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Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain
localization is one of the biggest obstacles in expediting and fully automating large-scale fetalMRI processing.We propose amethod
for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due
to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a
sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain,
and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy,
we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We
carried out comparisons against templatematching and random forest based regressionmethods and the proposedmethod showed
superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and
how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain
development.

1. Introduction

Recent successful application of magnetic resonance imaging
(MRI) has provided us with an unprecedented opportunity
to study, in intricate detail, the developing brain in the living
fetus or neonate [1–7]. However, quantitative fetal brain anal-
ysis remains challenging due to the unique confrontations
associated with fetalMRI such asmotion artifacts, low signal,
and spatial resolution as shown in Figure 1.

Advances in medical image processing techniques have
facilitated the reconstruction of motion-corrected high-
resolution 3D fetal MR images [8–12] from stacks of 2D
intersecting images, which in turn have laid the foundation
for modeling [13–15] and quantitative analysis [1, 15, 16] of
the developing fetal brain. Such reconstruction methods rely
on initial localization and cropping of the brain region from

a standard wide field of view (FOV) MRI, to assist the slice-
to-volume registration process [17] by excluding surrounding
maternal tissues that can result in registration failure.

Fetal brain localization as an automated processing step is
one of the biggest obstacles in expediting and fully automat-
ing large-scale fetal MRI processing and analysis. To date, the
approaches proposed to address the issue of automating fetal
MRI brain localization can be classified into two categories:
template matching and machine learning approaches. In the
earlier category, Anquez et al. [18] proposed an approach
that starts by detecting the eyes using 3D template matching,
followed by segmentation of the brain using a 2D graph-
cut segmentation of the mid-sagittal slice rotated at several
angles. The best matching segmentation is selected and
used to initialize a 3D graph-cut segmentation. Taimouri
et al. [19] proposed another template matching approach
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Figure 1: An example of a fetal MR scan at 35.5 weeks of gestational
age (GA). The scan shows that the acquired image has an arbitrary
fetal orientation, motion artifacts, and low spatial resolution.

that registers a template to each slice of the fetal brain in
3D.

Examples of machine learning approaches include the
method proposed by Ison et al. [20], which is based on
a two-phase random forest (RF) classifier to suppress the
influence of maternal tissues and provide likely positions
of tissue centroids inside the brain. An approximation of a
high-order Markov Random Field (MRF) finds the optimal
selection of landmarks, and these landmarks, along with a
confidence weighted probability map, provide an estimate of
the center of a region of interest around the brain. Keraudren
et al. [21] described a different learning-based approach that
decomposes the search space by performing a 2D detection
process, based on Scale-Invariant-Feature-Transform (SIFT)
features, before accumulating the votes in 3D. The approach
relies on providing the gestational age as a prior knowledge
to remove the scale component.

Recently, Kainz et al. [22] proposed a localizationmethod
where rotation invariant feature descriptors (based on Spher-
ical Harmonics) for medical volumes of the uterus are
calculated in order to learn the appearance of the fetal brain
in the feature space. Alansary et al. [23] proposed a different
localization method where superpixels are first extracted and
a histogram of features for each superpixel is computed using
bag of words based on dense SIFT descriptors. Then, a graph
of superpixels is constructed and a RF classifier is trained to
distinguish between brain and nonbrain superpixels.

Although most previously reported methods achieved
accurate brain localization results, all methods were imple-
mented and tested using 1.5 T MR images and the general-
ization of these approaches to 3 T MR images has not been
examined. Fetal MRI performed at 3 T is emerging as a
promising modality for the evaluation of fetal anatomy as it

provides an increased signal-to-noise ratio (compared with
1.5 T). This increase in the signal-to-noise ratio can allow for
decreased acquisition time, increased spatial resolution, or a
combination of both, with the overall goal of obtaining more
detailed imaging of fetal anatomy.

