ARTICLE

Cancer Facts & Figures Series

Cancer treatment and survivorship statistics, 2025

Nikita Sandeep Wagle PhD, MBBS, MHA¹ | Leticia Nogueira PhD, MPH² | Theresa P. Devasia PhD³ | Angela B. Mariotto PhD³ | K. Robin Yabroff PhD² | Farhad Islami MD, PhD⁴ | Ahmedin Jemal DVM, PhD⁵ | Rick Alteri MD⁶ | Patricia A. Ganz MD^{7,8} | Rebecca L. Siegel MPH¹ |

Correspondence

Nikita Sandeep Wagle, Cancer Surveillance Research, American Cancer Society, 270 Peachtree Street NW, Suite 1300, Atlanta, GA 30303. USA.

Email: nikita.wagle@cancer.org

Abstract

The number of people living with a history of cancer in the United States continues to rise because of the growth and aging of the population as well as improved survival through advances in early detection and treatment. To assist the public health community serve the needs of these survivors, the American Cancer Society and the National Cancer Institute collaborate triennially to estimate cancer prevalence in the United States using data from the Surveillance, Epidemiology, and End Results cancer registries, the Centers for Disease Control and Prevention's National Center for Health Statistics, and the United States Census Bureau. In addition, cancer treatment patterns are presented from the National Cancer Database along with a brief overview of treatment-related side effects. As of January 1, 2025, about 18.6 million people were living in the United States with a history of cancer, and this number is projected to exceed 22 million by 2035. The three most prevalent cancers are prostate (3,552,460), melanoma of the skin (816,580), and colorectum (729,550) among males and breast (4,305,570), uterine corpus (945,540), and thyroid (859,890) among females. About one half (51%) of survivors were diagnosed within the past 10 years, and nearly four fifths (79%) were aged 60 years and older. Racial differences in treatment in 2021 were common across disease stage; for example, Black people with stage I-II lung cancer were less likely to undergo surgery than their White counterparts (47% vs. 52%). Larger disparities exist for rectal cancer, for which 39% of Black people with stage I disease undergo proctectomy or proctocolectomy compared to 64% of their White counterparts. Targeted, multi-level efforts to expand access to high-quality care and survivorship resources are vital to reducing disparities and advancing support for all survivors of cancer.

KEYWORDS

prevalence, statistics, survivorship, treatment patterns

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Cancer Institute.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). CA: A Cancer Journal for Clinicians published by Wiley Periodicals LLC on behalf of American Cancer Society.

¹Cancer Surveillance Research, American Cancer Society, Atlanta, Georgia, USA

²Health Services Research, American Cancer Society, Atlanta, Georgia, USA

³Statistical Research and Applications Branch, Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland, USA

⁴Cancer Disparity Research, American Cancer Society, Atlanta, Georgia, USA

⁵Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA

⁶Medical & Health Content, American Cancer Society, Atlanta, Georgia, USA

⁷Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, California, USA

⁸Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

INTRODUCTION

The number of people living in the United States with a history of cancer is rising because of a growing and aging population as well as advancements in early detection and treatment that have improved survival. 1 Many of these survivors face a myriad of challenges, including physical side effects of cancer and its treatment, functional and cognitive impairment, and psychological and economic sequelae.^{2,3} To help the public health community better understand and address the needs of this unique population, the American Cancer Society collaborates with the National Cancer Institute (NCI) every 3 years to estimate the current and projected prevalence of the most common cancer types in the United States. This article also includes statistics on overall contemporary treatment patterns categorized by race for selected cancers. Racial and ethnic categories remain useful for describing health patterns in the United States because longstanding social and systemic factors have contributed to disproportionate disease occurrence and outcomes. In addition, this article reviews information on treatmentrelated side effects as well as the impact of the coronavirus disease 2019 (COVID-19) pandemic and extreme weather events on access to treatment and survivorship. Herein, cancer survivor refers to any person who has been diagnosed with cancer, although not all people with a history of cancer identify as survivors, 4 and cancer prevalence refers to the number of people with a history of cancer.

MATERIALS AND METHODS

Cancer prevalence

National estimates

National cancer prevalence as of January 1, 2025, was estimated using the Prevalence Incidence Approach Model with incidence and survival data from the Surveillance, Epidemiology, and End Results (SEER) Program, all-cause mortality data from the National Center for Health Statistics, and population estimates from the US Census Bureau.⁵ Incidence rates from 1992 to 2021 (SEER-12 registries) were applied to US population estimates to obtain incidence counts by calendar year, age (single-year and 90 years and older), and cancer type. Since people may have multiple tumors, counts were confined to the first primary invasive diagnosis for each cancer site (except urinary bladder, which included in situ cases). Relative survival was obtained from SEER-12 registries by sex, age (birth to 54, 55-64, 65-74, 75-84, 85-89 years), and year of diagnosis (1992-1996, 1997-2001, 2002-2006, 2007-2011, 2012-2020), excluding patients who were diagnosed through death certificate or autopsy only and those who were lost to follow-up at the month of diagnosis. July 1, 2022, US Census Bureau National Population Projections (https://www.census. gov/data/tables/2023/demo/popproj/2023-summary-tables.html,

Accessed November 18, 2024), which are based on the 2020 census, were used to project US incidence and mortality for 2022–2035 by applying the average of 2018, 2019, and 2021 estimated incidence rates to the respective US population projections from 2022 to 2035; survival for 2012–2020 was also assumed to be constant for the projections. For incidence projections, 2020 was excluded from the average because of the potential influence of the COVID-19 pandemic on cancer screening and diagnosis. The prevalence proportions for ages 85–89 years were used to estimate prevalence counts for the population aged 90 years and older. Finally, a cancer-specific and sexspecific adjustment factor was used to align the 2025 projections with the 2021 complete prevalence estimates reported in the SEER*-Explorer application.

