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Abstract

Background: The replacement of b,c-pyrophosphate by b,c-phosphonate moieties within the triphosphate chain of

50-triphosphate nucleoside analogues was previously studied for various antiviral nucleoside analogues such as AZT and

20,30-dideoxynucleosides. Thus, it has been shown that these chemical modifications could preserve, in some cases, the

terminating substrate properties of the triphosphate analogue for HIV-RT. Herein, we aimed to study such

50-triphosphate mimics based on the scaffold of the well-known antiviral agent 9-[(2-phosphonomethoxy)ethyl]adenine

(PMEA, Adefovir).

Methods: Synthesis involved coupling of a morpholidate derivative of PMEA with appropriate pyrophosphoryl ana-

logues. The relative efficiencies of incorporation of the studied diphosphate phosphonates were measured using subtype

B WT HIV-1 RT in an in vitro susceptibility assay, in comparison to the parent nucleotide analogue (PMEApp).

Results: Searching for nucleoside 50-triphosphate mimics, we have synthesized and studied a series of diphosphate

analogues of PMEA bearing non hydrolysable bonds between the and phosphorus atoms. We also examined their

relative inhibitory capacity towards HIV-1 reverse transcriptase in comparison to the parent nucleotide analogue

(PMEApp). Only one of them appeared as a weak inhibitor (IC50¼ 403.0� 75.5 mM) and proved to be less effective

than PMEApp (IC50¼ 6.4� 0.8mM).

Conclusion: PMEA diphosphoryl derivatives were designed as potential substrates and/or inhibitors of various viral

polymerases. These modifications dramatically affect their ability to inhibit HIV-RT.
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Introduction

The acyclic nucleoside phosphonate 9-[2-(phosphome-

thoxy)ethyl]adenine (PMEA, Figure 1) exhibits a broad-

spectrum activity against different types of DNA viruses

and retroviruses.1,2 Its orally bioavailable form,

the bis(pivaloyloxymethyl) prodrug (bis(POM)PMEA,

Adefovir dipivoxil), has been approved for the treat-

ment of chronic hepatitis B3 and other types of prodrugs

are still under investigations.4–6 To achieve its inhibitory

effect on viral synthesis, PMEA must be converted

intracellularly to its active diphosphorylatedmetabolite,

PMEApp (Figure 1). PMEApp has been described to

interact as an alternative substrate and as a competitive

inhibitor of both herpes simplex type 1 (HSV-1) DNA

polymerase7,8 and reverse transcriptases.9–11 Variable
inhibitory effects on human cellular DNA polymerases
were observed, especially against DNA polymerase for
which Ki value was in the same range as dATP,9,12–15
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When compared to the affinity of PMEApp forHIV-RT

(with Ki value in the nanomolar range), it may explain
the antiviral selectivity of parent phosphonate.

As part of a research program, we decided to syn-
thesize new nucleoside 50-triphosphate mimics based on
the PMEA scaffold and incorporating chemical mod-
ifications of the Pb–O–Pc phosphoester bonds.
Replacement of the anhydride oxygen with isosteric

groups leading to non-hydrolysable bonds, the result-
ing analogues were designed as biological tools for the
study of substrate properties of cellular and/or viral
enzymatic systems, as well as new potential therapeutic
agents.16,17 Based on previously published works on

related topic,16 requirements in the design of modified
triphosphate analogues emerged: (i) the anhydride
bond between b- and c-phosphates, which is unaffected
during the DNA biosynthesis, could be replaced with

non-hydrolysable bond; (ii) similar modification could
also be introduced between the 50-position of sugar
and the phosphorus atom; (iii) the anhydride bond
between a- and b-P atoms should be preserved in
order to provide the possibility of the mimetic to inter-

act with targeted polymerase as substrate.
In this respect, PMEApp constitutes an attractive

model to study chemical modifications on the pyro-
phosphoryl residue due to its phosphonate structure,
characterized by a stable P–C bond (toward
phosphohydrolase-hydrolysis) between acyclic nucleo-
side moiety and a-phosphorus atom, and its broad

and high affinity for viral polymerases. Herein, we
report the full accounts of the synthesis of compounds
1b-j and their study as terminating substrates in the
DNA chain elongation catalyzed by human immuno-
deficiency virus (HIV) reverse transcriptase.