In this article, we focus on developing a novel method
for fully automatic fetal brain localization from raw 3T MR
images, with no need for preprocessing (such as intensity
inhomogeneity correction) or prior knowledge about the
dataset under study (such as gestational age (GA) or imaging
plane). We treat the problem as a machine learning problem
where a model is trained using a sample of positive and
negative examples. From each sample, discriminant features
are extracted, for both positive (brain) and negative (non-
brain) examples, based on a 3D extension of the success-
ful Histogram of Oriented Gradients (HOG) [24] feature
descriptor. A sliding window classifier, based on Support
Vector Regression (SVR), is used to assign a score to all
possible windows in an image and the window with the
highest score is selected.

The remainder of this article is organized as follows. Sec-
tion 2 describes in detail the proposed method. In Section 3,
the experimental results of applying the proposed method
to 3 T MR fetal images are presented. We also compare the
performance of our method against a template matching
method and present its application in the optimization of
fetal motion correction. Section 4 discusses our study and
outlines areas for prospectivework.This paper is an extension
of previous preliminary work [25].

2. Methods

2.1. Data. The database for this study included a total of
104 MR images from 32 singleton fetuses of healthy women
and women with diabetes, between 34.30 and 37.60 weeks of
gestational age (mean and standard deviation of 35.92±0.83).
Ethical approval was obtained from the National Research
Ethics Committee (South East Scotland Research Ethics
Committee) and written informed consent was obtained.

2.2. MR Image Acquisition. Images were acquired on a
Siemens Magneton Verio 3 T MRI clinical scanner (Siemens
Healthcare GmbH, Erlangen, Germany). T2-weighted half-
Fourier acquisition single-shot turbo spin-echo images were
acquired of the fetal brain in sagittal, coronal, and transverse
orientations where at least one stack is available in each
anatomical direction (HASTE: TR/TE = 1800/86ms, FOV =
400 × 400mm, matrix = 192 (phase) × 256 (frequency), and
voxel size = 1.5 × 1.5 × 6mm).

2.3. The HOG Descriptor for 2D Images. In the 2D image
domain, successful methods such as Harris-Corner detector
[26] and the well-known SIFT descriptor [27] rely on aggre-
gated gradients. However, the HOGdescriptor [24] organizes
gradients into histograms. As the first step, the gradient image
is computed by convolving the input image with an appro-
priate filter mask. A grid of histograms is then constructed,
where each histogram organizes the respective gradients into
bins according to their orientation. To preserve locality, a
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histogram is computed for each cell in an evenly spaced grid.
Accordingly, each cell contains the same number of gradients
(depending on the cell size) and gets assigned exactly one
histogram. The cells themselves are then organized in rect-
angular blocks, which may overlap. The histogram values of
all cells within one block are concatenated to form a vector.
The vector of each block is then normalized and subsequently,
the concatenation of all those block-vectors yields the final
feature vector. Further details and an evaluation of the 2D
HOG descriptor can be found in Dalal and Triggs [24].

2.4. Extending HOG to 3D Images. Due to the nature of
the analyzed data, that is, 3D volumetric images, 3D feature
descriptors are ideal. It also has been demonstrated that 3D
descriptors aremuchmore descriptive than their correspond-
ing 2D, as richer information is encoded into the histograms
[28].

Here, our extension of the HOG approach to 3D medical
images consists of two steps. First, we need to extract
gradients from the images. Second, we need to organize
these three-dimensional gradients into bins using appropriate
histograms computed over uniformly spaced grid-blocks.
This step is straightforward, as we simply extend the grid and
histogram dimension, each by one.We then can convert each
gradient into spherical coordinates (1) and bin it according to
its orientation (azimuth 𝜃 ∈ [0, 2𝜋) and zenith 𝜙 ∈ [0, 𝜋]).

