tree and is consistent with the given level-1
network, (b) G9t is obtained from Gt by removing the dotted line, (c) Computing (G, h), (d) Remove edges with weights 6 and 5 from (G, h) to obtain
SN-sets {n, o} and {m}, (e) Remove edges with weights 4 and 3 from the remaining graph to obtain SN-set {i}, (f) Remove edges with weights 2 from
the remaining graph to obtain SN-set {j}, (g) Remove edges with weights 1 from the remaining graph to obtain SN-sets {k} and {l}, (h) Compute GS.
both SN-sets {k} and {l} satisfy Criteria I and II, (i) Remove {l} from GS, (j) Remove edges with weights 6 from the graph of previous step to obtain SN-
sets {i, j, k} and {m, n, o}, (k) Remove {k} from GS, (l) Remove edges with weights 6 and 5 from the graph of previous step to obtain SN-sets {n, o} and
{m}, (m) Remove edges with weights 4 from the remaining graph to obtain SN-set {l}, (n) Remove edges with weights 3 from the remaining graph to
obtain SN-sets {i} and {j}. The steps i to n shows that l is the reticulation leaf. In these steps criterion III is applied.
doi:10.1371/journal.pone.0106531.g008

TripNet: A Method for Constructing Networks from Triplets
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Figure 9. Steps of TripNet for input triplets: jk |i, li |j, mj |i, jn|i, kl |i, ik |m, ik |n, lm|i, ln|i, mn|i, kl |j, km|j, jn|k, lm|j, jl |n, mn|j, kl |m, kl |n,
mn|k, mn|l }.
doi:10.1371/journal.pone.0106531.g009
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level network), this example shows that the network produced by

TripNet is very close to the best possible solution.

Materials and Methods

In this section we prove some theorems to clarify the rationale

behind the steps of TripNet. Then TripNet is presented in nine

steps.

5.1 The directed graph related to a set of triplets and
height function

Throughout this subsection we denote i, j by ij for short. Let t
be a set of triplets. Define Gt, the directed graph related to t, by

V(Gt) = {ij: i,j M L(t), i ? j} and E(Gt) = {(ij,ik): ij|k M t} < {(ij,jk):

ij|k M t}. In the following we present some basic properties of Gt.

In what follows the height function of a tree is introduced. Let

(
X

2
) denotes the set of all subsets of X of size 2.

Definition 2. Let X be an arbitrary finite set. A function h:

(
X

2
) R is called a height function on X.

Let T be a rooted tree with the root r, cij be the lowest common

ancestor of the leaves i and j, and lT denotes the length of a longest

path starting at r.

Definition 3. The height function of T, hT is defined as

hT(i,j) = lT-dT(r,cij) where i and j are two distinct leaves of T
(dT(r,cij) denotes the length of the path between r and cij).

Let T be a tree. The definition above implies that a triplet ij|k is

consistent with T if and only if hT(i, j),hT(i, k) or hT(i, j),hT(j, k).

Let X = {x1, x2, …, xm} be a finite set, D be a distance matrix on

X, and t be the set of triplets on X that are obtained from TCD

method using D. Let Gt contains a cycle x1x 2 R x2x 3 R … R
xn21xn R x1x 2. Then Dx1x2

vDx2x3
v:::vDxn{1xn

vDx1x2
, which

is a contradiction. So Gt is a DAG.

Moreover if t is a triplet set consistent with a tree T, then Gt is a

DAG. This is so because if Gt contains a cycle x1x2 R x2x 3 R …

R xn21xn R x1x 2, then hT(x1,x2) , hT(x2,x3) , … , hT(xn21,xn)

, hT(x1,x2), which is a contradiction.

The height function of a DAG is introduced as what follows.