State estimates

We used the December 2023 North American Association of Central Cancer Registries (NAACCR) submission of Cancer in North America data (https://apps.naaccr.org/explorer/, Accessed January 13, 2025) to calculate 10-year limited-duration prevalence on January 1, 2021, for all cancer sites combined by sex and 19 age groups in 47 US states. For the remaining three states and the District of Columbia, we calculated an average 10-year prevalence by age, sex, and race (White, Black, other) from nearest-neighbor states with similar incidence rates and applied the average prevalence to the respective state and District of Columbia populations by age, sex, and race. We then summed over race to estimate the 10-year limited duration prevalence by sex and age. We used the ComPrev method to estimate the January 1, 2021, complete prevalence by sex and age.8 The total complete prevalence on January 1, 2025, was estimated by multiplying the January 1, 2021, complete prevalence by sex and age by the January 1, 2025, populations for each of the 50 states and the District of Columbia. The final 2025 state complete prevalence estimates for all sites were obtained by multiplying each state-specific prevalence by a separate adjustment factor for males and females. The respective adjustment factors were calculated by comparing the sums of the 2025 sex-specific prevalences over age and state with the sex-specific national 2025 complete prevalence projections obtained using the Prevalence Incidence Approach Model method. Ten-year prevalence data were not available for the District of Columbia or the states of Indiana, South Dakota, and Virginia, We selected the nearest-neighbor states with similar incidence rates; calculated 10-year limited-duration prevalence for the aggregated areas by age, sex, and race (White, Black, other); and applied these prevalences to the respective District of Columbia and state populations.

Treatment

We used the 2023 National Cancer Database (NCDB) submission data to describe treatment patterns based on staging categories in the American Joint Committee on Cancer (AJCC) seventh and eighth editions of the AJCC Cancer Staging Manual^{9,10} for the first course of treatment for cases diagnosed in 2021, which was the latest year for which complete data were available. Treatment patterns for diffuse large B-cell lymphoma and testicular cancer were estimated by using aggregated cases diagnosed during 2017–2021 because of sparse data. The NCDB is a hospital-based cancer registry jointly sponsored by the American Cancer Society and the American College of Surgeons and includes approximately 70% of all invasive cancers in the United States from more than 1500 facilities accredited by the American College of Surgeons' Commission on Cancer (CoC). 11,12 Because of the limited completeness of NCDB data for cancers typically diagnosed in outpatient settings, treatment data for melanoma, leukemia, thyroid and prostate cancer were derived from published literature.

The cancer treatment modalities reported are surgery, radiation therapy, and systemic therapy, including chemotherapy, targeted therapy, hormonal therapy, and immunotherapy. Many standard targeted therapies are classified as chemotherapy in the NCDB. For consistency and comparability, chemotherapy in this report includes targeted therapy and immunotherapies, except for diffuse large B-cell lymphoma, nonsmall cell lung cancer, and urinary bladder cancer, for which immunotherapy is presented separately. Treatment data by race are exclusive of Hispanic ethnicity for reduced racial misclassification. For more information regarding the prescription drug classification system used for the NCDB and other cancer registries, visit https://seer.cancer.gov/tools/seerrx/. For more details about the NCDB, visit https://www.facs.org/quality-programs/cancer-programs/national-cancer-database/.

All cancer cases were classified according to the *International Classification of Diseases for Oncology*, third edition, ¹³ except childhood and adolescent cancers, which were classified according to the *International Classification of Childhood Cancer*. ^{14,15}

Additional statistics

Incident cases in 2025

The estimated number of cancer cases diagnosed in 2025 presented herein were previously published by Siegel et al., ¹⁶ where the methods are described.

Survival

The AJCC Cancer Staging Manual, seventh edition, was used to categorize the 5-year relative survival for cases diagnosed from 2013 through 2017 as it transitioned to the eighth edition in 2018, with data sourced from SEER 17 registries, representing 26.5% of the US population. Consequently, the contemporary 5-

year survival (2014–2020) and stage distribution (2017–2021) by SEER summary stage, along with historical 5-year survival (1975–1977 and 1995–1997) by cancer type, are as previously published. Contemporary 5-year relative survival (2014–2020) for leukemia, lymphoma, and testicular cancer subtypes were sourced from SEER 22 registries (excluding Massachusetts and Illinois), sovering 41.9% of the United States. Relative survival adjusts for normal life expectancy by comparing survival among people who have cancer with that of the general population, controlling for age, race, sex, and year. Survival data by race are exclusive of Hispanic ethnicity for reduced racial misclassification. All survival analyses were conducted using NCI's SEER*Stat software (version 8.4.3). 19

Cancer subtype case distribution

The data on subtype and case distribution (2017–2021) for selected cancers were from NAACCR, which compiles and reports incidence data from 1995 forward for registries that participate in the SEER program and/or the National Program of Cancer Registries. These data approach nearly 100% coverage of the US population for the latest available years.²⁰

SELECTED FINDINGS

Overall cancer prevalence

On January 1, 2025, about 18.6 million people with a history of cancer were alive, and this number is projected to exceed 22 million by 2035 (Figures 1 and 2). The number of survivors varies by state from almost 2 million in California to about 29,000 in the District of Columbia and 32,000 in Wyoming, reflecting variation in population size across states (Figure 1). These estimates do not include carcinoma in situ of any site except the urinary bladder, nor do they include basal cell or squamous cell skin cancers, which are not required to be reported to central cancer registries.

The three most prevalent cancers are prostate (3,552,460), melanoma of the skin (816,580), and colorectum (729,550) among males and breast (4,305,570), uterine corpus (945,540), and thyroid (859,890) among females as of January 1, 2025 (Figure 2). The distribution of prevalence differs from incidence because prevalence reflects survival and median age at diagnosis as well as cancer occurrence. About one half (51%) of survivors were diagnosed within the past 10 years, whereas 22% were diagnosed 20 or more years ago (Table 1). Nearly four fifths (79%) are aged 60 years and older (Figure 3), although age distributions vary by cancer type. For example, 87% of survivors of prostate cancer are aged 65 years or older compared with 53% of survivors of cervical cancer (Figure 4).

FIGURE 1 Estimated numbers of survivors of cancer in the United States by state as of January 1, 2025. State estimates do not sum to the US total because of rounding.

