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Abstract
Background and Aim: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin 
(PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of 
wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), 
insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) in 
PRF incorporated with SMSCs. 

Materials and Methods: This study employed a true experiment (in vitro) design with post-test only performed in the 
control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using 
immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs 
and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C 
(PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was 
used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium 
culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-β using an enzyme-linked immunosorbent 
assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01).

Results: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. 
There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). 

Conclusion: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The 
PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- β, which may prove to have potential in 
enhancing wound healing.

Keywords: growth factor, platelet-rich fibrin, rabbit, skin mesenchymal stem cells.

Introduction

A skin wound is defined as a break in the 
continuity of skin, mucous membrane, or tissue surface 
caused by physical, chemical, or biological agents [1]. 
These injuries may result in further health issues and 
a poorer quality of life when left untreated [2]. When 
treating exotic animal species’ wounds, special con-
sideration for the given animal’s behavior, unique 
anatomy, and tendency toward secondary stress-re-
lated health problems must be taken [3]. Two common 

complications of the skin wound healing process are 
fibrosis and chronic inflammation [4].

In addition, there are many wound care products 
that potentially increase the rate of wound healing. One 
of these products includes platelet-rich fibrin (PRF), 
which is a product of platelet concentration through 
blood centrifugation without anticoagulation [5]. During 
centrifugation, platelets are activated and trapped 
within the fibrin matrix, resulting in the production 
of a set of growth factors (GF). GF, some of which 
include the platelet-derived GF (PDGF), insulin-like 
GF (IGF), transforming GF (TGF), and vascular endo-
thelial GF (VEGF), are essential components for var-
ious cellular functions [6,7]. PRF contains mitogenic 
and chemotactic compounds that promote and mod-
ulate cellular proliferation and attractants [8,9]. PRF 
can be polymerized, shaped into a three-dimensional 
solid structure, and used as a scaffold [10]. In addition, 
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PRF can enhance the expression of various osteogenic 
differentiation markers, such as bone alkaline phospha-
tase, osteocalcin, osteopontin, and osteonectin in mes-
enchymal stem cells (MSCs) cultured in an osteogenic 
medium [11-14]. In regenerative medicine, MSCs have 
been postulated to have therapeutic effects [15]. Skin 
has been considered a potentially abundant source of 
multipotent adult stem cells, which have high levels of 
durability and rates of replication [16]. Skin-derived 
MSC (SMSCs) are thus a promising source of stem 
cells due to their high multipotency and proliferation 
characteristics, which are both useful in regenerative 
medicine and tissue engineering [17].

PRF and stem cell therapies will continue to gain 
prominence. A previous study [18] reports great poten-
tial of PRF and MSCs in the treatment of muscle injuries 
in a rabbit model because they were able to stimulate the 
proliferation and differentiation of cells. This has been 
attributed to the fact that PRF contains abundant GF and 
a three-dimensional structure that would be regarded as 
a suitable natural material for the seeding of SMSCs. 

We hypothesized that SMSCs would attach to 
PRF, thus improving the GF levels further. The aim 
of this study was to analyze the distribution patterns 
and levels of PDGF, IGF, VEGF, and TGF-β in PRF 
incorporated with SMSCs. Furthermore, the prospec-
tive outcome of this study should better describe how 
PRF incorporated with SMSCs could be used as a 
treatment in veterinary regenerative medicine.
Materials and Methods
Ethical approval

This study was approved by the Research 
Ethics Committee on the Use of Animals, Faculty 
of Veterinary Medicine, Universitas Airlangga, with 
appointment number 289/HRECC.FODM/ XII/20170.
Study period and location

This study was conducted from October 2019 to 
February 2020 at Stem Cell Research and Development 
Center, Airlangga University, Surabaya, Indonesia and 
Laboratory for Energy and the Environment, Institut 
Teknologi Sepuluh Nopember, Surabaya Indonesia. 
Study animals 

Sixteen 7-9-month-old, healthy, male New 
Zealand white rabbits (Oryctolagus cuniculus), each 
weighing 2.5-3.5 kg, were used as the isolation for this 
study PRF and SMSCs. Rabbits were acquired from 
the Stem Cell Research and Development Center, 
Airlangga University, Surabaya, East Java, Indonesia. 

