Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-3-Phenyl-2-(1-tosyl-1*H*-indol-3-ylcarbonyl)acrylonitrile

S. Paramasivam,^a G. Bhaskar,^b P. R. Seshadri^a* and P. T. Perumal^b

^aPostgraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and ^bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India Correspondence e-mail: seshadri_pr@yahoo.com

Received 27 January 2012; accepted 4 February 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.176; data-to-parameter ratio = 18.8.

In the title compound, $C_{25}H_{18}N_2O_3S$, the indole moiety is planar and makes a dihedral angle of 89.95 (09)° with the phenyl ring of the sulfonyl substituent. The molecular conformation features a weak $C-H\cdots N$ short contact and the crystal packing reveals a weak $C-H\cdots O$ hydrogen bond.

Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001); Chai et al. (2006); Kolocouris et al. (1994); Ma et al. (2001); Nieto et al. (2005); Singh et al. (2000). For the bondlength difference, see: Allen (1981); Govindasamy et al. (1998); Sankaranarayanan et al. (2000). For the N atomhybridization, see: Beddoes et al. (1986). For related structures, see: Seshadri et al. (2002).

Experimental

Crystal data $C_{25}H_{18}N_2O_3S$ $M_r = 426.47$

Monoclinic, C2/ca = 33.8741 (13) Å b = 7.1294 (3) Å c = 19.9180 (9) Å $\beta = 118.4170 (2)^{\circ}$ $V = 4230.6 (3) \text{ Å}^{3}$ Z = 8

Data collection

Bruker SMART APEXII area- detector diffractometer	5285 independent reflections 2177 reflections with $I > 2\sigma(I)$
19948 measured reflections	$R_{\rm int} = 0.066$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 281 parameters $wR(F^2) = 0.176$ H-atom parameters constrainedS = 0.95 $\Delta \rho_{max} = 0.25$ e Å $^{-3}$ 5285 reflections $\Delta \rho_{min} = -0.25$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $C18-H18\cdots N2$ 0.932.733.433 (4)133 $C5-H5\cdots O3^i$ 0.932.863.551 (4)132

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*, *PLATON* and *publCIF* (Westrip, 2010).

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2387).

References

- Allen, F. H. (1981). Acta Cryst. B37, 900-906.
- Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). *Anti-Cancer Drug Des.* 16, 167–174.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.
- Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277–279.
- Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.
- Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525–4542.
- Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.
- Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Babu, G. & Perumal, P. T. (2000). Acta Cryst. C56, 475–476.
- Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. & Kim, M. J. (2002). Acta Cryst. C58, 0700–0703.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation

 $0.21 \times 0.19 \times 0.15 \text{ mm}$

 $\mu = 0.18 \text{ mm}^{-1}$

T = 298 K

Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Folia Microbiol. (Praha), 45, 173–176.

Spek, A. L. (2009). Acta Cryst. D65, 148–155. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supplementary materials

Acta Cryst. (2012). E68, o683-o684 [doi:10.1107/S1600536812004886]

(E)-3-Phenyl-2-(1-tosyl-1H-indol-3-ylcarbonyl)acrylonitrile

S. Paramasivam, G. Bhaskar, P. R. Seshadri and P. T. Perumal

Comment

Indole derivatives exhibit anti-bacterial (Nieto *et al.*, 2005), anti-cancer, anti-malarial and anti-hypertensive (Ma *et al.*, 2001) activities. In addition, indole derivatives are known to exhibit anti-fungal (Singh *et al.*, 2000), anti-tumour (Andreani *et al.*, 2001), anti-viral (Kolocouris *et al.*, 1994) and anti-hepatitis B virus (Chai *et al.*, 2006) activities. Against this background, the title compound was chosen for X-ray structure analysis (Fig.1).

The indole ring is planar and the sulfonyl bound phenyl ring is perpendicular to the nine membered indole moiety with a dihedral angle of 89.95 (09)°.

The torsion angles O1—S1—N1—C1 and O2—S1—N1—C7 [45.9 (3)° and -23.3 (3)°, respectively] indicates the syn conformation of the sulfonyl moiety. The sum of the bond angles around N1 [357.95 (23)°] indicates sp² hybridization (Beddoes *et al.*,1986).