Experimental section

Material and methods
1H NMR (250 MHz) and 13C NMR (100 MHz) spectra

were recorded with proton decoupling at ambient tem-
perature. Chemical shifts (d) are quoted in parts per

million (ppm) referenced to the residual solvent peak
chloroform (CDCl3) at 7.26 ppm and 77.0 ppm, deute-
rium oxide (D2O) at 4.63 ppm relative to tetramethylsi-
lane (TMS). COSY experiments were performed in
order to confirm proton assignments as well as 2D
1H-13C heteronuclear COSY for the attribution of 13C
signals. 31PNMR spectra were recorded at ambient tem-
perature at 100 MHz. Chemical shifts are reported rel-
ative to external phosphoric acid (H3PO4).

19F NMR
spectra were recorded at ambient temperature at 235
MHz. Chemical shifts are reported relative to external
trichlorofluoromethane (CFCl3). Coupling constants, J,
are given in Hertz. FAB mass spectra were recorded in
the negative-ion mode using glycerol/thioglycerol (1:1,
v/v, G-T) as matrix. Only nominal mass of ions corre-
sponding to the mass of the lightest chlorine or bromine
isotopes is given. However, the halogen-isotope peak
intensity patterns were ascertained and they agreed
with the formula of the ions. Thin layer chromatogra-
phy was performed on precoated aluminum sheets of
Silica Gel 60 F254 (Merck, Art. 5554), visualization of
products was accomplished by UV absorbance followed
by spraying with Hanes molybdate reagent. Column
chromatography was carried out on Silica Gel 60
(Merck, Art. 9385). Analytical HPLC studies were per-
formed using a reverse-phase analytical column
(Nucleosil, C18, 150� 4.6mm, 5m) equipped with a
prefilter, a precolumn (Nucleosil, C18, 5m), and a pho-
todiode array detector. Compounds were eluted under
isocratic conditions with 0.4% acetonitrile in 50mM
triethylammonium acetate buffer with a flow rate of
1mL/min. All moisture sensitive reactions were carried
out in anhydrous conditions under argon atmosphere
using oven-dried glassware. Solvents were dried and dis-
tilled prior to use and solids were dried over P2O5 under
reduced pressure at rt.

Chemistry

9-[(2-Phosphomethoxy)ethyl]-adenine (PMEA) and its
phosp.

horomorpholidate derivative 2 were synthesized
according to a published procedure.18

The tributylammonium salts of pyrophosphate 3a
and diphosphonic acids 3b-d were obtained fromtheir
commercially available forms: tetra sodium
pyrophosphate decahydrate, tetra sodium imidodi-
phosphonate, methanediphosphonic acid and
1-hydroxyethylidene diphosphonic acid, respectively.
The halomethylidene diphosphonic acids 3e-j were
obtained from their ethyl esters precursors following
a usual way,19 and stored as sodium forms after
passage over a Dowex 50WX2 cation exchange
resin column and freeze-drying. Tetraethyl

Figure 1. Chemical structures of PMEA, PMEApp 1a, and target
diphosphate analogues 1b-j.
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methylenediphosphonate 4 was commercially available.
The halomethylene diphosphonate esters 5e, 5g, 6f
and 6h were prepared using literature methods.20

Detailed description of experimental procedures and
compound characterization are provided as supple-
mentary data.

In vitro drug susceptibility assays with recombinant
subtype B WT HIV-1 RT

The p66RTB gene construct allowing the bacterial
expression of the wild-type (WT) HIV-1 RT was
described elsewhere.21,22 The recombinant clade B
WT HIV-1 RT was co-expressed with HIV-1 protease
in Escherichia coli in order to obtain p66/p51 hetero-
dimers, which were later purified using affinity chroma-
tography. Enzymes were quantitated by active-site
titration before biochemical studies.