The rabbits were kept in cages according to the 
Guide for the Care and Use of Laboratory Animals [19] 
and were housed individually (size 100×60×75 cm) 
under a 12 h light-dark cycle at a temperature of 
21±2°C and 50-55% humidity. All of the rabbits 
received scheduled feed and drinking water ad libitum.
Preparation of PRF

Blood was drawn and immediately put into 
a 10 ml sterile glass tube without anticoagulants 

(Vaculab, ONEMED, Sidoarjo, Indonesia). It was 
centrifuged at 2700 rpm for 12 min [13] using a 
Kubota Compact Model 2420 (Tokyo, Japan). The 
final form consisted of three layers: Serum (top), red 
blood cells (bottom), and PRF gel (middle). The PRF 
was centrifuged at 2500 rpm for 5 min to collect the 
supernatant serum [20] for examination of the GF. The 
PRF was then cut into squares measuring 1×1 cm, at 
which time, it was ready to be seeded with SMSCs.
Isolation and characterization of SMSCs

A combination of ketamine 50 mg/kg (Ket-A 100, 
Netherlands) and xylazine 2% 10 mg/kg IM (Xyla, 
Netherlands) was used for the rabbit anesthesia. The 
rabbit’s dorsal hair was removed using a razor, and its 
skin was disinfected using 70% alcohol and iodopo-
vidone. The skin was then excised and washed with 
phosphate buffer saline (PBS) (Gibco, USA). Next, it 
was minced and added to collagenase type IV 0.25% 
(Worthington, USA). It was then incubated in 5% CO2 
at 37°C for 45 min. Fetal bovine serum (FBS) 10% 
was added to the skin as a stopper and subsequently 
filtered and washed twice with PBS. The supernatant 
was then discarded, and a medium culture containing 
MEM alpha (Gibco, USA), 10% FBS (Gibco, USA), 
and 1% penicillin/streptomycin (Gibco, USA) was 
added. The cell suspension was cultured in a 60 mm 
dish and incubated in 5% CO2 at 37°C. This medium 
culture was changed every 3 days until 60-80% con-
fluent and was subsequently subjected to passage for 
4 times.

Characterization was performed using immuno-
histochemistry to immunophenotype the MSC surface 
markers. First, the cells were detached, separated into 
single cells, and placed with 20 μl of MSCs on a cover-
slip. Fixation was performed with 3% formaldehyde, 
and blocking was done with 1% FBS. Monoclonal 
antibody (BIOS, US) cluster of differentiation (CD) 
73, CD90, CD105, and CD45 that had been labeled 
fluorescein isothiocyanate (Sigma-Aldrich, US) were 
added to each sample. They were then incubated at 
37°C for 45 min. Finally, results were observed with a 
fluorescence microscope (Olympus IX71, Japan).
Seeding PRF with SMSCs

The fourth passage cells were detached from 
the 60 mm culture dish using TrypLE Express 0.25% 
(Gibco). Cell counting was performed using a TC20 
automated cell counter (California, USA). The PRF 
was seeded with as much as 5×104 cells and incubated 
in 5% CO2 at 37°C. The PRF was collected on days 1, 
3, and 5 after being seeded with SMSCs for scanning 
electron microscopy (SEM) examination. The super-
natant medium culture at day 5 was collected for GF 
examination.
Examination of GF by enzyme-linked immunosorbent 
assay (ELISA)

The supernatant serum PRF (Group A) and super-
natant medium culture SMSCs on PRF (Group D) were 
collected to examine the levels of PDGF, IGF, VEGF, 
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and TGF-β using an ELISA sandwich kit (Bioassay 
Technology Laboratory, China). Optical density was 
measured using a GloMAX Explorer multimode 
microplate reader (Promega, Wisconsin, USA).
SEM examination

Examination was carried out by comparing the 
four groups with different seeding times. Group A con-
sisted of PRF alone, Group B had PRF+SMSCs that 
were incubated for 1 day, Group C had PRF+SMSCs 
that were incubated for 3 days, and Group D had 
PRF+SMSCs that were incubated for 5 days.

To prepare samples for SEM analysis, the PRF 
was immersed in 4% paraformaldehyde in 0.1 M of 
PBS (pH 7.4) for 2 h at room temperature. Next, the 
samples were washed again with PBS and incubated 
with 8% formaldehyde at 4°C. After 2 days, the sam-
ples were fixed in osmium tetroxide and washed in 
PBS. The samples were dehydrated in graded alcohol 
of 30%, 50%, 70%, 80%, 90%, and 100% (twice), 
with each dehydration lasting for 10 min. Each sam-
ple was incubated in Bis(trimethylsilyl)amine (also 
known as hexamethyldisilazane and HMDS) for 10 
min, airdried in a desiccator, and mounted on a suit-
ably sized plastic microscope slide [21]. Some sam-
ples were randomly selected to be coated with gold 
using a sputter coating machine. SEM (ZEISS EVO® 
MA 10, Germany) examination with 500× was then 
carried out. SEM analysis was conducted in the 
Laboratory for Energy and the Environment, Institut 
Teknologi Sepuluh Nopember, Surabaya.
Statistical analysis