Let t be a set of triplets, Gt be a DAG and lGt
denotes the length

of the longest path in Gt. Since Gt is a DAG, the set of nodes with

outdegree zero is nonempty. Assign lGt
+1 to the nodes with

outdegree zero and remove them from Gt. Assign lGt
to the nodes

with outdegree zero in the resulting graph and continue this

procedure until all nodes are removed.

Definition 4. For any two distinct i, j M L(t), define hGt
(i,j) as

the value that is assigned by the above procedure to the node ij
and call it the height function related to Gt.

Let t be a set of triplets that is consistent with a tree, and Tt

denotes the unique tree that is produced by BUILD algorithm.

Then Gt is a DAG and hGt
is well-defined. The following theorem

represents an upper bound for hTt
based on hGt

.

Theorem 1. Let t be a set of triplets that is consistent with a

tree. Then hTt
ƒ hGt

.

Proof. The proof proceeds by induction on DLTt
D. It is trivial

when DLTt
D = 3. Assume that theorem holds when DLTt

Dƒk. Let

DLTt
D = k+1 and T1, T2, …, Tm be m subtrees which are obtained

from Tt by removing its root. For each i, 1ƒiƒm, let ti~tDLTi
, and

ri be the root of Ti. By the induction assumption for each i,
1ƒiƒm,hTti

#hGti
. Moreover we conclude from BUILD algorithm

that Ti~Tti
, for 1ƒiƒm. Thus hTi

ƒhGti
, for 1ƒiƒm. Also for i,

1ƒiƒm, the maximum length of the longest path in Ti is lTt
{1. It

means that for i, 1ƒiƒm, the maximum length of the longest path

in Gti
is at least lTt

{2. Therefore the length of the longest path in

Gtis at least lTt
{1. Let a, b[LTt

. We have two cases.

Case 1. For some i and j, 1ƒivjƒm, a[LTi
and b[LTj

. Since

the outdegree of ab in Gt is zero and cab = r, then hTt
(a,b)~lTt

#

hGt
(a,b).

Case 2. For some i, 1ƒiƒm, a,b [LTi
. By the induction assu-

mption hTti
(a,b)#hGti

(a,b) for i, 1ƒiƒm. Therefore hTt
(a,b)

~lTt
{dTt

(r,cab) = lTt
{(dTti

(ri,cab)z1) = (lTt
{lTti

{1)z(lTti
{

dTti
(ri,cab)) = (lTt

{lTti
{1)zhTti

(a,b)#(lTt
{lTti

{1)z hGti
(a,b)

#hGt
(a,b). The last inequality is obtained by construction of Gt from

Gti
for i, 1ƒiƒm.

So for each a,b [LTt
, hTt

(a,b)#hGt
(a,b) and the proof is

complete.

Now we describe an algorithm similar to BUILD algorithm,

using height functions. We refer to this algorithm by HBUILD.

Let h be a height function on X. Define a weighted complete graph

(G,h) where V(G) = X and edge {i, j} has weight h(i,j). Remove the

edges with maximum weight from G. If removing these edges

results in a connected graph the algorithm stops. Otherwise, the

process of removing the edges with maximum weight is continued

in each connected component until each connected component

contains only one node. At the end of this procedure one can

reconstruct the tree by reversing the steps of the algorithm similar

to BUILD algorithm (see Figure 4). The algorithm above decides

in polynomial time whether a tree with height function h exists.

So if t is a set of triplets which is consistent with a tree, then Gt

is a DAG and hTt
(a,b)#hGt

(a,b) = h and HBUILD algorithm

constructsa tree consistent with t. Note that based on theorem 1

the tree that is produced by HBUILD is exactly Tt.

The HBUILD tree is not necessarily a binary tree. To obtain a

binary tree consistent with a set of triplets, we do the following

procedure.