Standard RT activity was assayed using 250mg/mL of
activated calf thymus DNA (GE Healthcare). To deter-
mine IC50 values, reactions were performed with 10nM
enzyme and 5mMeach dNTPas amixture (dATP, dCTP,
dGTP, dTTP) containing 100mCi/mmol of [3H]-labelled
deoxythymidine 5’-triphosphate (Perkin Elmer), for 15
min with increasing amounts of phosphonate, com-
pounds 1a (PMEApp as reference), 1c, 1e to 1j. Each
aliquot was spotted in duplicate on DE81 ion-exchange
paper discs. Paper discs were washed twice with 0.3M
ammonium formate, pH 8.0, twice with water and once
with ethanol, and then dried and transferred into sample
bags. Scintillation fluid was added and the radioactivity
bound to the discs was determined by liquid scintillation
counting with MicroBeta Trilux Counter. Values of IC50

are the average from at least three independent experi-
ments and were determined using Kaleidagraph data.

Molecular modeling of HIV-1 RT in complex with
diphosphate phosphonate analogues 1c, 1e, 1g, 1i

All models were based on the X-ray structure of the RT
in complex with dsDNA and incoming PMPApp (PDB

code 1T05). The UCSF Chimera software (PMID:

15264254) was used to replace the PMP – moiety by

the PME – equivalent. Moreover, the oxygen of the b,c
bridge of the diphosphate phosphonate PMPApp was

replaced by CH2 (compound 1c), CCl2 (compound 1e),

CBr2 (compound 1g) and CF2 (compound 1i) groups.

Results

The synthesis of PMEA diphosphate 1a and its mimetics

1b-j was carried out according to a general procedure

(Scheme 1),23,24 which requires preliminary preparation

of the phosphoromorpholidate derivative 2 of PMEA.

This was accomplished by usual reaction of PMEA with

morpholine and N,N0-dicyclohexylcarbodiimide as acti-

vating agent.18 Isolated as its 4-morpholine N,N’-dicy-

clohexylcarboxamidinium salt, 2 was further condensed

with the appropriate tributylammonium salts of the

diphosphonic acids 3b-j. The imido- and methylene-

diphosphonate reagents 3b-d were commercially avail-

able as sodium or acidic forms. The halomethylidene

diphosphonic acids 3e-h were prepared from the com-

mercial tetraethyl methylenediphosphonate, following a

published procedure.20 Preparation of the fluorinated

diphosphonic acids 3i, j has previously been described

from direct halogenation of tetra alkyl methylenedi-

phosphonates19 or nucleophilic substitution of an

appropriate halomethylphosphonate derivative by a

phosphite anion.25–27

Moreover, in contrast to the dichloro- and dibromo-

analogues (3e-h), nucleophilic dehalogenation of

difluoromethylene-diphosphonates into the corre-

sponding monofluoro esters by conventional meth-

ods28,29 was unsuccessful. In such conditions, P–C

bond cleavage was observed resulting in the formation

of dialkyl difluoromethylphosphonates. Thus, we

decided to select the first approach (i.e. direct haloge-

nation) leading in one step to a mixture of the mono-

and difluoro- compounds through reaction of

electrophilic fluorinating reagents with the carbanions

Scheme 1. Final step in the synthesis of PMEApp 1a, and target diphosphate analogues 1b-j.
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of alkyl methylidenediphosphonates. Reportedmethod-
ologies used perchloryl fluoride19 or acetyl hypofluor-
ite.30 Herein, N-fluorobenzenesulfonimide was chosen
as commercially available and easy handling fluorinating
reagent.31 Consequently, tetraethyl methylenediphosph-
onate 4 was deprotonated by the action of potassium tert-
butoxide and treated with N-fluorobenzene-sulfonimide
(Scheme 2). Purification of the resulting mixture on flash
silica gel chromatography yielded 29% of the starting
material 4 and 31% of each desired mono- and dihalo-
genated species 5i and 6j, respectively. Saponification of
the tetraethyl fluoromethylenediphosphonate esters 5i
and 6j was carried out using bromotrimethylsilane to
give rise to the fluorinated diphosphonic acids 3i, j.