A distorted tetrahedral geometry $[O1-S1-O2 = 120.75 (13)^{\circ}$ and $O1-S1-N1 = 104.53 (12)^{\circ}]$ around S1 is observed. The widening of the angles may be due to repulsive interactions between the two short S=O bonds.

In the benzene ring of the indole system, the *endo*-cyclic angles at C2, C5 and C6 are contracted to 116.9 (3)°, 118.6 (3)° and 118.5 (3)° respectively, while those at C1, C3 and C4 expanded to 123.3 (3)°, 121.5 (3)° and 121.2 (3)° respectively. This may be due to a real effect caused by the fusion of the smaller pyrrole ring to the six membered benzene ring, and the strain is taken up by angular distortion rather than by bond length distortions (Allen, 1981). A similar effect has also been observed by Sankaranarayanan *et al.* (2000) and Seshadri *et al.* (2002).

The difference in C—N bond lengths may be due to the electron-withdrawing character of the phenyl sulfonyl group (Govindasamy *et al.*, 1998; Seshadri *et al.*, 2002). The molecular structure is stabilised by a weak C—H···N intramolecular interactions and the crystal packing reveals a weak C—H···O hydrogen bond.

Experimental

To the mixture of cyanoacetylindole(2 mmol) and benzaldehyde (2.1 mmol) sodium methoxide (10 mol %) was added in methanol. The mixture was allowed to reflux for 2 h. After completion of the reaction, which was washed with water and extracted with ethylacetate ($10 \times 2 = 20$ ml), the filtrate was dried with sodium sulfate and concentrated. The crude was subjected to column chromatography to obtain pure condensed chalcone product. To the chalcone (1 mmol) which was suspended in 10 ml benzene add aqueous 30% NaOH (10 ml), containing tosyl chloride (1.1 mmol) and tetrabutyl-ammonium bromide (0.10 mmol). After stirring vigorously for 30 min, the layers were separated and the water layer was extracted with benzene (10 ml). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by recrystallisation from CH₂Cl₂/hexane to afford (*E*)-3-phenyl-2-(1-tosyl-1*H*-indole-3-carbonyl)acrylonitrile.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and $U_{iso}(H)$ = 1.5 $U_{eq}(C)$ for methyl H atoms and 1.2 $U_{eq}(C)$ for other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

(E)-3-Phenyl-2-(1-tosyl-1H-indol-3-ylcarbonyl)acrylonitrile

Crystal data	
$C_{25}H_{18}N_2O_3S$	F(000) = 1776
$M_r = 426.47$	$D_{\rm x} = 1.339 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 5285 reflections
a = 33.8741 (13) Å	$\theta = 1.4 - 28.4^{\circ}$
b = 7.1294 (3) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 19.9180(9) Å	T = 298 K
$\beta = 118.4170 \ (2)^{\circ}$	Block, colourless
$V = 4230.6 (3) \text{ Å}^3$	$0.21 \times 0.19 \times 0.15 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans 19948 measured reflections 5285 independent reflections <i>Refinement</i>	2177 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -44 \rightarrow 45$ $k = -9 \rightarrow 9$ $l = -26 \rightarrow 21$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.176$	neighbouring sites
S = 0.95	H-atom parameters constrained
5285 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0805P)^2]$
281 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.31518 (8)	0.3247 (4)	0.26078 (18)	0.0600(7)	
C2	0.30356 (10)	0.4960 (4)	0.2794 (2)	0.0746 (9)	
H2	0.3167	0.5385	0.3296	0.090*	
C3	0.27188 (11)	0.5994 (4)	0.2206 (3)	0.0848 (10)	
H3	0.2632	0.7148	0.2310	0.102*	
C4	0.25246 (10)	0.5359 (4)	0.1457 (2)	0.0800 (9)	
H4	0.2306	0.6085	0.1071	0.096*	
C5	0.26497 (9)	0.3665 (4)	0.12750 (19)	0.0699 (8)	
Н5	0.2521	0.3259	0.0771	0.084*	
C6	0.29717 (8)	0.2582 (4)	0.18621 (17)	0.0564 (7)	
C7	0.31823 (8)	0.0804 (4)	0.18886 (16)	0.0555 (7)	
C8	0.34654 (9)	0.0440 (4)	0.26354 (16)	0.0592 (7)	
H8	0.3643	-0.0626	0.2817	0.071*	
C9	0.30954 (9)	-0.0416 (4)	0.12459 (16)	0.0591 (7)	
C10	0.34231 (8)	-0.1964 (4)	0.13431 (14)	0.0536 (7)	
C11	0.38775 (10)	-0.1755 (4)	0.19112 (16)	0.0576 (7)	
C12	0.32800 (9)	-0.3435 (4)	0.08643 (15)	0.0578 (7)	
H12	0.2983	-0.3363	0.0482	0.069*	

