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Stroke is a common neural disorder in neurology clinics. Magnetic resonance imaging (MRI) has become an important tool to
assess the neural physiological changes under stroke, such as diffusion weighted imaging (DWI) and diffusion tensor imaging
(DTI). Quantitative analysis of MRI images would help medical doctors to localize the stroke area in the diagnosis in terms of
structural information and physiological characterization. However, current quantitative approaches can only provide localization
of the disorder rather than measure physiological variation of subtypes of ischemic stroke. In the current study, we hypothesize
that each kind of neural disorder would have its unique physiological characteristics, which could be reflected by DWI images on
different gradients. Based on this hypothesis, a DWI-based neural fingerprinting technology was proposed to classify subtypes
of ischemic stroke. The neural fingerprint was constructed by the signal intensity of the region of interest (ROI) on the DWI
images under different gradients. The fingerprint derived from the manually drawn ROI could classify the subtypes with accuracy
100%. However, the classification accuracy was worse when using semiautomatic and automatic method in ROI segmentation.The
preliminary results showed promising potential of DWI-based neural fingerprinting technology in stroke subtype classification.
Further studies will be carried out for enhancing the fingerprinting accuracy and its application in other clinical practices.

1. Introduction

Magnetic resonance imaging (MRI) has been widely
employed in research as well as in clinical practice. For
instance, diffusion weighted imaging (DWI) and diffusion
tensor imaging (DTI) technologies provide remarkable
detailed information of nervous system and have become
the important examinations for neural diseases diagnosis
in neurology department of hospital. Specifically, DTI
measures the water diffusion situation in neural fibre so that
it is frequently used to investigate the abnormal diffusion
in the brain. Based on DWI principles, DTI can provide
the contrast of the diffusion anisotropy that was further
developed to trace the fibre tracts [1]. Both DWI and DTI
technologies produce special contrast of nervous system
in terms of diffusion ability, fibre integrity, fibre bundle

directions, and so forth. In order to take advantage of these
neuroimaging approaches, quantitative analysis is crucial for
the image interpretation, which is also important for clinical
applications. Quantitative measures, such as mean diffusivity
(MD) and fractional anisotropy (FA), were proposed to
measure the cellular diffusion state and the anisotropy of
fibre tract in white matter [2] based on DTI. An increasing
number of quantitative methods were introduced to DTI
data analysis, such as voxel-based analysis (VBA) [3] and
tract-based spatial statistics (TBSS) [4, 5].Thesemethods can
automatically localize the lesion in the brain by comparing
patients’ images with a normal control group [6]. However,
the existing quantitative analysismethods ofDTI are sensitive
to the lesion location but not the physiological changes in
nature. For instance, a lesion in the brain can be localized by
VBA according to the FA value changes while the inherent
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physical meaning for such changes cannot be reflected
by this analysis. According to the imaging principles,
images of DTI and DWI can not only provide structural
information but also contain physiological meanings [7].
Further development on the quantitative analysis will
facilitate interpretation of DWI data that is much helpful in
both neuroscience research and clinical practice.

Stroke is a common neural disease especially for the
elderly and the people with hypertension [8]. In clinical
applications, DWI has shown accurate identification of
ischemic tissue and the ability to discriminate between
dead and salvageable ischemic brain [9–11]. Acute ischemic
lesions in DWI can be detected with greater sensitivity than
conventional MRI, such as T1 and T2 weighted imaging [12–
15]. Besides, defining different stroke states by MRI images
is important to follow up patients’ response to a therapy.
It is reported that decreased apparent diffusion coefficient
(ADC) values indicate good sensitivity and specificity in an
infarct less than 10 days old [16]. Appearances onDWI images
following stroke also vary in different states [17]. However,
the performance of acute infarct detection or stroke state
determination is unsatisfactory by simply identifying hyper-
intensity or hypointensity on DWI images by thresholding
[18]. Current quantitative measures, such as ADC and FA
[19], are employed to provide different contrasts of lesion
to identify the infarction area and location. Better utility
of DWI and DTI data would make it possible to identify
subtypes of stroke, which will enhance the diagnosis of
physiological variation of the patients and thus affect further
clinicalmanagement. A quantitativemeasure, which contains
comprehensive features of the nerve, should be developed
to exploit the rich information in DWI images for detecting
subtypes of ischemic stroke.