Crude reaction of the phosphoromorpholidate deriv-
ative of PMEA 2 with pyrophosphate 3a or the appro-
priate tributylammonium salts of the diphosphonic acids
3b-j was firstly purified by aDowex 1X2 chromatography
using a gradient of aqueous lithium chloride in 0.01M
hydrochloric acid.18 Then, DEAE-Sephadex A25 chro-
matography gave PMEA diphosphate 1a and its mim-
etics 1b-j. The low yield obtained for derivative 1b (18%)
was probably due to the chemical instability of the imido
functionality32 during purification step at acidic pH.
Structures of the different mimetics of PMEA diphos-
phate were assigned on the basis of their NMR data
(Tables 1 and 2),MS andUV spectra. Purity was checked
by analytical high pressure liquid chromatography
(HPLC) and high resolution mass spectra (HRMS).

To evaluate the inhibitory activity of diphosphate
phosphonates 1a, 1c, 1e to 1j on the reverse transcriptase
(RT) of HIV-1, their relative efficiencies of incorpora-
tion were measured using subtype B WT HIV-1 RT in
an in vitro susceptibility assay. The calculated 50%
inhibitory concentration (IC50) values obtained in this
assay showed that PMEApp 1a is active (IC50¼ 6.4
� 0.8mM), this value was in agreement with literature
data,33 whereas the diphosphate phosphonate analogues
are truly less potent (IC50>1000mM or IC50¼ 403.0
� 75.5mM for compound 1i).

Discussion

The synthesis of new mimics of PMEApp incorporat-
ing non hydrolysable bond between the b- and c-P

atoms has been carried out by reaction of the morpho-
lidate derivative of PMEA 2 with the appropriate
diphosphinic acids 3b-j (Scheme 1). The target diphos-
phate analogues 1b-j were isolated as lithium forms in
18–65% yields.

The 31P NMR spectra of the mimetic phosphonates
1b-j showed characteristic downfield shifts which
permitted, from a straightforward comparison with lit-
erature data, the direct assignment of resonances for a-,

Scheme 2. Synthesis of the mono- and difluorobisphosphonic acids 3i, j.

Table 1. Selected 31P NMR data of the new PMEA diphosphate
mimetics 1b-j.

Chemical

shifts (ppm)

Coupling

constants (Hz)

Compound dPa dPb dPc 2Jab 2Jbc

1a 9.4 �19.6 �4.3 24.9 18.1

1b 9.7 �6.2 0.7 25.6 5.2

1c 9.2 14.7 13.7 29.2 7.5

1d 9.9 16.4 17.6 36.1 32.2

1e 9.8 3.9 9.5 34.9 15.8

1f 9.4 7.9 10.3 31.1 5.2

1g 9.8 4.2 9.3 34.4 13.3

1h 9.3 7.1 9.9 31.2 3.9

1i 10.1 �3.8 3.9 33.8 59.0

1j 9.5 6.8 8.6 31.3 12.2

Table 2. Selected 13C and 19F NMR data of the new PMEA
diphosphate mimetics 1c-j.