C13	0.35158 (9)	-0.5115 (4)	0.08504 (15)	0.0546 (7)
C14	0.33458 (9)	-0.6116 (4)	0.01750 (17)	0.0658 (8)
H14	0.3087	-0.5700	-0.0248	0.079*
C15	0.35560 (11)	-0.7728 (4)	0.0120 (2)	0.0774 (9)
H15	0.3440	-0.8379	-0.0339	0.093*
C16	0.39340 (11)	-0.8362 (4)	0.0741 (2)	0.0812 (9)
H16	0.4079	-0.9431	0.0700	0.097*
C17	0.41011 (11)	-0.7421 (4)	0.1426 (2)	0.0809 (9)
H17	0.4353	-0.7876	0.1852	0.097*
C18	0.38943 (10)	-0.5804 (4)	0.14814 (17)	0.0713 (8)
H18	0.4009	-0.5170	0.1945	0.086*
C19	0.42361 (9)	0.3581 (4)	0.39664 (15)	0.0606 (7)
C20	0.45161 (10)	0.2880 (5)	0.37005 (18)	0.0793 (9)
H20	0.4490	0.1638	0.3541	0.095*
C21	0.48304 (11)	0.4022 (6)	0.36733 (19)	0.0887 (10)
H21	0.5017	0.3542	0.3493	0.106*
C22	0.48793 (10)	0.5860 (5)	0.39046 (18)	0.0789 (10)
C23	0.45972 (10)	0.6538 (5)	0.41689 (19)	0.0803 (9)
H23	0.4625	0.7779	0.4329	0.096*
C24	0.42765 (10)	0.5417 (4)	0.42011 (17)	0.0716 (8)
H24	0.4089	0.5896	0.4380	0.086*
C25	0.52268 (11)	0.7124 (6)	0.3866 (2)	0.1128 (13)
H25A	0.5393	0.6429	0.3672	0.169*
H25B	0.5428	0.7582	0.4368	0.169*
H25C	0.5080	0.8164	0.3534	0.169*
N1	0.34515 (7)	0.1880 (3)	0.30873 (13)	0.0630 (6)
N2	0.42442 (9)	-0.1524 (3)	0.23564 (16)	0.0792 (8)
01	0.36234 (7)	0.3040 (3)	0.43741 (12)	0.0896 (7)
O2	0.40187 (7)	0.0271 (3)	0.42345 (11)	0.0830 (6)
O3	0.27557 (7)	-0.0232 (3)	0.06329 (12)	0.0832 (6)
S 1	0.38381 (3)	0.21122 (11)	0.40061 (4)	0.0698 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0581 (16)	0.0485 (17)	0.088 (2)	-0.0027 (14)	0.0464 (16)	-0.0045 (16)
C2	0.0714 (19)	0.064 (2)	0.105 (2)	-0.0046 (17)	0.0555 (19)	-0.0165 (19)
C3	0.079 (2)	0.058 (2)	0.142 (3)	-0.0015 (18)	0.072 (2)	-0.009 (2)
C4	0.0670 (19)	0.060 (2)	0.120 (3)	0.0096 (16)	0.051 (2)	0.013 (2)
C5	0.0605 (17)	0.0593 (19)	0.096 (2)	0.0004 (15)	0.0419 (17)	0.0019 (17)
C6	0.0508 (15)	0.0480 (16)	0.077 (2)	-0.0012 (13)	0.0361 (15)	0.0000 (15)
C7	0.0586 (16)	0.0462 (16)	0.0676 (18)	-0.0012 (13)	0.0347 (15)	-0.0047 (14)
C8	0.0658 (17)	0.0487 (16)	0.0690 (19)	0.0006 (13)	0.0370 (16)	-0.0050 (14)
C9	0.0588 (16)	0.0520 (17)	0.0646 (18)	-0.0011 (14)	0.0277 (15)	-0.0014 (14)
C10	0.0556 (15)	0.0493 (16)	0.0567 (16)	0.0007 (13)	0.0275 (14)	0.0008 (13)
C11	0.0592 (18)	0.0532 (17)	0.0608 (17)	0.0045 (14)	0.0288 (16)	-0.0009 (14)
C12	0.0603 (16)	0.0562 (17)	0.0595 (17)	-0.0012 (14)	0.0305 (14)	0.0026 (14)
C13	0.0584 (16)	0.0473 (16)	0.0651 (17)	-0.0017 (13)	0.0352 (14)	-0.0012 (14)
C14	0.0714 (18)	0.0610 (18)	0.0725 (19)	-0.0006 (15)	0.0403 (16)	-0.0085 (15)
C15	0.093 (2)	0.064 (2)	0.090 (2)	-0.0005 (18)	0.055 (2)	-0.0148 (18)