FIGURE 2 Estimated number of survivors of cancer in the United States by site. Estimates do not include in situ carcinoma of any site except the urinary bladder and do not include basal cell or squamous cell skin cancers.

Female breast

It is estimated that about 4.3 million women are living in the United States with a previous diagnosis of invasive breast cancer as of January 1, 2025, and this number is projected to reach 5.3 million by

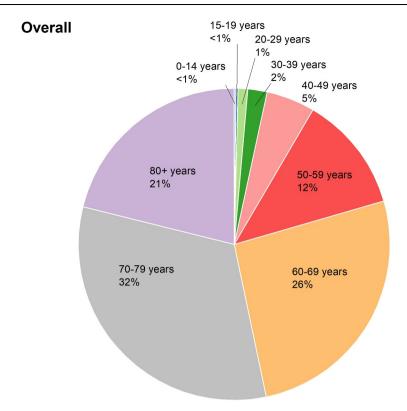
January 1, 2035 (Figure 2). In addition, 316,950 women are expected to be newly diagnosed with invasive breast cancer in 2025. As of January 1 2025, nearly 170,000 survivors of breast cancer were projected to be living with metastatic disease. About two thirds (67%) of survivors of breast cancer (>2.8 million women) are aged 65

TABLE 1 Estimated number of survivors of cancer in the United States by sex and years since diagnosis as of January 1, 2025.

	Male and Female			Male			Female		
Years since diagnosis	Number	Percent (%)	Cumulative percent (%)	Number	Percent (%)	Cumulative percent (%)	Number	Percent (%)	Cumulative percent (%)
0 to <5	5,554,410	30	30	2,677,210	32	32	2,877,200	28	28
5 to <10	3,874,650	21	51	1,787,960	21	53	2,086,690	20	49
10 to <15	2,958,130	16	67	1,340,190	16	69	1,617,950	16	65
15 to <20	2,201,470	12	78	1,009,360	12	81	1,192,110	12	76
20 to <25	1,457,170	8	86	610,310	7	88	846,860	8	85
25 to <30	920,140	5	91	340,520	4	92	579,620	6	90
≥30	1,651,030	9	100	651,610	8	100	999,420	10	100

Note: Percentages may not sum to totals and 100% because of rounding.

years and older, whereas 7% are younger than 50 years (Figure 4). The age distribution of survivors of breast cancer is younger than that for other common cancers in the United States, mainly because the median age at diagnosis is younger (e.g., 63 vs. 71 years for lung cancer).²²


Treatment and survival

The most common treatment among women with early stage (I or II) breast cancer is breast-conserving surgery (BCS) with adjuvant radiotherapy (50%), although nearly one third of patients (32%) undergo mastectomy (Figure 5). By comparison, 61% of women with stage III breast cancer undergo mastectomy with or without radiotherapy, most of whom also receive chemotherapy. The most common treatment for metastatic disease (stage IV) is chemotherapy and/or radiation therapy (64%). Endocrine (hormonal) therapy is a cornerstone of treatment for hormone receptor-positive breast cancers, with about four in five women (81%) with these tumors receiving it across all stages (Figure 6). However, the utilization is lower among Black women, with a more pronounced disparity observed in those with stage III disease (65% vs. 74% in White women). Lower initiation and adherence rates largely drive the underuse of endocrine therapy in Black women. For example, Black women were less likely to report full adherence to endocrine therapy 2 years after diagnosis (75% vs. 83% for White women; p < .001) and experienced more treatment-related side effects.²³

BCS followed by radiation to the breast is associated with long-term survival comparable to mastectomy when appropriately used for localized or regional breast cancer, with some studies suggesting a potential survival advantage for BCS.²⁴ Evidence from randomized controlled trials suggests that adjuvant radiation may be omitted without impacting survival in specific subsets of patients receiving BCS, such as women aged 70 years and older with small, localized, estrogen receptor-positive tumors.^{25,26} Some BCS-eligible women elect mastectomy due to the fear of recurrence, reluctance to

undergo radiation therapy, a contraindication to receiving radiation (e.g., prior ipsilateral radiation), or the absence of clear surgeon recommendation.^{27,28} Logistical obstacles to receiving radiation therapy, such as time off work, distance to treatment, and/or transportation availability also play a role.²⁹ Younger women (aged <40 years) and those with high-risk genetic mutations (e.g., BRCA1/ BRCA2) are more likely to undergo mastectomy³⁰; however, higher risk may not always be a determining factor for undergoing contralateral prophylactic mastectomy (CPM). Over the past two decades, among the women with early-stage disease who choose mastectomy, the percentage who also underwent CPM increased from <2% in 1998 to 28%-30% during 2010-2012.30 Despite this increase, CPM has not been shown to significantly improve overall survival in most women with unilateral breast cancer. 31 Following the American Society of Breast Surgeons 2016 recommendation against routine use of CPM in average-risk women with unilateral cancer,³² comprehensive national analyses are needed to evaluate its impact, while efforts to enhance shared decision-making should continue.

Clinical factors that influence breast cancer survival include stage, tumor grade, hormone receptor (estrogen receptor and progesterone receptor) status, and expression of human epidermal growth factor receptor 2 (HER2). Historically, treatment advances have targeted hormone receptor-positive (e.g., aromatase inhibitors) and HER2-positive (e.g., trastuzumab) tumors, with triplenegative breast cancer mainly limited to cytotoxic chemotherapy. However, the evolving therapeutic landscape for triple-negative breast cancer has expanded treatment options across stages of the disease. Among women with early stage triple-negative disease, the addition of pembrolizumab, an anti-programmed cell death protein 1 (anti-PD-1) checkpoint inhibitor, to neoadjuvant chemotherapy has been shown to improve event-free survival.³³ In addition, adjuvant olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, has shown effectiveness in reducing the risk of recurrence and potentially improving overall survival in patients with germline BRCA1/BRCA2 mutations.³⁴ For women with metastatic