In this study, we proposed a method called DWI-based
neural fingerprinting to characterize the neural physiological
changes that can be used for subtype classification of ischemic
stroke. The “fingerprinting” concept was borrowed from
magnetic resonance fingerprinting (MRF) [20] technique,
permitting the accelerating acquisition of multiple magnetic
resonance parameters, while in current proposal the “fin-
gerprint” refers to a feature vector constructed from the
DWI images with different diffusion gradients that contains
comprehensive neural information. As anisotropy measure-
ment shows sensitivity to degrees of fibre damage in disease
affecting white matter [21–23], we hypothesize that specific
diffusivity changewithin ischemic stroke could be considered
as a fingerprint reflecting unique neural property. Therefore,
pathological changes within the infarction of patients after
stroke would be associated with the fingerprint extracted
from the DWI data with different gradients. By applying
clustering algorithms on the fingerprints, the subjects can
possibly be classified into normal controls, patientswith acute
stroke, and patients with stroke sequela.

2. Methodology

2.1. Data Acquisition and Image Preprocessing. The present
study adopted retrospective clinical data from the Neurology

Department of PekingUniversity ShenzhenHospital. Clinical
data from 19 subjects (13 men and 6 women, 49 ± 19
years old) were collected, where MRI examinations with
the same protocol were conducted on the subjects. The 19
subjects were diagnosed as eight healthy people (4 men and
4 women, 31 ± 4 years old), eight with acute stroke lesions
(6 men and 2 women, 64 ± 15 years old), and three with
stroke sequela (3 men, 58 ± 8 years old). For the 11 patients
with acute stroke and stroke sequela, 11, 10, and 9 lesions
were located in the internal capsule, the striatocapsular,
and the motor cortex, respectively. Extensive information
about participants’ health status has been obtained through
symptomatic evaluation. The diagnosis reports were issued
by two neurologists in the Peking University Shenzhen
Hospital. All the participants underwent MR imaging with
1.5 T Siemens Sigma System (Siemens Medical Systems). The
typical MRI protocol consisted of turbo spin echo (TSE)
sequence to generate T2 weighted images (TE = 89ms; TR
= 4000ms; flip angle = 150∘; acquisition matrix = 768 × 624;
FOV = 230 × 187mm2) and single-shot echo-planar spin-
echo (EPSE) sequence to obtainDWI images (TE= 88ms; TR
= 2700ms; flip angle = 90∘; acquisition matrix = 128 × 128;
FOV = 250 × 250mm2; in-plane resolution 1 × 1mm2; b =
1000 s/mm2; 20 diffusion weighted gradient directions and
1 without diffusion weighting). Nineteen axial sections in
6.5mm slice gap with 5mm thickness were obtained.

The 20 DWI images in Digital Imaging and Communi-
cations in Medicine (DICOM) format of each subject were
imported into the SPM8 software (Welcome Trust Centre,
UCL) for preprocessing [24], involving spatial normalization
to the standard MNI space [25, 26] and Gaussian smoothing
(FWHM of 3mm) [27].

2.2. ROI Segmentation and Fingerprint Construction. Obtain-
ing diffusion weighted signals of the infarct is much depen-
dent on the accurate localization of infarct area. Three meth-
ods were used in the present study, named manual, semiau-
tomatic, and automatic ROI segmentation. The manual ROI
was segmented by clinicians, which was also supposed to be
the reference for the semiautomatic method.