supplementary materials

C16	0.090 (2)	0.059 (2)	0.117 (3)	0.0085 (18)	0.067 (2)	0.002 (2)
C17	0.082 (2)	0.060(2)	0.099 (3)	0.0091 (17)	0.042 (2)	0.0116 (19)
C18	0.081 (2)	0.0520 (18)	0.080(2)	0.0044 (16)	0.0374 (18)	0.0024 (15)
C19	0.0656 (17)	0.0619 (19)	0.0548 (16)	-0.0023 (15)	0.0290 (14)	-0.0033 (14)
C20	0.079 (2)	0.082 (2)	0.087 (2)	-0.0003 (18)	0.0478 (19)	-0.0138 (18)
C21	0.075 (2)	0.110 (3)	0.093 (2)	-0.002(2)	0.050(2)	-0.007(2)
C22	0.0578 (18)	0.095 (3)	0.070(2)	-0.0026 (18)	0.0193 (16)	0.0178 (19)
C23	0.072 (2)	0.065 (2)	0.089 (2)	-0.0021 (17)	0.0269 (18)	0.0049 (17)
C24	0.0721 (19)	0.067 (2)	0.080(2)	-0.0013 (16)	0.0406 (17)	-0.0026 (17)
C25	0.073 (2)	0.143 (4)	0.111 (3)	-0.020(2)	0.034 (2)	0.029 (3)
N1	0.0689 (14)	0.0563 (14)	0.0699 (15)	-0.0030 (12)	0.0381 (13)	-0.0106 (13)
N2	0.0704 (17)	0.0706 (17)	0.0851 (18)	0.0043 (14)	0.0276 (15)	0.0005 (14)
01	0.1087 (16)	0.0969 (17)	0.0961 (16)	-0.0169 (13)	0.0755 (14)	-0.0299 (13)
O2	0.1187 (17)	0.0612 (13)	0.0717 (13)	-0.0003 (12)	0.0473 (12)	0.0074 (10)
O3	0.0740 (13)	0.0767 (14)	0.0737 (13)	0.0158 (11)	0.0147 (12)	-0.0106 (11)
S1	0.0880 (6)	0.0691 (6)	0.0650 (5)	-0.0087 (4)	0.0467 (4)	-0.0094 (4)

Geometric parameters (Å, °)