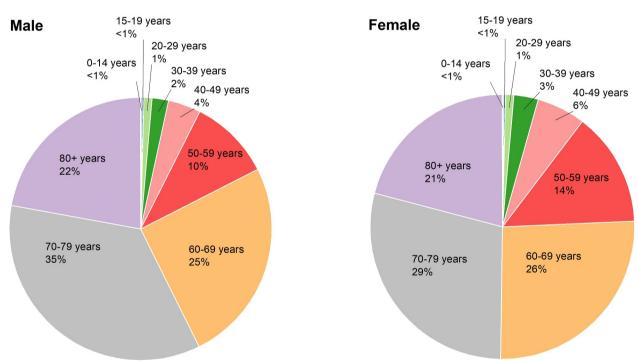


FIGURE 3 Distribution (%) of survivors of cancer in the United States as of January 1, 2025 by age at prevalence and sex. Percentages do not sum to 100% because of rounding.

disease, antibody–drug conjugates, including sacituzumab govitecan and trastuzumab durextecan, have demonstrated superior progression-free and overall survival compared with standard chemotherapy.^{35–37}

The 5-year relative survival rate has increased from 75% for patients diagnosed in the mid-1970s to 91% in contemporary population-based data, ¹⁶ largely because of advances in hormonal treatments and earlier detection through increased mammography

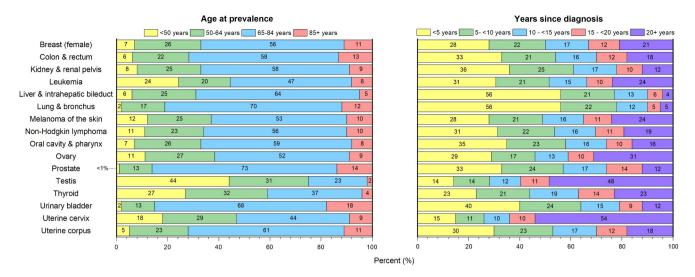


FIGURE 4 Distribution (%) of survivors of selected cancers in the United States as of January 1, 2025 by age at prevalence and years since diagnosis. Percentages may not sum to totals because of rounding. Estimates do not include in situ carcinoma of any site except the urinary bladder and do not include basal cell or squamous cell skin cancers.

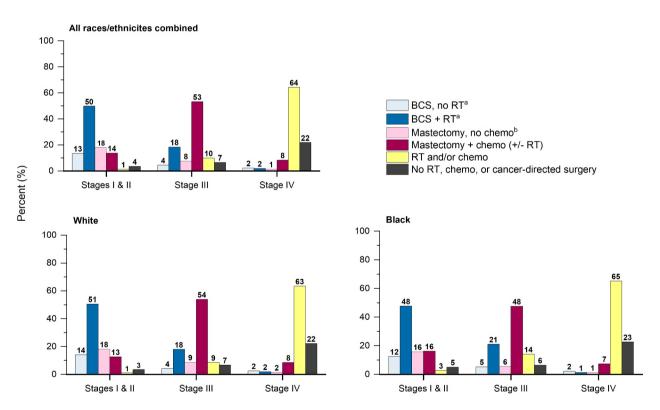


FIGURE 5 Treatment patterns (%) among women with breast cancer by stage, 2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. ^aA small number of these patients receive chemotherapy. ^bA small number of these patients receive RT. +/- indicates with or without; BCS, breast-conserving surgery; chemo, chemotherapy (includes targeted therapy and immunotherapy); RT, radiation therapy.

screening and breast cancer awareness.³⁸ When stratified by AJCC stage, the 5-year relative survival rate approaches 100% for patients diagnosed with stage I disease but declines to 31% for those diagnosed with stage IV breast cancer (Figure 7). However,

Black women have much lower survival than White women for advanced disease (stage III, 65% vs. 77%; stage IV, 21% vs. 32%; Figure 7).¹⁷ In one study, health insurance coverage status accounted for more than one third of the Black–White disparity in

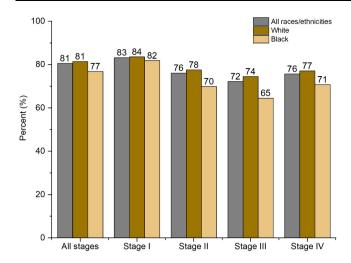


FIGURE 6 Endocrine therapy receipt (%) among women with hormone receptor-positive breast cancer by stage, 2021. Categories for White and Black race exclude persons of Hispanic ethnicity.

breast cancer survival among nonelderly patients after adjusting for patient demographics, treatment differences, and other clinical factors (e.g., tumor characteristics).³⁹ Systemic inequities in access to social and health care resources contribute to disproportionate health hazards among Black women, which, in turn, are associated with a higher prevalence of comorbidities. Unfavorable tumor characteristics (e.g., higher incidence of triple-negative tumors) can also contribute to the survival disparity.^{39,40} Notably, Black women have lower survival for every molecular subtype.^{41,42}

Short-term and long-term health effects

The precise incidence of breast cancer-related lymphedema (BCRL) is unknown, partly due to its long latency period, which typically peaks between 12 and 30 months after initial treatment. ⁴³ It affects at least 20% of patients after axillary lymph node dissection (ALND) and approximately 6% of patients after sentinel lymph node biopsy (SLNB). ⁴³ Prospective surveillance and early management of BCRL have been shown to slow its progression and reduce the risk of chronic arm lymphedema, with a cumulative incidence of only 6% after ALND. ⁴⁴ Although cancer rehabilitation can reduce the risk and lessen the severity of this condition, ^{45,46} it remains less accessible to women of lower socioeconomic status, who are disproportionately affected by BCRL. ⁴⁷

Additional long-term effects of breast cancer surgery and radiation therapy may include numbness, tingling, or tightness in the chest wall, arms, or shoulders. Approximately one third of women develop persistent pain after breast cancer surgery or radiation therapy, 48 with younger women and those who undergo ALND having the highest risk. 49 Several chemotherapeutic agents, including taxanes, are linked to peripheral neuropathy, which may have a

persistent impact on quality of life.⁵⁰ Emotional and functional wellbeing after diagnosis may vary over time, with younger age, Black race, lower socioeconomic status, and more intensive treatment associated with a greater likelihood of persistently lower self-reported well-being.⁵¹