Let T be a tree and x be a node of T with x1, x2, …, xk, k§3 as

its children. Consider a new node y. Construct T
0

by removing the

edges (x, x1), (x, x2), …, (x, xk-1) from T and adding the edges (x, y),

(y, x1), (y, x2), …, (y, xk-1) to T. Continuing the same method for

each node with outdegree more than 2 a binary tree is obtained,

and call it a binarization of T (see Figure 5). Obviously, one can

obtain different binarization of T. Let t be a set of triplets that is

consistent with a tree T1, and T2 be a binarization of T1. Then t is

consistent with T2.

In the remaining of this section we generalize the concept of

height function from trees to networks. This generalization is not

straightforward because the concept of (lowest) common ancestor

of two leaves of a network is not well-defined. Let N be a network

with the root r and lN be the length of a longest directed path from

r to the leaves. For each node u consider d(r,u) as the length of the

longest directed path from r to u. For any two nodes u and v, we

call u an ancestor of v, if there is a directed path from u to v. If u is

an ancestor of v then we say that v is lower than u. Let i and j be

two leaves of N. c is called a lowest common ancestor of i and j in N,

if c is a common ancestor of i and j and there is no common

ancestor of i and j lower than c. For any two leaves i and j, let Cij

denote the set of all lowest common ancestors of i and j.
Definition 5. For each pair of leaves i and j, define hN(i,j) =

min{lN-d(r,c): cMCij} and call it the height function of N.

Obviously, every network N indicates a unique height function

hN. But two different networks may have the same height function

(see Figure 6).

In the following proposition we prove that for a given height

function h there is a network N such that hN = h+1.

Proposition 1. Let X be an arbitrary finite set and h be a

height function on X. Then there exists a network N not
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necessarily binary, such that its leaves are distinctly labeled by X
and hN = h+1.

Proof. Let X = {x1, x2, …, xn} and hmax = max{h(xi, xj):

1ƒi,jƒn}. Let r be the root of N,, and X9 = {x91, x92, …, x9n}.

Consider n nodes that are distinctly labeled by X9 members. For

each pair of nodes xi and xj with h(xi, xj) = hmax, connect x9i and

x9j to r by two paths of length hmax which just are common in the

root. For each pair of nodes xi and xj with h(xi, xj) , hmax, consider

a new node and connect x9i and x9j to this new node and connect

this node to r by a path of length hmax-h(xi, xj). For each node

which is labeled by x9i, consider a new node as its child and label it

by xi. The resulting network in which its leaves are distinctly

labeled by X satisfies the condition hN = h+1.

Note that the network N which is constructed in the proof of

Proposition 1 is not necessarily a rooted phylogenetic network. To

construct a rooted phylogenetic network N9 from N in such a way

that if a triplet is consistent with N then it is consistent with N9, do

the following procedure. Replace each path in which all its inner

nodes have indegree and outdegree one, with a path of length one.

The method of constructing N shows that If there is a node v with

indegree d§2, then it has just one child as a leaf. Let this child is

labeled by x, d§3 and its d parents are labeled by x1, x2, …, xd.

Replace the edge which is connected to x with a path of length d-2

in such a way that its d-2 inner nodes from v to x are labeled with 1

to d-2. For each i, 1ƒiƒd{2 remove the edge xiv and connect xi

to i. Do the binarization on the root. The resulting network N9 is

consistent with all triplets which are consistent with N.

The following theorem shows relation between the height

function of a network and a triplet consistent with it.

Theorem 2. Let N be a network, i, j, and k be its three distinct

leaves. If hN(i, j) , hN(i, k) or hN(i, j) , hN(j, k) then ij|k is

consistent with N.

Proof. Suppose that hN(i, j) , hN(i, k). Let vij$ and vik be

common ancestors of i, j and i, k respectively, such that hN(i, j) =

lN-d(vij, r) and hN(i, k) = lN-d(r,vik). Let li and lj be two distinct

paths from vij to i and j, respectively. Let lk be an arbitrary path

from vik to k. If li\lk=1 then it follows that hN (i,j)§hN (i,k)
which is a contradiction. So ij|k is consistent with N.