First, the manual ROI was defined by clinicians. For
stroke patients, two experienced neurologists blinded to clin-
ical symptoms drew target ROI of stroke lesion independently
on T2 weighted images while taking the T1 and ADC images
as reference. To evaluate the drawing agreement of different
operators, the error of ROI’s areas and center coordinates
regarding each participant were evaluated by Bland-Altman
plots and correlation coefficients. The interrater reliability of
ROI is shown in Figures 1 and 2. All evaluation measures
show good agreement between the two operators (correlation
coefficients > 0.95) to guarantee robust and accurate ROI
segmentation. Then, the intersection parts of ROIs were
mapped to the corresponding DWI images to produce the
final infarct location through multimodal registration, as
shown in Figure 3. For normal subjects, one arbitrary cerebral
hemisphere was selected as target ROI to be investigated
as there was no infarct in their brain. The manual ROI
was supposed to provide the most accurate segmentation on
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Figure 1: Bland-Altman plot of ROI between two raters.

the stroke lesion due to the professional knowledge of the
operators.

A semiautomatic method for ROI location was proposed
based on morphological segmentation. Firstly, DWI images
of each participant were registered to a normal brain tem-
plate. Then, we averaged 20 slices of registered DWI images
into one image for each subject. Three stroke subjects were
arbitrarily selected from normal subjects, patients with acute
stroke, and patients with stroke sequela, respectively. The
ROIs were drawn accordingly to provide necessary references
to differentiate normal brain tissue and stroke lesions. Image
signal intensity was compared voxelwise between the ROI
and the mirror area on the opposite hemisphere for each

subject. The histogram of the signal intensity difference was
mapped to derive the optimal thresholds to differentiate
the lesion from the normal brain tissue. Figure 4 shows the
probability density function based on the histogram, where
two optimized thresholds were determined as the criteria for
lesion identification. Then, the two thresholds were used for
lesion ROI segmentation on other patients’ DWI images.

In order to segment the lesion ROI automatically, we also
proposed a TBSS based method. We hypothesized that the
stroke lesion in the brain would contain water diffusibility
changes that vary the fractional anisotropy of the pixel.Then,
through TBSS approach, pixels with significant FA change
were detected and used to compose the lesion ROI. This
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Figure 2: Correlation test of ROI between two raters.

(a) (b)

Figure 3: Manual drawings of ROIs of stroke lesion on DWI images.The stroke lesion was observed in the brain DWI image. (a) T2 weighted
image facilitated infarct location on the corresponding DWI images. (b) Stroke lesion was localized in DWI image (blue circle) by image
registration with T2 image, while the contralateral region generated automatically in red.
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Figure 4: The probability density curve of voxelwise differencing
value. Blue curve represents the normal control; red curve represents
the acute stroke group; green curve represents the stroke sequela
group. Two thresholds are determined to discriminate the different
distributions.

method was implemented using FMRIB Software Library
(FSL 4.1.9; http://www.fmrib.ox.ac.uk/fsl) [28]. First of all, a
brain template in the software was identified as a common
registration target. We aligned all subjects’ FA images to
this target by nonlinear registration. Then, a skeletonised
mean FA image was created by a nonmaximum suppression
perpendicular to the local tract structure. Each subject’s FA
image (aligned) was projected onto the skeleton by filling
the skeleton with FA values from the nearest relevant tract
center. Finally, based on the voxelwise statistics across the
stroke patients and the normal controls, the target ROI was
defined as the voxels with significant difference (uncorrected
𝑃 < 0.005), as illustrated in Figure 5.