Sexual dysfunction and fertility concerns are common among survivors of breast cancer. 52,53 especially given the rising incidence in women vounger than 50 years. 41 Poor body image following surgery may also lower sexual health.⁵³ In particular, endocrine therapy can often induce menopausal symptoms, such as hot flashes, night sweats, and atrophic vaginitis, which can lead to dyspareunia.⁵⁴ Ovarian function suppression therapy, involving a gonadotropinreleasing hormone (GnRH) agonist and an aromatase inhibitor, increasingly used in high-risk premenopausal patients, can exacerbate these symptoms and increase the risk of osteoporosis.⁵⁵ In addition, some chemotherapeutic agents are gonadotoxic and can also lead to premature menopause, which increases the risk of osteoporosis and impaired fertility. 56,57 Given these challenges, fertility counseling is recommended for all premenopausal patients with breast cancer.⁵⁶ Studies have suggested that modest delays in breast cancer treatment for fertility preservation do not significantly increase all-cause mortality, breast-cancer-specific mortality, or recurrence. 58-60 Importantly, discussions around sexuality are critical, and more work is needed to ensure that survivors can access resources to address them.

Survivors may also experience cognitive impairment and fatigue, which may become chronic.⁶¹ One study reported that survivors of breast cancer receiving endocrine therapy, chemotherapy, or both experienced greater physical health decline within 2 years compared to women without cancer.⁶² Ovarian suppression therapy in premenopausal women may cause an elevated risk of cardiovascular diseases.⁶³ Importantly, some chemotherapeutic agents (e.g., anthracyclines) and *HER2*-targeted drugs (e.g., trastuzumab) can lead to cardiotoxicity, including cardiomyopathy and congestive heart failure.⁶⁴ The American Society for Clinical Oncology has issued guidelines for preventing and monitoring cardiomyopathies and other cardiovascular irregularities related to these treatments.⁶⁵

Colon and rectum

It is estimated that more than 1.4 million people are living in the United States with a previous colorectal cancer (CRC; including appendix) diagnosis as of January 1, 2025, and an additional 154,270 new cases are expected to be diagnosed in 2025. About three quarters (72%) of survivors of CRC—more than 1 million people—are aged 65 years and older, whereas 87,010 CRC survivors are younger than 50 years (Figure 4). The median age at diagnosis of CRC is 65 years for men and 68 years for women. This patient population is rapidly shifting younger as incidence rises

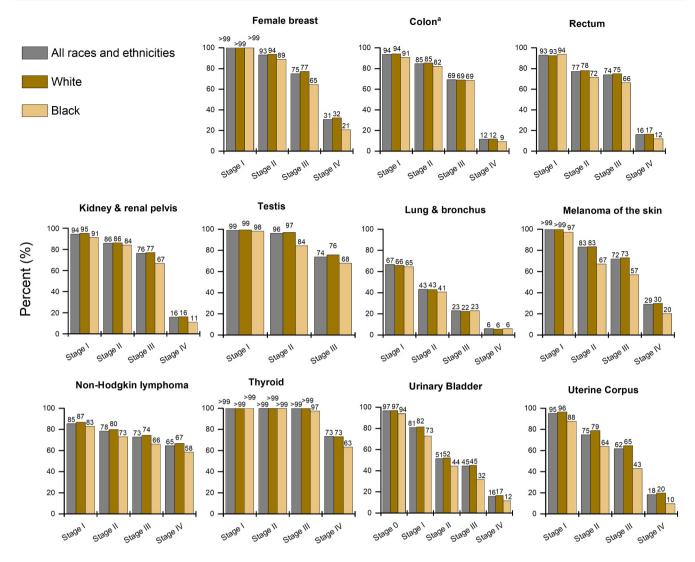


FIGURE 7 Five-year relative survival rates (%) for selected cancers by race and stage at diagnosis, 2013–2017. Categories for White and Black race exclude persons of Hispanic ethnicity. ^aExcludes appendix.

in adults younger than 65 years, while rates continue to decline rapidly in older adults.⁶⁶ Incidence has risen with every generation born since the 1950s because of risk factor exposures that remain largely unknown but may be related to changes in diet and a more sedentary lifestyle.

Treatment and survival

The majority of patients with stage I–II colon cancer undergo colectomy alone (83%), whereas patients with stage III colon cancer (as well as some patients with high-risk stage II disease)^{67,68} are more likely to also receive adjuvant chemotherapy (Figure 8). For patients with stage I rectal cancer, proctectomy or proctocolectomy is the most common treatment (60%), with about one half also receiving neoadjuvant radiation or chemotherapy (Figure 9). Stage II and III rectal cancers are

typically treated with neoadjuvant chemoradiotherapy and surgery. About one half (45%) of patients with stage IV colon cancer receive surgical treatment, usually with chemotherapy, whereas most patients with stage IV rectal cancer receive chemotherapy alone or with radiotherapy. For unresectable stage IV CRC, treatment may include an initial induction chemotherapy regimen followed by observation, maintenance, or continuation of the induction regimen.⁶⁹ More than one half of patients who have metastatic CRC have tumors with specific molecular profiles (e.g., KRAS/NRAS/BRAF wild-type tumors, those with BRAF V600E sequence variations, microsatellite instability), ^{70–72} for which several targeted drugs or immunotherapy are also available.⁷³ In addition to molecular profiles, tumor sidedness can be used to guide treatment selection, but the evidence is less robust for treatments beyond the first line.⁷⁴

Black patients with rectal cancer experience substantial disparities in treatment compared with their White counterparts. For

example, among patients with stage I rectal cancer, only 39% of Black patients undergo proctectomy or proctocolectomy compared with 64% of White patients (Figure 9). In addition, sphincterpreserving surgery, which is associated with improved outcomes and quality of life, is less frequently performed in Black patients, men, those aged 70 years and older, and uninsured people. 75,76 These disparities are more pronounced for rectal cancer than for colon cancer, likely reflecting the greater complexity of rectal cancer management. Studies consistently demonstrate that Black patients are less likely than White patients to receive surgery for early stage colon and rectal cancers, with a larger treatment gap for rectal cancer. 77,78 Insurance coverage plays a vital role in shaping these disparities. Patients with private insurance are twice as likely to receive recommended treatment for stage I-III colon cancer compared with patients who are uninsured. 77 Consequently, patients with stage I CRC who are uninsured have lower 5-year observed survival than those with stage II disease who have private insurance (87% vs. 89%; Figure 10). Disparities in access to health insurance coverage have been estimated to account for about one half of the Black-White survival disparity for patients with CRC aged 18-64 years.79