The reverse of the above theorem is not necessarily true. For

example, consider the network of Figure 7. The triplet ij|k is

consistent with it, but h(i,j) = h(i,k) = 3 and h(j,k) = 2.

The basic idea of TripNet algorithm is to find a height function

as an intermediate computational step that yields the minimum

amount of information required to construct the network from a

set of triplets. So it is important to find a way for computing hN

from a set of triplets. In the rest of this section we introduce a

computational method for computing hN using Integer Program-

ming. Let t be a set of triplets with |L(t)| = n. Inspired from the

two inequalities that are the consequence of Definition 3 and

Theorem 2, for each triplet ij|k M t, define two inequalities

h(i,k){h(i,j)§1 and h(j,k){h(i,j)§1. Since the number of

variables in such inequalities are at most D( L(t)

2
)D, we obtain the

following system of inequalities from t.

h(i,k){h(i,j)§1 ij D k[t,

h(j,k){h(i,j)§1 ij D k[t,

0vh(i,j)ƒ D(
L(t)

2
)D 1ƒi,jƒn:

Let s be an integer. Define the following Integer Programming

and call it IP(t,s).

Maximize
P

1ƒi,jƒn

h(i,j),

Subject to : h(i,k){h(i,j)§1 ijDk[t,

h(j,k){h(i,j)§1 ijDk[t,

0vh(i,j)ƒs 1ƒi, jƒn:

Intuitively if IP(t,s) has a feasible solution, we expect that the

optimal solution to this integer programming is an approximation

of the height function of an optimal network N consistent with t.
The following theorems support this intuition.

Theorem 3. Let t be a set of triplets. Then Gt is a DAG if and

only if for some integer s, the IP(t,s) has a feasible solution. In this

case the minimum number s, for which IP(t,s) has a feasible

solution, is lGt
+1.

Proof. Let Gt be a DAG. Without loss of generality assume

that Gt is connected.

The proof proceeds by induction on lGt
. If lGt

= 1 then

obviously for s = 1, IP(t,s) has no feasible solution and for each

s§2, IP(t,s) has a feasible solution. Assume that the theorem holds

for lGt
ƒk. Suppose that t is a set of triplets with lGt

= k+1. Let A
be the set of the terminal nodes of all longest paths in Gt. For each

ij M A there is some x M L(t) such that ix|j M t. Let B be the set of all

such triplets and t9 = t\B. Apparently, B?w and the length of the

longest path in Gt9 is k. By the induction assumption the minimum

number s for which IP(t9,s) has a feasible solution, is lGt0 +1 = lGt
.

Consider IP(t,lGt
+1). Define h(i, j) = lGt

+1, for each ij M A and

h(t,l) = h9(t,l), for each tl =[ A. h is a feasible solution to IP(t,lGt
+1).

Now if s is a solution for IP(t,s) then s-1 is a solution for IP(t9,s-1).

So lGt
+1 is the minimum solution for IP(t,s). Now suppose that t is

a set of triplets and for some integer s, IP(t,s) has a feasible solution

h. Assume that Gt has a cycle i1j1?i2j2? . . .?imjm?i1j1.

Corresponds to C we have inequalities h(i1j1)vh(i2,j2)v
. . . vh(im,jm)vh(i1,j1)which is a contradiction and the proof is

complete.

Let t be a set of triplets that is consistent with a tree or

constructed from a given set of taxa, using TCD method. It was

shown that Gt is a DAG and by Theorem 3, hTt
is a feasible

solution to IP(t,lGt
+1).

Theorem 4. Let t be a set of triplets consistent with a tree.

Then hTt
is the unique optimal solution to IP(t,lGt

+1).

Proof. The graph Gt is a DAG, since t is consistent with a tree.

So lGt
is well efined.