(𝑟𝜃𝜙) =(√𝑥2 + 𝑦2 + 𝑧2
tan−1 (𝑦𝑥)
cos−1 (𝑧𝑟 ) ). (1)

The first step, however, does not generalize as easily.
To compute the image-gradient, several approaches might
be considered. According to Dalal and Triggs [24], the
convolution of the image with a 1D [−1, 0, 1] filter mask
is most suitable. This approximates the partial first-order
derivative according to∇𝑓 (𝑥, 𝑦) = (𝛿𝑓𝛿𝑥 , 𝛿𝑓𝛿𝑦)𝑇 (2)

≈ (𝑓 (𝑥 + 1, 𝑦) − 𝑓 (𝑥 − 1, 𝑦)𝑓 (𝑥, 𝑦 + 1) − 𝑓 (𝑥, 𝑦 − 1)) , (3)

∇𝑓 (𝑥, 𝑦, 𝑧) = (𝛿𝑓𝛿𝑥 , 𝛿𝑓𝛿𝑦 , 𝛿𝑓𝛿𝑧)𝑇 (4)

≈ (𝑓(𝑥 + 1, 𝑦, 𝑧) − 𝑓 (𝑥 − 1, 𝑦, 𝑧)𝑓 (𝑥, 𝑦 + 1, 𝑧) − 𝑓 (𝑥, 𝑦 − 1, 𝑧)𝑓 (𝑥, 𝑦, 𝑧 + 1) − 𝑓 (𝑥, 𝑦, 𝑧 − 1)) . (5)

Based on the description above, Algorithm 1 summarizes
the extraction of the 3DHOG feature vector from 3D fetalMR
images.

It is worth mentioning that Histograms of Oriented 3D
Gradients have been previously reported in the literature, for

Set the block size 𝑠 for image 𝐼;
Set the number of histogram bins 𝐵;
Set f3dhog to represent the 3DHOG feature vector;
Compute the image gradient 𝐺;
foreach block do

foreach gradient g in 𝐺 do
Transform g to spherical coordinates;
Insert g into corresponding histogram bins;

end
Normalize block-vector b;
Append normalized b to f3dhog;

end

Algorithm 1: Histograms of Oriented 3D Gradients (3DHOG).

example, in the areas of video sequence analysis [29, 30] or 3D
object retrieval [31]. Those 3D extended HOGs are different
from ours as their data representation was 2D + time [29, 30]
or 3D mesh models [31]. Therefore, the previously proposed
extensions of HOG cannot be directly (or simply) applied to
our data as we deal with 3D volumetric medical images.

2.5. Brain Localization Using Sliding Window. A sliding
window is used to move over all possible windows in an
image, and the window with the highest score is selected.
Given that one of our aims is to provide a method that does
not require any prior knowledge, we use a sliding window
of a fixed size that is large enough to hold the largest brain
in our database. To assign a score to each window, we use
Support Vector Regression (SVR). For our experiments, the
detector has the following default settings: [−1, 0, 1] gradient
filter with no smoothing; 9 orientation bins in 0–180 degrees
for azimuth and zenith; 3 × 3 × 3 voxel blocks with an overlap
of half the block size; L2-norm block normalization; 40 × 40× 5 step size for sliding window; SVR (𝐶 = 1, 𝜖 = 0.1) with a
first-order polynomial kernel. In the Results, we perform an
evaluation to measure the performance with respect to the
variation of these parameters and to find the best values for
our learning task.

2.6. Comparisons against Other Methods. We implemented
a basic method of template matching, with the template
representing an average fetal brain, to compare our proposed
method against. We will call the template 𝑇(𝑥𝑡, 𝑦𝑡, 𝑧𝑡), where(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) represent the coordinates of each voxel in the
template. We will call the input or search image 𝑆(𝑥, 𝑦, 𝑧),
where (𝑥, 𝑦, 𝑧) represent the coordinates of each voxel in
the search image. We then simply move the center (or the
origin) of the template𝑇(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) over each (𝑥, 𝑦, 𝑧) point in
the search image and calculate the sum of products between
the coefficients in 𝑆(𝑥, 𝑦, 𝑧) and 𝑇(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) over the whole
area spanned by the template. As all possible positions of the
template with respect to the search image are considered, the
position with the best score is the best position. Here, the best
score is defined as the lowest Sum of Absolute Differences
(SAD):
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SAD (𝑥, 𝑦, 𝑧)
= 𝑁∑
𝑖=0