After segmenting the target ROIs with the above three
methods, neural fingerprints can be constructed from them,
respectively, to reduce intersubject variations in DWI inten-
sity, the mirror ROI (the contralateral region) corresponding
to the target ROI was used as a reference. An example of
mirror ROI from the manual segmentation is shown by the
red circle generated automatically in Figure 3. The design
of diffusion gradients is also critical for the construction
of neural fingerprints. Considering that the arrangement of
diffusion gradients in the three-dimensional space did not
affect classification of neural fingerprints only if applying a
constant order, we applied 20 diffusion gradients distributed
randomly in a constant order in every subject’s DWI data.
The neural fingerprint for each ROI segmentation method is
defined as a vector of 20 elements. Each element is a ratio
between the mean image intensities within the target ROI
and the mirror ROI calculated with each diffusion gradient.
An example of neural fingerprint from manual ROI in DWI
images is shown in Figure 6.

2.3. Clustering. To validate the DWI-based neural finger-
printing method, unsupervised learning was employed to
cluster the nineteen subjects. Fingerprints used are the

ratio values calculated from manual, semiautomatic, and
automatic ROIs, respectively. As the clustering metrics, two
types of distance were employed [29].The Euclidean distance
was calculated as follows:

𝐷
𝐸
= √(xs − xt) (xs − xt)



, (1)

where xs and xt are feature vectors of two subjects (the princi-
pal components of average image signal intensity sequences).
The Cosine distance was calculated as follows:
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The K-means algorithm [30, 31] was performed for finger-
print clustering. By setting the number of clusters k, each
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We compared 6 sets of clustering results obtained using the
combinations of the three ROI methods and the two distance
metrics (Euclidean and Cosine distance), respectively.

To evaluate the clustering results, F score, a common
metric to estimate how close the clustering is to the prede-
termined benchmark classes, was calculated as follows [32]:
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where 𝑃 is the preclassified sample clusters and 𝑠 is its
corresponding number of clusters. 𝐶 is the sample clusters
and 𝑚 is its corresponding number of clusters. Precision
𝑃(𝑃
𝑗
, 𝐶
𝑖
) is the correct results divided by the number of all

returned results, and recall 𝑅(𝑃
𝑗
, 𝐶
𝑖
) is the number of correct

results divided by the results that should have been returned
[33]. The F score can be interpreted as a weighted average of
the precision and recall, where F score reaches its best score
at 1 and worst score at 0.

3. Results

Based on the fingerprint, the clustering results are shown in
Table 1. The clinical diagnosis in the first column is taken
as the standard reference, where “1” represents the normal
control, “2” represents the group with acute stroke lesions,
and “3” represents the group with stroke sequela. For the
manual ROI method, it can be observed that clustering
result approached 100% accuracy with Euclidean distance.
In other words, the fingerprint based on the manual ROI
with Euclidean distance gives the best clustering performance
compared to others. However, the accuracy is relatively poor
when applying Cosine distance (accuracy = 68%, 95% CI:
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(a) (b)

Figure 5: Automatic ROI generation on FA map by TBSS. (a) Blue regions indicate significantly decreased FA (𝑃 < 0.005) in patients with
stroke relative to normal controls. (b)White regions indicate the corresponding lesion ROIs. Green regions represented themean FA skeleton.
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Figure 6: An example of neural fingerprints from manual ROI in
DWI images. These neural fingerprints are averaged from manual
ROI method. Blue curve represents the normal control; red curve
represents the acute stroke group; green curve represents the stroke
sequela group.

48%–89%). For the semiautomatic segmentation method,
two subjects with acute stroke (Subjects 13 and 15) were falsely
included into the normal groupwith Cosine distance, and the
corresponding accuracy remained at high level (accuracy =
89%, 95% CI: 76%–97%). It indicates that the semiautomatic
method is only sensitive to stroke sequela. With Euclidean
distance, the accuracy for semiautomatic method is 74%
(95% CI: 54%–93%). For automatic TBSS method, mismatch
occurs muchmore frequently in all of the three groups, as the
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Figure 7: F scores using two distance metrics combined with man-
ual, semiautomatic, and automatic ROIs. ME: Euclidean distance
using manual ROI; MC: Cosine distance using manual ROI; SE:
Euclidean distance using semiautomatic ROI; SC: Cosine distance
using semiautomatic ROI; AE: Euclidean distance using automatic
ROI; AC: Cosine distance using automatic ROI.

accuracy with Euclidean and Cosine distance is 58% (95%CI:
36%–80%) and 63% (95% CI: 41%–85%), respectively.