The proof proceeds by induction on lGt
. Without loss of

generality assume that Gt is connected. The theorem is trivial

when lGt
= 1. Let for each set of triplets consistent with a tree, hTt

be

the unique optimal solution to IP(t,lGt
+1) where lGt

= k§1.

Suppose that t is a set of triplets consistent with a tree and lGt
= k+1.

Let t9 be the set of triplets which is introduced in the proof of

Theorem 3. By the induction assumption hTt0 is the unique optimal

solution to IP(t9, lGt0 +1). By Theorem 3 the minimum s for which

IP(t, s) has a feasible solution is lGt
+1. Also lGt0 +1 = lGt

. It follows

that hTt
is the unique optimal solution to the IP(t,lGt

+1) and the

proof is complete.

It is important to point out that the introduced target function of

the above IP can be replaced with other appropriate target

functions. But we use this special target function because it can be

easily possible to find a solution for this IP in polynomial time

when the input triplets are obtained from TCD method. Secondly
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using this target function, enable us to prove those above theorems

which show the consistency of the result of the TripNet algorithm

with a tree when there is a tree consistent with given triplets.

5.2 TripNet algorithm
Now we describe the TripNet algorithm in nine steps. In this

algorithm the input is a set of triplets t and the output is a network

consistent with t. Also if t is consistent with a tree the algorithm

constructs a binarization of Tt.

Step 1. In this step we find a height function h on L(t). If Gt is a

DAG we set G9t = Gt. If Gt is not a DAG we remove some edges

from Gt in such a way that the resulting graph G9t is a DAG. Set

h = hG0t .

If t is obtained from a set of taxa using TCD method, then Gt is

a DAG. Removing minimum number of edges from a directed

graph to make it a DAG is known as the minimum Feedback Arc
Set problem which is NP-hard [11]. Thus we use the following

heuristic method and try to remove as minimum number of edges

as possible from Gt in order to lose minimum information. First a

cycle C is selected randomly. Let Cmax denote the set of nodes in C
with the maximum degree. Remove an edge of C which one of its

ends belongs to Cmax. This process continues until the resulting

graph is a DAG. However, any such missing information will be

recaptured in Step 9.

Step 2. In this step TripNet first apply HBUILD on h. If the

result is a tree, TripNet constructs a binarization of this tree.

Otherwise TripNet goes to Step 3.

Note that if t is consistent with a tree, TripNet constructs a

binarization of Tt.

Step 3. Remove all the maximum-weight edges from G. The

process of removing all the maximum-weight edges from the graph

continues until the resulting graph is disconnected.

In [3] and [4] the authors introduced the concept of SN-sets for

a set of triplets t. A subset S of L(t) is an SN-set if there is no triplet

ij|k M t such that i =[S and j, k M S. In [4] it is shown that if t is

dense then the maximal SN-sets partition L(t) and can be found in

polynomial time. By contracting each of the SN-set to a single

node and assuming a common ancestor for all of these leaves, the

size of the problem is reduced. In these papers, for finding the

maximal SN-sets in polynomial time, the authors use the high

density of the input triplet sets. TripNet algorithm uses the concept

of height function as an auxiliary tool to obtain SN-sets instead of

the high density assumption.

Step 4. For each connected component obtained in Step 3

which is not an SN-set, we apply Step 3. This process continues

until all of the resulting components are SN-sets. Let {S1, S2, …,

Sk} be the set of resulting SN-sets. If each SN-set contains only one

node, HBUILD is applied and if the result is a tree TripNet

constructs a binary tree and goes to Step 6. Otherwise TripNet

goes to Step 5. If for some i, |Si|.1, contract each Si to a single

node si and set S = {s1, s2, …, sk}. Update the set of triplets by

defining tS = {sisj|sk: if ’ xy|z M t, x M Si, y M Sj and z M Sk}.

Constructs a weighted complete graph (GS, wS) with V(GS) = S and

wS(si, sj) = min {h(x, y): x M Si and y M Sj}. Set (G, w) = (GS, wS) and

TripNet goes to Step 3.