The 5-year relative survival for CRC has improved from 50% during the mid-1970s to 64% in contemporary population-based

data,¹⁶ reflecting both earlier diagnosis through screening and advances in surgical techniques and novel systemic therapies, with survival higher for rectal cancer (67%) than for colon cancer (63%) due to a greater proportion of localized disease.¹⁶ When stratified by AJCC staging, the 5-year survival rate is >90% for stage I colon and rectal cancers but declines to 12% and 16%, respectively, for stage IV disease (Figure 7).

Short-term and long-term health effects

Gastrointestinal dysfunction is a common side effect among patients who undergo surgical treatment and includes, but is not limited to, abdominal pain, distension, and changes in bowel movements. Bowel dysfunction is more common among patients with rectal cancer who are treated with pelvic radiation. Survivors of CRC experience higher rates of sexual dysfunction and negative body image compared with many other cancers, save particularly those with a permanent ostomy, who may require specialized care from an ostomy therapist or nurse. So Ostomyrelated changes can affect physical and emotional intimacy—areas that are often underrecognized in survivorship care but are critically important to the overall quality of life. Findings from the

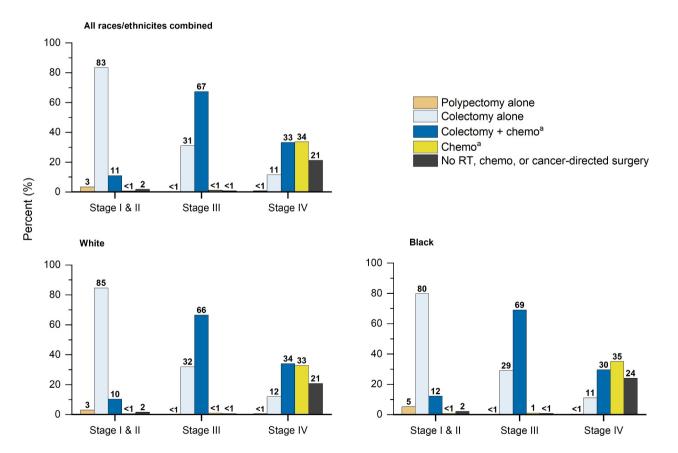


FIGURE 8 Colon cancer treatment patterns (%) by stage, 2021. Percentages may not sum to totals because of rounding. Colon cancer excludes appendiceal cancer. Categories for White and Black race exclude persons of Hispanic ethnicity. ^aA small number of these patients also receive RT. + indicates with; Chemo, chemotherapy (includes targeted therapy and immunotherapy); RT, radiation therapy.

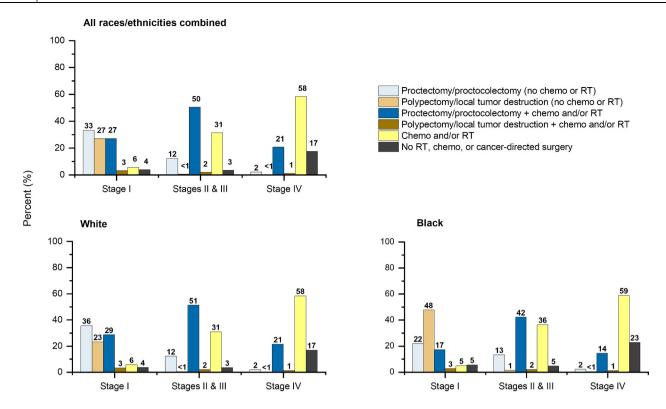


FIGURE 9 Rectal cancer treatment patterns (%) by stage, 2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. + indicates with; Chemo, chemotherapy (includes targeted therapy and immunotherapy); RT, radiation therapy.

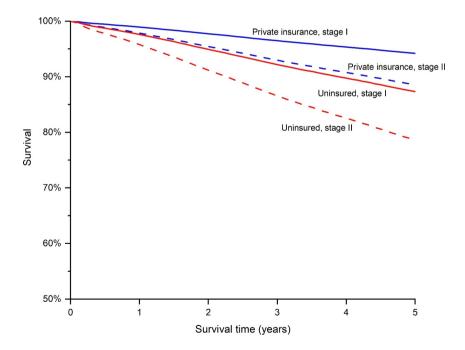


FIGURE 10 Disparities in observed colorectal cancer survival by health insurance coverage and stage, ages 45–64 years. Patients were diagnosed from 2017 to 2021 and all followed through 2021.

Ostomy Self-management Training (OSMT) trial (ClinicalTrials.gov identifier NCT02974634) demonstrate that structured, telehealth-delivered group education may help address intimacy-related

concerns, indicating a potential role for integrating sexual health support into survivorship care for individuals with ostomies.⁸⁶ Pooled data from multiple clinical trials have demonstrated the

safety of reducing the duration of oxaliplatin-based regimens to lower the risk of persistent neurotoxicity among appropriately selected patients. Batients treated with pelvic radiation, especially those of reproductive age, may experience ovarian or testicular impairment, with options like ovarian transposition or egg cryopreservation available for women seeking fertility preservation. As the incidence of early onset CRC continues to rise, better understanding and addressing the unique survivorship needs of younger patients remain critical.