The comparison between F scores provides an overall
clustering evaluation for each method, as shown in Figure 7.
F score of the manual ROI method with Euclidean dis-
tance shows accurate clustering performance (F = 1). The
difference of F scores between two distances for manual
method is relatively larger than that in othermethods. For the
semiautomatic segmentation method, the F scores are higher
(i.e., 0.75 and 0.89) than those in automatic TBSS method
(i.e., 0.6 and 0.66) with both distances. In other words,
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Table 1: Clustering result and evaluation.

Clinical reference Manual ROI Semiautomatic ROI Automatic ROI
Euclidean
distance

Cosine
distance

Euclidean
distance

Cosine
distance

Euclidean
distance

Cosine
distance

Subject 1 1 1 1 1 1 1 1
Subject 2 1 1 1 1 1 1 1
Subject 3 1 1 1 1 1 1 1
Subject 4 1 1 1 1 1 1 3
Subject 5 1 1 1 1 1 1 1
Subject 6 1 1 1 1 1 1 1
Subject 7 1 1 1 1 1 3 1
Subject 8 1 1 1 1 1 3 1
Subject 9 2 2 1 3 2 1 3
Subject 10 2 2 2 3 2 2 3
Subject 11 2 2 1 2 2 2 2
Subject 12 3 3 3 1 3 3 3
Subject 13 2 2 1 2 1 1 3
Subject 14 2 2 1 2 2 2 2
Subject 15 2 2 2 2 1 2 2
Subject 16 3 3 3 1 3 2 2
Subject 17 2 2 1 3 2 3 1
Subject 18 2 2 1 2 2 3 3
Subject 19 3 3 3 1 3 1 3
𝐹 value 1 0.69 0.75 0.89 0.6 0.66
Clinical reference classification and DWI-based neural fingerprinting clustering results are shown. For the clinical reference, 1 represents the normal control;
2 represents the group with acute stroke lesion; and 3 represents the group with stroke sequela. For manual, semiautomatic, and automatic ROI methods,
different numbers are different clustering labels.

the clustering of semiautomatic method provided a better
classification result than that of automatic TBSS method.

4. Discussions

With the development of neuroimaging technology, the
detection and analysis of ischemic stroke relying on MRI
have achieved high reliability and availability. T1, T2, DWI,
DTI, and ADC maps are commonly used in clinics to detect
stroke lesions based on hyperintensity or hypointensity on
the images. Medical doctors usually check several types
of MRI images to determine the subtypes of the ischemic
stroke lesion. The DWI-based neural fingerprinting method
presented here is a new quantitative approach, which takes
advantage of diffusion weighted data to construct a feature
vector representing the unique neurophysiological informa-
tion of the brain tissue. We further applied the fingerprint to
determine the subtypes of ischemic stroke which can be only
based on the DWI images on different diffusion gradients.
The fingerprint produced in this study can quantitatively
measure pathological change of neural tissue, which reflects
the specific states of stroke lesions, as shown in Figure 6.
The preliminary results basically validated the hypothesis
that neural physiological change in ischemic stroke can be
reflected by the diffusion signal variation on different gradi-
ents. Further, the fingerprint proposed in current study can be

used for subtype determination for ischemic stroke. Based on
neural fingerprint technology, it is possible to further develop
a tool to assist medical doctors in the diagnosis of stroke
disease.