Chemical

shifts (ppm)

Coupling

constants (Hz)

Compound dC dF 2JFC 2JFPb 2JFPc

1c 30.8

1d 72.4

1e 78.0

1f 49.5

1g 57.4

1h 38.2

1i 118.7 �120.3 273.7 87.7 79.4

1j 89.3 �218.6 180.5 64.8 55.6
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b- and c-phosphorus atoms (Table 1). The a-P reso-
nance was relatively independent of the substituent
nature between b and c phosphorus atoms. Compared
to the parent phosphate, the phosphorus–phosphorus
coupling constant 2Jab was generally increased through
these changes and did not appear to correlate with the
electronegativity of the substituents. The resonance for
b-P was upfield from a-P for all analogues excepted the
methylene and hydroxyethylidene derivatives 1c,d. The
difluoromethylene and the hydroxyethylidene deriva-
tives 1d,i showed a large value for the 2Jbc coupling
constant. In contrast, the 2Jbc coupling constants for
the dihalogenomethylene analogues 1e,g were in the
same range as the parent phosphate. Moreover, pub-
lished 31P NMR data for diphosphate analogues bearing
a b,c-methylene bridge substituted with bulky and
anionic functions did not shown an increase of the
2Jbc coupling constant.34 This unusual degree of elec-
tronic interaction between b and c the phosphorus
atoms, previously reported in other series for difluoro-
methylene diphosphate analogues,35–37 reflects a com-
plex set factors including the combined
electronegativity and dp-bonding possibilities for a
b-P ligand which may led to conformational changes
in the phosphoryl chain.35

The resonance of carbon atom between b-P and c-P
showed a normal dependence to the electronegativity of
substituent (Table 2). The downfield shifts increased in
the series d(CF2)> d(CHF)> d(CCl2)> d
(COHCH3)> d(CBr2)> d(CHCl)> d(CHBr)> d(CH2).
Finally, a single fluorine resonance was observed in 19F
NMR spectra for both the difluoromethylene com-
pound 1i (d �120.3 ppm, dd) and the mixture of dia-
stereoisomeric monofluoromethylene compounds 1j (d
�218.6 ppm, ddd) showing that the fluorine environ-
ments could be considered as magnetically equivalent.
Coupling constants were different for the two phospho-
rus nuclei directly bonded to the fluorinated
b,c-methylene bridge. 2JFP values for coupling with
Pb were greater than those for coupling with Pc.

The substrate properties of these PMEA diphos-
phoryl derivatives were comparatively studied, in cell
free solutions, towards HIV-1 reverse transcriptase.
Indeed, it has been previously shown in various
nucleotide series that chemical modifications on
50-phosphate residues could preserve, in some cases,
the terminating substrate properties of the triphosphate
analogue in the DNA biosynthesis catalyzed by differ-
ent polymerases.17,38–40 The substitution of
b,c-pyrophosphate by b,c-phosphonates was rather
systematically studied for a series of antiviral nucleo-
side analogues (AZT and 20,30-dideoxynucleosides)41,42

including modification of the triphosphate chain at the
- position and presents some similarity with the com-
pounds under study. Thus, in the particular case of (R)

P- boranonucleotide analogues of AZT, the order of
activity towards the inhibition of HIV-1 reverse tran-
scriptase is CF2¼O�CHF>CCl2>NH>CH2,

41

showing that the b,c-difluoromethylene modification
is effective and comparable to that of a natural
bridge. However, the results obtained here demonstrate
that none of the compounds 1b-j showed substrate
properties towards HIV-1 reverse transcriptase till the
concentration of 100M (as example IC50 values for 1a
and 1i were 6.4� 0.8mM and 403� 75 mM, respective-
ly). Even so, it is unpredictable, modifications of the
nucleotide (either the sugar, base or 5’-triphosphate
moieties) may affect its substrate activity through the
modulation of its binding in the active site of the target
enzyme or its incorporation.