The following theorem is a consequence of the definition SN-set

for (GS, wS).

Theorem 5. Applying Steps 3 and 4 on (GS, wS) and tS, each

resulting SN-set has one member.

Proof. Suppose that S = {s1, s2, s3, …, sr} is an SN-set in (GS,

wS). Now assume that in the procedure of Step 3 by removing the

edges with weight l, S1 separates from S2. Thus there exists k . l
such that by removing the edges with weight at least k in (GS, wS),

the connected component S separates from other components of

GS. It means that by removing the edges with weight at least k in

G, we obtain the SN-set S1|S2| . . .|Sr which is a contradic-

tion.

In the next step the reticulation leaves are recognized using the

following three criteria:

Criterion I. Let mi and Mi be the minimum and maximum

weight of the edges in (G,h) with exactly one end in Si. Choose the

node with minimum mi and if there is more than one node with

minimum mi then choose among them the nodes which has

minimum Mi. Let R1 denotes the set of such nodes.

Criterion II. Let wmin = min {w(si,sj): 1ƒi,jƒk}. In GS

consider the induced subgraph on the edges with the weight wmin.

Choose the nodes of R1 with the maximum degree in this induced

subgraph. Let R2 denotes the set of such nodes.

Criterion III. For each node s M R2, remove it from GS and

find SN-sets for this new graph using Steps 3 and 4. Let ns be the

number of SN-sets of this new graph with cardinality greater than

one. Choose the nodes in R2 with maximum ns. Let R3 denotes the

set of such nodes.

We state an example to show the idea behind these three

criteria.

Let t= {ij|l, jk|i, kl|j, kl|i, no|m, lo|k, jl|o, mn|l, mn|j, no|k,

mo|i, jk|n, ij|o, ik|m, il|n}.

t is not consistent with a tree but it is consistent with the

network N shown in Figure 8a. Obviously, N is an optimal

network consistent with t. In order to find SN-sets we construct

G9t and (G, h), and find SN-sets from (G, h) using Steps 3 and 4

(Figures 8b to 8g). It follows that S = {{i}, {j}, {k}, {l}, {m}, {n,

o}}. Now in GS (Figure 8h). we expect that the reticulation is in

R1. In this example both k and l are in R1. Also we expect that if

there is a reticulation leaf, it belongs to R2 which again both k and

l are in R2. Now just l belongs to R3. Thus we consider l as the

reticulation leaf (Figures 8i to 8n). Remove triplets from tS which

contain l and denote the new set of triplets by t9S. Obviously t9S is

consistent with a tree. We add this reticulation leaf to a

binarization of Tt0
S

such that the resulting network is consistent

with tS. Note that if we consider each node except than l as the

reticulation leaf then final network consistent with tS has at least

two reticulation leaves.

Step 5. In this step the reticulation leaf is recognized using

three criteria. Do the criterion I. If |R1| = 1 then choose the node

x M R1 as the reticulation node. Otherwise if |R1|.1 do the

criterion II. If |R2| = 1 then choose the node x M R2 as the

reticulation node. Otherwise if |R2|.1 do the criterion III. If

|R3| = 1 then choose the node x M R3 as the reticulation node.

Otherwise if |R3|.1 then by the speed options we choose the

reticulation node as follows.

Slow. Each node in R3 is examined as the reticulation leaf.

Normal. Two nodes in R3 are selected randomly and each of

these two nodes is examined as the reticulation leaf.

Fast. One node in R3 is selected randomly as the reticulation

leaf.

Let x be a node which is considered as a reticulation leaf.

Remove x from GS and all of the triplets which contain x from tS.

Define G = G \ {x} and go to Step 3.

Note that for the Fast option the running time of the algorithm

is polynomial.

For biological data almost always the criteria I and II find a

unique reticulation leaf.