Kidney and renal pelvis

It is estimated that 734,530 people are living in the United States with a previous kidney cancer diagnosis as of January 1, 2025, and an additional 80,980 new cases are expected to be diagnosed in 2025. The majority (90%) of kidney cancers are renal cell carcinomas. About two thirds (67%) of the survivors of kidney cancers are aged 65 years and older (Figure 4). The probability of developing kidney cancer among men is twice as high as that among women. 16

Treatment and survival

Among patients with stage I kidney cancer, almost three fourths (73%) undergo partial or radical nephrectomy. However, only 70% of Black patients undergo surgery compared with their White counterparts (73%; Figure 11). A select subset of patients with significant comorbidities and small tumors (≤3 cm) may undergo ablation (e.g., cryoablation, radiofrequency ablation, microwave ablation), whereas older adults with smaller tumors and limited life expectancy may opt for active surveillance based on tumor growth rate.⁹¹

For patients with metastatic renal cell carcinoma, immunotherapy and/or targeted therapy with vascular endothelial growth factor receptor tyrosine kinase inhibitors (TKIs) that target angiogenesis are usually recommended, ⁹² although some patients with limited metastases may be treated with local therapies like stereotactic body radiation therapy, stereotactic radiosurgery, or metastasectomy. ^{91,93} Many newer systemic therapies have been approved as first-line or subsequent line treatments for advanced renal cancer. ^{94,95} However, among patients with stage IV kidney cancer, 29% of Black patients received no systemic therapy, radiation therapy, or cancer-directed surgery compared with 21% of White patients, suggesting potential differences in treatment patterns that merit further investigation (Figure 11).

Overall, the 5-year survival rate for kidney cancers has increased from 20% in the mid-1970s to 78% in contemporary population-based data, ¹⁶ partly reflecting lead-time bias from increased incidental detection through imaging as well as advances in management. ⁹² When stratified by stage, overall survival declines from 94% for stage I to 16% for stage IV kidney cancer (Figure 7). ¹⁷

Short-term and long-term health effects

Acute kidney injury is a common side effect after partial or radical nephrectomy. Radical nephrectomy can increase the risk of chronic kidney disease, cardiovascular morbidity, and mortality. Patients treated with immunotherapy may experience immune-related adverse events that include, but are not limited to, skin rashes, diarrhea, and hematologic, cardiovascular, endocrine, and renal adverse effects. Rhe potential impact of immunotherapy on fertility and sexual health in survivors of kidney cancer is not well characterized and would benefit from further investigation. The most common adverse event associated with vascular endothelial growth factor receptor TKIs is hypertension, which occurs in one half of patients.

Leukemias and lymphomas

It is estimated that 558,660 people are living in the United States with a previous leukemia diagnosis as of January 1, 2025, and an additional 66,890 new cases are expected to be diagnosed in 2025. Although leukemia is the most common childhood cancer, the majority (93%) of patients are diagnosed at age 20 years and older. Acute lymphoblastic leukemia (ALL) is most common among children and adolescents, whereas acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (hereinafter CLL), and chronic myeloid leukemia (CML) are most common among older adults. The median age at diagnosis is 17 years for ALL, 65 years for CML, 68 years for AML, and 70 years for CLL.

There are two major types of lymphoma: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). It is estimated that, as of January 1, 2025, there were 235,110 survivors of HL and 879,290 survivors of NHL living in the United States. In addition, approximately 8,720 new cases of HL and 80,350 new cases of NHL are expected to be diagnosed in 2025. Nearly one half (49%) of HL cases occur in individuals younger than 40 years, whereas the vast majority of NHL cases (87%) are in adults aged 50 years or older, with a median age at diagnosis of 39 vs. 67 years, respectively. 22

Treatment and survival for the most common types of leukemia and lymphoma

Acute myeloid leukemia

AML is often classified into acute promyelocytic leukemia (APL) and non-APL for treatment purposes. APL, a rare subtype accounting for approximately 15% of cases, has a more favorable prognosis and is treated with all-trans retinoic acid and arsenic trioxide with or without chemotherapy. 100,101 Most non-APL cases are treated with the standard 7 \pm 3 regimen, combining cytarabine and an anthracycline, although many older adults (older than 60 years) are unable to tolerate intensive chemotherapy regimens. 102 Non-APL treatment options also include hematopoietic stem cell transplantation,

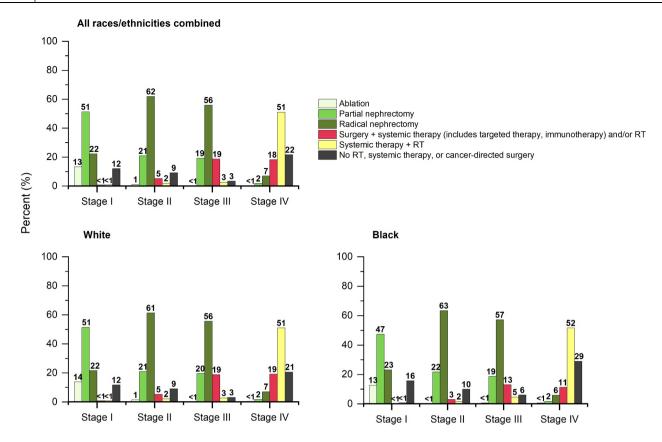


FIGURE 11 Kidney cancer treatment patterns (%) by stage, 2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. Surgery of an unspecified type was not included in these treatment patterns. + indicates with; RT, radiation therapy.

antibody–drug conjugates, ¹⁰³ and targeted therapy drugs. ¹⁰⁴ Although complete remission is achieved in many patients (60%–85% of adults aged 60 years or younger and 40%–60% of those older than 60 years), approximately one half of these patients relapse. ^{102,105} The contemporary 5-year relative survival rate is 70% for children and adolescents ¹⁸ but declines to 62%, 39%, and 11% for patients aged 20–49, 50–64, and 65 years and older, respectively. ¹⁸

Chronic myeloid leukemia

CML is classified as being in chronic, accelerated, or blastic phase to guide treatment. TKIs that target the *BCR::ABL1* fusion gene (on the Philadelphia chromosome) are standard across all phases. ¹⁰⁶ In selected patients, these drugs can be safely discontinued after the initial course, ^{107,108} which can substantially improve quality of life. ¹⁰⁹ Allogenic hematopoietic stem cell transplantation may be an option for those who become resistant to TKIs and younger patients, whereas chemotherapy is only used in TKI-resistant patients. ¹⁰⁶ Because of the widespread use of the *BCR::ABL1* TKIs, the 5-year survival rate for CML has doubled from 34% for patients diagnosed during 1994–1996²² to 70% in contemporary population-based data. ¹⁸