All the samples were tested for normality using 
the Shapiro–Wilk test, and p>0.05 was considered 
normal distribution. Statistical analysis was then per-
formed to compare the mean values through unpaired 
t-test using Graph Prism 8.0.1 (San Diego, California, 
USA) software, with p<0.01 considered to be signif-
icant. The data are presented as mean±standard devi-
ation (SD). 
Results
Isolation and characterization of SMSCs

SMSCs demonstrated very high proliferation 
and rapid growth and reached 90% confluence. The 
culture of SMSCs had morphologically fibroblast-like 
cells, basically short or long and spindle shaped, 
forming small colonies with several triangular and 
polygonal cells (Figure-1). Cells at the fourth passage 
showed negative results against the CD45 marker and 
positive results against the CD73, CD90, and CD105 
markers (Figure-2).
SEM examination

SEM examination at 500×, as shown in Figure-3, 
revealed that the surface of Group A (PRF alone) did 
not have any cell formation. However, there were 
some masses of platelet-like structures, and the 
surface appeared smooth and dense. For Group B 
(PRF+SMSCs and 1 day incubation) and Group C 

(PRF+SMSCs and 3 days of incubation), the surface 
appeared rougher, and the SMSCs could be seen on 
the surface of the PRF in an amount that was less than 
that of Group D (PRF+SMSCs and 5 days of incu-
bation), in which the morphologies of the SMSCs 
were visibly elongated, and many cells’ pseudopodia 
showed good biocompatibility and attachment to the 
PRF. Group D PRF was covered with SMSCs that had 
been fused along with the PRF. The distribution of 
SMSCs in Group D was more organized than in the 
other groups. Moreover, all the groups characterized 
PRF with a highly condensed fibrin fiber network. 
Growth factor level analysis

On subjecting the data to the Shapiro–Wilk test, 
p>0.05 (Table-1) was found for each group, indicating 
that all samples were normally distributed.

The levels of PDGF, IGF, VEGF, and TGF-β in 
Groups A (PRF alone) and D (PRF+SMSCs and 5 days 
of incubation) are shown in Table-2 with mean±SD 
for each GF. The levels of every GF were significantly 
higher in Group D (PRF+SMSCs and 5 days of incu-
bation) than in Group A (PRF alone) (p<0.01).
Discussion

The isolation and characterization of MSCs 
from rabbit skin tissue showed fluorescent lumines-
cence of the positive markers CD105, CD90, and 
CD73, while no fluorescence luminescence of the 
negative marker CD45. In accordance with the pre-
vious studies, those MSC markers were MSCs from 
various sources, such as bone marrow, adipose tissue, 
dermis, muscle, and umbilical cord blood, and from 
different species. The cultured SMSCs were similar 
to fibroblastic and spindle-shaped cells and showed 
rapid cell growth [15,17,22-24].

SEM analysis showed that the SMSCs had spread 
to cover the PRFs surface by the 5th day of incubation, 
indicating that they were attached and spread evenly. 
The other groups showed SMSC attachment, but not as 
much as after the 5th day. This shows that the SMSCs 
were able to adhere and proliferate on PRF. Moreover, 
our SEM analysis highlighted different SMSC dis-
tributions that became more organized by the end of 
the evaluation (day 5). The PRF showed highly con-
densed fibrin fiber networks, which indicated ideal 
physical and biological scaffold characteristics [25].

Figure  1: Morphology of the skin-derived mesenchymal 
stem cells at 100×; fibroblast-like cells, spindle-shaped cells 
(red arrow), and 90% confluence at the fourth passage.
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Table-1: A Shapiro–Wilk test revealed that p value of each group was higher than 0.05, which indicated a normal 
distribution (n=8).

Group p-value

PDGF IGF VEGF TGF-β

Group A (PRF alone) 0.819 0.899 0.939 0.825
Group D (PRF+SMSCs 5 days incubation) 0.791 0.856 0.931 0.93
* Normal distribution * * * *

*Normal distribution at p>0.05. PDGF=Platelet-derived growth factor, IGF=Insulin-like growth factor, VEGF=Vascular 
endothelial growth factor, TGF-β=Transforming growth factor-β, PRF=Platelet-rich fibrin, SMSCs=Skin-derived 
mesenchymal stem cells

a

b

c

d

Figure 2: Microscopy of single skin-derived mesenchymal stem cells with fluorescein isothiocyanate-labeled antibody (a). 
CD45-, (b). CD73+, (c). CD90+, (d). CD105+ (red arrow). Left: Under inverted microscope. Right: Under fluorescent 
microscope (100×).
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Figure 3: Results of scanning electron microscopy photography at 500× (Groups A and B) and 2500× (Groups C and D). 
Group A: Smooth surface and no cell formation. Groups B and C: Rough surface and a sparse skin-derived mesenchymal 
stem cells (SMSCs) formation. Group D: SMSCs covered the platelet-rich fibrin surface and showed elongated and 
pseudopodic cells (red arrow).