So on real data the running time of TripNet is almost always

polynomial.

Step 6. Let x1, x2, …, xm be m reticulation leaves which are

obtained in Step 5 with this order and T be the tree that is

constructed in Step 4. Now add these m nodes in the reverse order
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to T as what follows. Let e1 and e2 be two edges of T. Consider two

new nodes y1 and y2 in the middle of e1 and e2. Connect y1 and y2

to a new node y3 and connect the reticulation leaf xm to y3. Do this

procedure for all pairs of edges and choose a pair such that the

resulting network is consistent with maximum number of triplets in

t. Continue this procedure until all the reticulation nodes are

added.

Step 7. For each SN-set Si and the set tSi
of triplets we run the

algorithm again.

Step 8. Replace each SN-set in the network of Step 6 with its

related network constructed in Step 7 to obtain a network N9.

Let t9 M t be the set of the triplets which are not consistent with

N9. For each pair of leaves a and b assume that t9ab is the set of

triplets in t9 which are of the form ab|c. Consider the pair of

leaves i and j such that t9ij has the maximum cardinality. Assume

that pi and pj are the parents of i and j, respectively.

Step 9. Create two new nodes in the middle of the edges pi i
and pj j and connect them with a new edge. This new edge creates

a reticulation node and all of the triplets in t9ij will be consistent

with the new network. All consistent triplets with the new network

are removed from t9 and this procedure will continue until t9
becomes empty.

Figure 9 presents an example of the algorithm with all of its

Steps.

Acknowledgments

The authors would like to thank M.Kargar for his kind and useful

comments. This work is supported in part by a grant (BS-1392-1-05) from

the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Author Contributions

Conceived and designed the experiments: CE HP RT. Performed the

experiments: HP. Analyzed the data: CE HP RT. Contributed reagents/

materials/analysis tools: CE HP RT. Wrote the paper: CE HP RT.

References

1. Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic Networks Concepts,

Algorithms and Applications. Cambridge University Press.
2. Aho AV, Sagiv Y, Szymanski TG, Ullman JD (1981) Inferring a tree from lowest

common ancestors with an application to the optimization of relational
expressions. SIAM J. Comp 10: 405–421.

3. Jansson J, Nguyen NB, Sung WK (2006) Algorithms For combining rooted
triplets into a galled phylogenetic network. SIAM Journal on Computing 35(5):

1098–1121.

4. Jansson J, Sung Wk (2006) Inferring a Level-1 Phylogenetic Network from a
Dense Set of Rooted Triplets. Theoretical Computer Science 363: 60–68.

5. Huber K, Iersel LV, Kelk S, Suchecki R (2010) A Practical Algorithm for
Reconstructing Level-1 Phylogenetic Networks. IEEE/ACM Transactions on

Computational Biology and Bioinformatics.

6. Van Iersel L, Kelk S (2011) Constructing the simplest possible phylogenetic
network from triplets. Algorithmica 60: 207–235.

7. To TH, Habib M (2009) Level-k Phylogenetic Networks are Constructable from

a Dense Triplet Set in Polynomial Time. In CPM09 5577: 275–288.

8. Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data.

Bioinformatics 14(10): 68–73.

9. Grassly N, Rambaut A (1997) Treevole: a program to simulate the evolution of

DNA sequences under different population dynamic scenarios. 1.3. Wellcome

Centre for Infectious Disease, Department of Zoology, Oxford University,

Oxford, UK.

10. Van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, et al. (2009) Constructing

level-2 phylogenetic networks from triplets. IEEE/ACM Transactions on

Computational Biology and Bioinformatics 6(4): 667–681.

11. Karp R (1972) Reducibility among combinatorial problems. Proc. Sympos.,

IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y. 85–103.

TripNet: A Method for Constructing Networks from Triplets

PLOS ONE | www.plosone.org 12 September 2014 | Volume 9 | Issue 9 | e106531