C1—C2	1.386 (4)	C14—H14	0.9300	
C1—C6	1.393 (4)	C15—C16	1.366 (4)	
C1—N1	1.404 (3)	C15—H15	0.9300	
С2—С3	1.368 (5)	C16—C17	1.378 (5)	
С2—Н2	0.9300	C16—H16	0.9300	
C3—C4	1.389 (5)	C17—C18	1.380 (4)	
С3—Н3	0.9300	C17—H17	0.9300	
C4—C5	1.384 (4)	C18—H18	0.9300	
C4—H4	0.9300	C19—C24	1.375 (4)	
C5—C6	1.393 (4)	C19—C20	1.381 (4)	
С5—Н5	0.9300	C19—S1	1.738 (3)	
C6—C7	1.443 (3)	C20—C21	1.362 (4)	
С7—С8	1.357 (4)	C20—H20	0.9300	
С7—С9	1.457 (4)	C21—C22	1.373 (5)	
C8—N1	1.381 (3)	C21—H21	0.9300	
С8—Н8	0.9300	C22—C23	1.379 (4)	
С9—ОЗ	1.223 (3)	C22—C25	1.513 (4)	
C9—C10	1.511 (3)	C23—C24	1.375 (4)	
C10-C12	1.343 (3)	C23—H23	0.9300	
C11—N2	1.144 (3)	C24—H24	0.9300	
C11—N2	1.144 (3)	C25—H25A	0.9600	
C12—C13	1.447 (4)	C25—H25B	0.9600	
C12—H12	0.9300	C25—H25C	0.9600	
C13—C14	1.383 (4)	N1—S1	1.676 (2)	
C13—C18	1.390 (4)	O1—S1	1.418 (2)	
C14—C15	1.383 (4)	O2—S1	1.428 (2)	
C_{1} C_{1} C_{4}	122 2 (2)	C14 C15 U15	120.0	
$C_2 = C_1 = C_0$	123.3(3) 120.4(3)	$C_{14} - C_{13} - m_{13}$	120.0 120.1(2)	
$C_2 \rightarrow C_1 \rightarrow N_1$	129.4(3) 107.2(2)	C15 - C16 - U17	120.1(3)	
$C_0 - C_1 - N_1$	10/.3(2)	C13 - C10 - H10	120.0	
U3-U2-U1	110.9 (3)	U1/U10H10	120.0	

C3 C2 H2	121.6	C16 C17 C18	1201(3)
$C_{3} - C_{2} - H_{2}$	121.0	C16 C17 H17	120.1 (5)
$C_1 = C_2 = H_2$	121.0 121.5(3)	C10-C17-H17	120.0
$C_2 = C_3 = C_4$	121.3 (3)	$C_{10} - C_{17} - C_{18} - C_{12}$	120.0
$C_2 = C_3 = H_3$	119.5	C17 - C18 - U18	120.3 (3)
C4—C3—H3	119.3	C12 C18 H18	119.7
C_{5}	121.2 (3)	C13—C18—H18	119.7
C3—C4—H4	119.4	C_{24} C_{19} C_{20}	120.0 (3)
C3—C4—H4	119.4	C24—C19—S1	120.8 (2)
C4—C5—C6	118.6 (3)	C20—C19—S1	119.2 (2)
С4—С5—Н5	120.7	C21—C20—C19	119.4 (3)
С6—С5—Н5	120.7	C21—C20—H20	120.3
C1—C6—C5	118.5 (3)	C19—C20—H20	120.3
C1—C6—C7	107.6 (2)	C20—C21—C22	122.0 (3)
C5—C6—C7	133.9 (3)	C20—C21—H21	119.0
C8—C7—C6	106.7 (2)	C22—C21—H21	119.0
C8—C7—C9	126.2 (2)	C21—C22—C23	117.9 (3)
C6—C7—C9	127.1 (3)	C21—C22—C25	121.6 (3)
C7—C8—N1	110.3 (2)	C23—C22—C25	120.5 (4)
С7—С8—Н8	124.9	C24—C23—C22	121.4 (3)
N1—C8—H8	124.9	C24—C23—H23	119.3
O3—C9—C7	120.9 (2)	С22—С23—Н23	119.3
O3—C9—C10	119.4 (2)	C23—C24—C19	119.4 (3)
C7—C9—C10	119.6 (2)	C23—C24—H24	120.3
C12—C10—C11	122.4 (2)	C19—C24—H24	120.3
C12—C10—C9	119.0 (2)	C22—C25—H25A	109.5
C11—C10—C9	118.5 (2)	C22—C25—H25B	109.5
N2—C11—C10	177.4 (3)	H25A—C25—H25B	109.5
N2-C11-C10	177.4 (3)	C22—C25—H25C	109.5
C10-C12-C13	130.1 (2)	H25A—C25—H25C	109.5
C10—C12—H12	115.0	H25B—C25—H25C	109.5
C13-C12-H12	115.0	C8-N1-C1	108.1(2)
C14-C13-C18	118.4 (3)	C8-N1-S1	122.25(19)
C_{14} C_{13} C_{12}	117.9(3)	C1 - N1 - S1	122.23(1)
C_{18}^{18} C_{13}^{12} C_{12}^{12}	117.5(3) 123.7(3)	01 1 02	127.0(2) 120.75(13)
$C_{10} - C_{10} - C_{12}$	125.7(5) 120.0(3)	01 - 51 - 02	120.75(13) 106.40(12)
$C_{15} = C_{14} = C_{15}$	120.9 (3)	O1 = S1 = N1 O2 = S1 = N1	100.49(12) 104.52(12)
C_{13} C_{14} H_{14}	119.5	$O_2 = S_1 = N_1$	104.33(12) 110.00(14)
CI3-CI4-HI4	119.5	01 - S1 - C19	110.00 (14)
	120.0 (3)	02 - S1 - C19	110.14 (13)
С16—С15—Н15	120.0	N1—S1—C19	103.28 (12)
C6—C1—C2—C3	1.7 (4)	C14—C15—C16—C17	1.3 (5)
N1—C1—C2—C3	-177.8 (3)	C15—C16—C17—C18	-1.9 (5)
C1—C2—C3—C4	-0.3 (4)	C16-C17-C18-C13	0.3 (5)
C2—C3—C4—C5	-1.1 (5)	C14—C13—C18—C17	1.7 (4)
C3—C4—C5—C6	1.0 (4)	C12—C13—C18—C17	179.8 (2)
C2—C1—C6—C5	-1.8 (4)	S1-C19-C20-C21	-179.6 (2)
N1—C1—C6—C5	177.8 (2)	C19—C20—C21—C22	0.1 (5)
C2—C1—C6—C7	177.9 (2)	C20—C21—C22—C23	-0.1 (5)
N1-C1-C6-C7	-2.5 (3)	C20—C21—C22—C25	-179.5 (3)