The morphology of the platelets was totally 
modified by aggregation and clotting processes. 
Therefore, a large aggregate of platelet fibrin polymers 
was identified [26]. SEM examination of human PRF 
demonstrated a homogeneous distribution of fibrin 
with interconnected fibrin fibers trapping different 
cells [27]. The PRF membrane is a third-generation 
membrane containing the GF of the cells trapped in its 
fibrin matrix [26]. This could create an environment 
that would be appropriate for the relatively protracted 
survival of adipose MSCs due to the PRFs abundance 
of GF that enhance cell adhesion, proliferation, and 
spread [28-31]. Furthermore, PRF has the ability to 
stimulate the proliferation of human periodontal liga-
ment cells and dental pulp stem cells [32-34].

Self-regulation of the fibrin network slowly 
formed a high fibrillar aggregation in PRF. This resulted 
in the entrapment of GF to the binding domains of the 
fibrin molecules [35] and slowly released GF (up to 
approximately ≥7 days after isolation). The GF released 
by the granules included polypeptide cytokines, such 

as PDGF, VEGF, TGF, fibroblast GF, epidermal GF, 
hepatocyte GF, and IGF [36].

Growth factors such as PDGF, IGF, VEGF, and 
TGF-β can be found in PRF, and they can be improved 
with the addition of SMSCs. This is done by secret-
ing GF into the supernatant culture medium, adding 
to the GF content already present in the PRF. SMSCs 
are known to secrete proliferative cytokines, such as 
VEGF, IGF, PDGF, and TGF-β, which promote cell 
growth [16,37,38].

Previous reports have confirmed the expres-
sion of the PDGF receptor in mesenchymal cells, 
which regulate changes in the MSCs phenotype to 
prevent differentiating through the pathway through 
downregulation of miR-145/miR-143, which puts 
and keeps these cells in the proliferative phase or 
migration [39]. MSCs are capable of expressing and 
secreting IGF, which maintains the basic activity of 
signaling ERK1/2, which is needed to improve self-re-
newal properties [40]. Furthermore, fetal SMSCs also 
produce VEGF, which remains stable both in vitro 

Table-2: Description of Group A and Group D mean±SD results of an unpaired t-test between two groups (n=8).

Group Mean±Standard deviation

PDGF (ng/ml) IGF (ng/ml) VEGF (ng/L) TGF-b (ng/L)

Group A (PRF alone) 3.11±0.55 10.94±1.44 833.45±92.5 515.63±90.66
Group D (PRF+SMSCs 5 days incubation) 5.72±1.14 13.36±1.18 1794.9±78.46 741.5±51.9
*Sig 0.0001 0.0025 0.0001 0.0001

*Significant at p<0.01. PDGF=Platelet-derived growth factor, IGF=Insulin-like growth factor, VEGF=Vascular endothelial 
growth factor, TGF-β=Transforming growth factor-β, PRF=Platelet-rich fibrin, SMSCs=Skin-derived mesenchymal stem cells
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and in vivo [38,41]. TGF-β is secreted by MSCs that 
are involved in immunomodulation and maintains 
the signaling of cellular regulation activities such as 
apoptosis, inflammation, fibrosis, adipocyte differ-
entiation, and pro-migration [42,43]. It has multiple 
functional roles in normal physiology, from the 1st day 
of embryonic development to homeostasis in adult tis-
sue. Activation or deletion as a genetic mutation could 
lead to the development of diseases such as musculo-
skeletal disorders, cancer, and fibrosis [44].

We have proven that PRF and SMSCs have 
abundant GF. Combining them in vitro increased GF 
levels, making them an alternative solution to the 
problems currently faced by veterinary regenerative 
medicine. Therefore, further in vivo experimentation 
is needed to study the immunological and regenera-
tion mechanisms in animals. 
Conclusion

SMSCs are able to adhere to and spread evenly 
over PRF at 5 days of incubation. PRF contains abun-
dant levels of PDGF, IGF, VEGF, and TGF-β, which 
can be further improved by seeding with SMSCs. 

PRF and SMSCs contain abundant GF that play 
important roles in regeneration, so more in vivo exper-
iments, such as in rabbit models, need to be conducted 
to understand the pathways and mechanisms of skin 
tissue inflammation and regeneration. Furthermore, 
PRF could be used as an alternative biological scaf-
fold for tissue engineering in veterinary medicine. 
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