Several factors including size, polarity, and electro-
negativity may modulate the activity, even so a certain
tolerance of the HIV-1 reverse transcriptase to the c
-P-substituents was demonstrated in literature.42

To understand why diphosphate phosphonates ana-
logues 1c, 1e, 1g and 1j are poor substrates of HIV-1
RT in comparison to PMEApp 1a, we performed
modeling replacing the oxygen of the b,d bridge of
the diphosphate phosphonate by CH2, CCl2, CBr2 or
CF2 groups, with respect to specific geometry and bond
distances. According to Tuske et al.,43 amino acids
R72 and K65, and D113 to a lesser extent, play a key
role in the binding of the nucleotide in the active site
and in their incorporation by HIV-1 RT (Figure 2(a)).
If the substitution of oxygen atom of the,
b,c-pyrophosphate bond by a methylene group (CH2),
i.e. compound 1c (Figure 2(b)), does not cause steric
hindrance. However, the interaction with K65 (proton-
ated form in the catalytic site) is lost and is responsible
for nucleotide destabilization and discrimination.
Indeed, the modification of its binding at the RT
active site misaligns reactive centers and hampers the
nucleophilic attack at the catalytic step of incorpora-
tion into viral DNA. When the O of the b,c bridge is
substituted by CCl2 or CBr2, respectively, in com-
pounds 1e and 1g, the major drawback observed is
the steric hindrance (Figure 2(c) and (d)). Indeed, dis-
tances between analogues 1e and 1g and amino acids
K65 and D113 are less than 1.8 Å and this close vicin-
ity is prompted to destabilize complex between the
nucleotide and HIV-1 RT. When the O of the
bridge is replaced by a CF2, i.e. compound 1i, the
activity is somewhat restored. The steric hindrance is
rather acceptable (Figure 2(c)) and distances with
amino acids K65 and D113 are around 2.4 Å. The
main benefit is that CF2 modification can establish
electrostatic interactions with K65, counterbalancing
the negative effect of the b,c bridge modification.

Another important remark is the difference that
can be observed when comparing the crystallographic

Laux et al. 5



data from complexes of HIV-RT with purine or pyrim-
idine nucleotides. With purine nucleotides, as
PMPApp, the amino acid R72 plays a crucial role in
stacking the nucleobase, while only the amino acid R65
interacts with the O of the b,c bridge. With pyrimidine
nucleotides, their binding in the RT active site is slight-
ly different, both amino acids R72 and K65 interact

with the O of the a,b bridge and consequently the bind-
ing of the nucleotide is less sensible to the chemical
modification of the bridge. This may explain why the
modified phosphonate analogues of AZT are recog-
nized and substrates for HIV-1 RT.41 Thus, they are
efficiently incorporated in the growing nucleic acid
chain.

Figure 2. (a) Structure of HIV-1 RT active site in complex with PMPApp. (b), (c), (d) and (e) models for the putative positioning of
acyclic diphosphate phosphonates 1c, 1e, 1g, 1i in the active site of HIV-1 RT. The atomic coordinates (PDB 1T05 – HIV-1 RT in
complex with PMPApp) were used to visualize the complex HIV-1 RT- diphosphate phosphonate, after modeling, replacing PMP-
moiety by PME- one and the oxygen of the, bridge of the diphosphate phosphonate by CH2, CCl2, CBr2 or CF2 groups, respecting
specific geometry and bond distances. One magnesium ion is represented as green sphere. Amino acid R72 and the second mag-
nesium ion are intentionally omitted for figure clarity. (a) Structure 1T05: distances between the O of the, bridge and amino acids
K65 and D113 are mentioned in dotted line. (c) and (d) steric hindrance is mentioned in full line. (e) Interactions are mentioned in
dotted line.
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Conclusion

Nine diphosphate analogues of PMEA have been

designed as isostere of the parent diphosphorylated

form, PMEApp. The benefit of stable P–C bonds

replacing scissile P–O–C linkage constitutes an attrac-

tive interest to evaluate the electronic and stereochem-

ical requirements for binding to relevant proteins. It

was observed that HIV-RT does not extend the DNA

primer with the synthesized compounds. Within this

acyclic series, the replacement of the b,c bridge of the

diphosphate phosphonate by CH2, CHCl, CCl2, CHBr,

CBr2, CHF or CF2 groups has a drastic effect on the

recognition by the HIV-RT.
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