For the fingerprint generation, lesion ROI segmentation
is a key step for the final clustering results. It appeared
that the manual ROI method yielded the best clustering
result among the three segmentation methods. As shown
in Table 1, a perfect match between clustering results and
clinical reference occurs when manual ROI with Euclidean
distance was used (F score = 1). It indicates that different
phases of ischemic stroke could be distinguished accurately
when lesions have been perfectly localized and distance has
been properly defined. It also implies that DTI protocol is
suitable to generate fingerprints for ischemic stroke. The
precise mechanism leading to diffusion changes of ischemic
stroke is still not for certain. Wallerian degeneration in the
nervous system was found in animal model [34], which
involved the breakdown of the myelin sheath and disinte-
gration of axonal microfilaments [35]. Although disruption
of myelin and axons around acute infarct lesions might be
expected to increase the water diffusivity, an accumulation
of cellular debris from the breakdown of axons may hinder
water molecule motion [36], which is more likely to occur
in late stage of stroke. Another explanation could be the
redistribution of extracellular water into the intracellular
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compartment, which leads to the shrinkage of extracellular
space overtime [37]. These scientific findings may explain
why the fingerprint constructed by the DTI images can
distinguish the subtypes of the ischemic stroke.

The semiautomatic and automatic ROI segmentation
methods were proposed to develop automatic neural finger-
print construction method. The F scores for both methods
are lower than those obtained in manual ROI with Euclidean
distance. It is probably due to the inaccuracy in the ROI
localization of stroke lesions. For the semiautomatic method,
the thresholds were determined only by three subjects’ data,
which may not reflect the comprehensive features of the
lesion. More samples in the training set are necessary to
improve a priori knowledge of the lesion feature. As for the
automatic method, the inherent hypothesis, FA value varied
significantly for stroke, may not be perfect for the ischemic
stroke lesion. In addition, FA images without diffusion tensor
orientation information could contribute to false location of
significantly abnormal areas. Another limitation may come
from the TBSS itself. Usually TBSS method is based on
the group comparison, not for single brain lesion detection.
The weighting of one specific lesion from a single patient is
weakened by the group statistical analysis.The semiautomatic
segmentation method overcomes the constraints of TBSS;
thus, it has a better discrimination as shown in the clustering
result. But the subjects with acute stroke and the normal
control fail to be classified perfectly, probably because that
threshold 1 with mixed area under curve is more difficult
to determine than threshold 2 (Figure 4). The clustering
result also implies that appropriate distancemetrics should be
used to achieve sufficient discriminative power ofDWI-based
neural fingerprinting. The investigation of optimal distance
metric is one of the future works.

The current study is the first effort trying to construct a
fingerprint representing neurophysiological information and
we implemented the technology on ischemic stroke classifi-
cation. As an ongoing research, a system should be finally
built up to achieve the true fingerprinting function, that is,
identification. The identity here refers to the neural specific
physiology, which can be represented by a unique fingerprint.
In the current study, we chose to use the DWI images on
different diffusion gradients to construct the fingerprint.
Other MRI protocols are also possible for fingerprint con-
struction once the protocol can provide unique pattern of
specified neural physiology. Huge efforts should be carried
out to construct a fingerprint bank, which covers massive
amounts of neural fingerprints with matched information
(age, gender, pathology, etc.). Then, the neural fingerprint-
ing technology can be finally realized by providing neural
fingerprint identification or verification through comparing
an arbitrary neural fingerprint that comes from a patient to
the fingerprint bank. Many applications can be rooted from
the neural fingerprinting technology, such as autodiagnosis
and risk evaluation for some diseases. Despite the specific
brain disease detection, the quantification of general neural
property distributed in the whole nervous system relies on
the integrated fingerprint bank. Building up thewhole system
would involve the professional knowledge and efforts from

the medical doctors, biologists, engineers, MRI physicists,
and so forth.

In conclusion, this preliminary study demonstrated that
the proposed DWI-based neural fingerprinting method had
the potential to classify brain abnormalities, such as acute
stroke and stroke sequela, due to its ability to exploit
comprehensive information contained in DWI data. Further
development on such technology could assist clinical practice
in the future.
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