𝑀∑
𝑗=0

𝐿∑
𝑘=0

Diff (𝑥 + 𝑖, 𝑦 + 𝑗, 𝑧 + 𝑘, 𝑖, 𝑗, 𝑘) , (6)

where𝑁,𝑀, and 𝐿 denote the sizes of each dimension of the
template image. We also experimented replacing the support
vector regressor with a random forest regressor [32] using the
following parameter settings: number of trees in the forest =
10, minimum number of samples required to be at a leaf node
= 1, and unlimited number of leaf nodes.

2.7. Validation. Leave-one-out and 10-fold cross-validation
procedure were performed for the 104 MR images. In case
of leave-one-out cross-validation, each image in turn was
left out as a test sample and the remaining 103 images were
used as the training dataset. In 10-fold cross-validation, the
original dataset was randomly partitioned into 10 equal sized
subsamples. Of the 10 subsamples, a single subsample was
retained as the test data, and the remaining 9 subsampleswere
used as training data. The cross-validation process was then
repeated 10 times (the folds), with each of the 10 subsamples
used exactly once as the validation data. A correct detection
or complete brain localization was defined as the enclosure of
all brain voxels within the detected box.

We also measured the distance 𝑑 between the center
of the ground truth bounding box and the center of the
detected bounding box, and median absolute error, MdAE,
was obtained using the following formula:

MdAE = median
𝑖=1,...,𝑛

𝑑𝑖 , (7)

where 𝑛 is the total number of images used for validation.

3. Results

Using leave-one-out cross-validation, the proposed method
provided 96% success rate in brain localization andMdAE of
6.95mm. When the 10-fold cross-validation was performed,
the method provided comparable results with success rate of
95% and MdAE of 7.73mm.

3.1. Influence of Parameters. Figure 2 summarizes the influ-
ence of the various HOG parameters on overall detection
performance. Detector performance is sensitive to the way
in which gradients are computed, but the simplest scheme
provided better accuracy. As shown in Figure 2, increasing
the number of orientation bins did not greatly improve
performance up to 9 bins, but beyond this, performance
started to degrade. Gradient strengths vary over a wide
range due to intensity inhomogeneity; therefore effective
local contrast normalization between overlapping blocks is
essential for good performance. From our experiments, it
turns out that L1-norm is better than L2-norm. When tested
for different block sizes, the block size of 3 × 3 × 3 voxels
yielded the best performance. Testing for different sliding
window step sizes, the step size of 40 × 40 × 5 had the
best performance. Experiments also showed that SVR with

a second- and third-order polynomial kernels outperformed
linear SVR.

3.2. Comparisons against OtherMethods. To date, nomethod
has been proposed for automatic localization of the fetal brain
using 3 T MR images, making it difficult to compare our
proposed method against a benchmark method. However,
we compared our results against a basic method of template
matching, with the template representing an average fetal
brain. The median localization error for the implemented
template-based matching approach was MdAE = 12.5mm.
This shows a degradation of brain localization accuracy
compared to proposedmethod usingHistograms of Oriented
3D Gradients. When we experimented replacing the support
vector regressor with a random forest regressor, we obtained
results with MdAE of 7.9mm.