C4—C5—C6—C1	0.4 (4)	C25—C22—C23—C24	179.3 (3)
C4—C5—C6—C7	-179.3 (3)	C22—C23—C24—C19	0.1 (5)
C1—C6—C7—C8	1.8 (3)	C20-C19-C24-C23	-0.1 (4)
C5—C6—C7—C8	-178.5 (3)	S1-C19-C24-C23	179.4 (2)
C1—C6—C7—C9	179.2 (2)	C7—C8—N1—C1	-1.1 (3)
C5—C6—C7—C9	-1.1 (5)	C7—C8—N1—S1	-166.10 (19)
C6-C7-C8-N1	-0.5 (3)	C2-C1-N1-C8	-178.2 (3)
C9—C7—C8—N1	-177.9 (2)	C6—C1—N1—C8	2.2 (3)
C8—C7—C9—O3	159.9 (3)	C2-C1-N1-S1	-14.2 (4)
C6—C7—C9—O3	-17.1 (4)	C6-C1-N1-S1	166.19 (18)
C8—C7—C9—C10	-18.5 (4)	C8—N1—S1—O1	-152.2 (2)
C6—C7—C9—C10	164.5 (2)	C1—N1—S1—O1	45.9 (2)
O3—C9—C10—C12	-20.6 (4)	C8—N1—S1—O2	-23.3 (2)
C7—C9—C10—C12	157.8 (2)	C1—N1—S1—O2	174.8 (2)
O3—C9—C10—C11	155.9 (3)	C8—N1—S1—C19	91.9 (2)
C7—C9—C10—C11	-25.7 (3)	C1—N1—S1—C19	-70.0 (2)
C11—C10—C12—C13	6.3 (4)	C24—C19—S1—O1	-6.2 (3)
C9—C10—C12—C13	-177.3 (2)	C20-C19-S1-O1	173.4 (2)
C10-C12-C13-C14	-159.8 (3)	C24—C19—S1—O2	-141.6 (2)
C10-C12-C13-C18	22.1 (4)	C20—C19—S1—O2	37.9 (3)
C18—C13—C14—C15	-2.2 (4)	C24—C19—S1—N1	107.2 (2)
C12—C13—C14—C15	179.6 (2)	C20-C19-S1-N1	-73.3 (2)
C13—C14—C15—C16	0.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C18—H18…N2	0.93	2.73	3.433 (4)	133
C5—H5…O3 ⁱ	0.93	2.86	3.551 (4)	132

Symmetry code: (i) -*x*+1/2, -*y*+1/2, -*z*.