3.3. Application to Robust Motion Correction. Due to the
nature of the acquisition, that is, acquiring stacks of 2D
slices in real-time MRI, in order to reduce the scan time
while avoiding slice cross-talk artifacts, slices are quite often
misaligned due to fetal motion and form an inconsistent
3D volume (see Figure 1). Registration-based approaches
for reconstructing motion-corrected high-resolution fetal
brain volumes require a cropped box around the brain to
exclude irrelevant tissues, otherwise the registration, and the
reconstruction, will likely fail. Figure 3 shows an example of
three different subjects that were successfully reconstructed
using the Baby ToolKit [17]. It is clear that brain cropping is
essential for the reconstruction process, and the registration
fails when the whole FOV is used.

4. Discussion

In this article, Histogram of Oriented Gradients (HOG) is
proposed to automatically localize the fetal brain in 3 T MR
images. The main contribution of the article is the extension
of HOG to 3D for fetal brain MRI localization. We chose
to use HOG features partly because of its demonstrated
superiority to other widely used features like SIFT/SURF in
many applications [24, 33, 34] and partly because the use
of HOG features in our task is rational as head boundaries
are HOG rich relative to surrounding maternal tissues (see
Figure 4).

We also chose to use Support Vector Regression (SVR)
onHOG features, instead of Support VectorMachine (SVM),
which was proposed by Dalal and Triggs [24] in the original
HOG feature descriptor. Typically, SVR is used with a sliding
window approach to assign a score to all possible windows
in an image and the window with the highest score is then
selected. Therefore, by using SVR over SVM, we avoid an
inevitable problem that arises in overlapping sliding window
approach, which is the occurrence of multiple detection
windows in the same neighborhood area [35].

We examined the influence of different HOG parameters
on overall detection performance in terms ofmedian absolute
error of a bounding box detected around the fetal brain
and the ground truth (defined manually). In our results,
we achieved 96% for complete brain localization, and the
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Figure 2: The effect of the various HOG parameters on overall localization performance.

automated detection process takes less than 5 seconds on a
normal computer. Our method is more general than Anquez
et al. [18] as it does not rely on localizing the eyes. It also does
not require any prior knowledge (such as gestational age) as
in Keraudren et al. [21].

We carried out comparisons against template match-
ing and random forest based regression methods and the
proposed method showed superior performance. We also
showed the application of the proposed method in the
optimization of fetal motion correction and how it is essential
for the motion correction process.

Noteworthy is the fact that the original HOG feature
descriptor is not rotation invariant, given that we relied on
the large variation of the training dataset to handle different
orientations. Using a database of 104MRI scans aged between
34 and 38 weeks of GA, the rotation variance is represented
within the training samples and hence themodel will learn to
classify it. In addition, the training samples were acquired in
different planes (axial, coronal, and sagittal), which is another
strength of the proposed method.

5. Conclusion

The main motivation behind this work was to automate the
fetal brain localization step which is one of the obstacles
preventing rapid deployment and full automation of large-
scale fetal MRI postprocessing. Due to the nature of the
acquisition, that is, acquiring stacks of 2D slices in real-
time MRI, in order to reduce the scan time while avoiding
slice cross-talk artifacts, slices are quite often misaligned
due to fetal motion and form an inconsistent 3D volume.
Registration-based approaches for reconstructing motion-
corrected high-resolution fetal brain volumes require a
cropped box around the brain to exclude irrelevant tissues,
otherwise the registration, and the reconstruction, will likely
fail. Future work will include applying and evaluating the
brain localization framework to a larger GA range (i.e.,
second trimester), and different MRI modalities of the fetal
brain, such as T1-weighted, Echo Planar Imaging (EPI), and
Diffusion Tensor Imaging (DTI). This will allow for more
accurate assessment and analysis of the developing fetal
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(a)

(b)

Figure 3: Three MRI scans reconstructed using raw MRI without brain localization and cropping (a). Inside the green colored frames (b),
the same images were motion-corrected after automatic brain localization and cropping using the proposed method.

(a) (b)

Figure 4: An example of an axial fetal MR image used from the training database (a) and the resulting computed HOG descriptor overlaid
on the example image (b).

brain across several stages of development using different
imaging modalities. The method is available to the research
community at http://brainsquare.org.
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