Acute lymphoblastic leukemia

Chemotherapy is the standard treatment for ALL, with typically more intensive regimens used in children than in adults, including more intensive central nervous system therapy. 110 Treatment is typically

given in phases, including induction, consolidation (intensification), and long-term maintenance. More than 95% of children and 78%–92% of adults with ALL attain remission. Patients with Philadelphia-chromosome positive ALL, which accounts for up to 30% of adult cases but is relatively rare (<5%) in children, and benefit from adding a TKI to chemotherapy. Allogeneic stem cell transplantation is recommended for some patients with high-risk disease and for those who relapse after remission or who do not experience remission after successive courses of induction chemotherapy. Chimeric antigen receptor (CAR) T-cell therapy and monoclonal antibodies are also options for patients with specific subtypes of ALL who have relapsed or have not responded to other treatments. 110.112

Survival rates for ALL have increased steadily since the mid-1970s, from 7% to 47% among adults aged 20 years and older and from 59% to 90% in adolescents and children in contemporary population-based data, ^{16,18} mainly reflecting the optimization of chemotherapeutic regimens. ¹⁶ Although there is some evidence that adults younger than 50 years may benefit from a more aggressive regimen akin to pediatric protocols with limited toxicity, ¹¹³ research is ongoing.

Chronic lymphocytic leukemia/small lymphocytic lymphoma

CLL is the most common type of leukemia in adults, accounting for 38% of all leukemia in adults aged 20 years and older.²⁰ Given its

typically indolent course, treatment is generally reserved for patients who are symptomatic, or those experiencing cytopenias or other disease-related complications, and therapeutic interventions may rarely result in a cure or prolong survival. Targeted therapies, including Bruton tyrosine kinase inhibitors and B-cell leukemia/lymphoma 2 inhibitors, are typically available for initial treatment. Other options might include immunotherapy, chemotherapy, or other targeted therapies. The contemporary 5-year relative survival rate for CLL is 89%, with large variations ranging from several months to normal life expectancy. Richter transformation can occur in about 5%–10% of patients with CLL who develop an aggressive lymphoma. 114

Hodgkin lymphoma

HL will account for approximately 10% of all lymphoma cases diagnosed in 2025. ¹⁶ Classical HL (CHL) comprises 91% of cases, and nodular lymphocyte-predominant HL (NLPHL) comprises the remaining 9%. ²⁰ CHL is characterized by Reed-Sternberg cells, whereas NLPHL is more indolent and has a generally favorable prognosis. ¹¹⁵

Treatment for early stage CHL typically involves ABVD chemotherapy (doxorubicin, bleomycin, vinblastine, dacarbazine) or similar regimens, with positron emission tomography (PET)-computed tomography response guiding treatment intensity and duration. 116 Although historical approaches included radiation therapy, its use has significantly declined in favor of PET-adapted chemotherapy strategies, and it is now rarely used in many clinical settings. 116 Approximately 30% of patients with CHL experience refractory disease or relapse after first-line therapy, requiring other treatments, such as high-dose chemotherapy with autologous stem cell transplantation or treatment with brentuximab vedotin and anti-PD-1 immune checkpoint inhibitors. 116,117 For NLPHL, adults with early stage disease and without clinical risk factors (limited lymph nodes, no B symptoms, bulky disease, or extranodal spread) may be treated with limited-field radiation alone, whereas more advanced cases are treated with chemotherapy plus radiation, as well as the monoclonal antibody rituximab. 118 The contemporary 5-year relative survival rates for HL are 89% overall, 88% for CHL, and 98% for NLPHL. 18

Non-Hodgkin lymphoma

The most common types of NHL are diffuse large B-cell lymphoma (DLBCL), which accounts for about two in five cases, and follicular lymphoma (FL), which accounts for about one in five cases.²⁰ First-line treatment for DLBCL typically includes chemoimmunotherapy, most commonly R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone), with PET-computed tomography response guiding treatment intensity and duration.¹¹⁹ In 2021, nearly three fourths (72%) of patients with DLBCL received chemoimmunotherapy with or without radiation (Figure 12), although the receipt of radiation was lower among Black patients (66%) compared with White patients (74%).

FL is indolent and often does not require treatment until symptoms develop. To patients with localized low tumor burden, radiation therapy and/or rituximab can be considered. Chemoimmunotherapy can be considered in patients with advanced-stage disease. Stem cell transplantation or CAR T-cell therapy may be an option for refractory FL. The contemporary 5-year relative survival is 90% for FL and 65% for DLBCL; although 5-year survival for DLBCL is lower in Black individuals (62%) than in White individuals (66%), it is similar for FL. The contemporary 5-year survival for DLBCL is similar for FL. The contemporary 5-year survival for DLBCL is lower in Black individuals (62%) than in White individuals (66%), it is similar for FL. The contemporary 5-year survival for DLBCL is similar for FL. The contem

Short-term and long-term health effects

Patients who undergo allogeneic hematopoietic stem cell transplantation, which is used most commonly for acute leukemias (ALL, AML) and sometimes for CML, frequently suffer from recurrent infections and anemia, sometimes necessitating blood transfusions. Allogeneic transplantation can also lead to chronic graft-versus-host disease, which may cause skin changes, dry mucous membranes, joint pain, weight loss, shortness of breath, and fatigue. Por CML, TKIs have transformed treatment outcomes but are associated with cardiovascular complications, including hypertension, arterial occlusive events, and heart failure. Patients with HL, NHL, and ALL are commonly treated with anthracyclines, which also can be cardiotoxic. In addition, the use of radiation therapy increases the risk of many late effects, including, but not limited to, cardiac dysfunction and secondary cancers.

While CAR T-cell therapy has demonstrated clinical efficacy, it is associated with both short-term and long-term health effects. Common short-term toxicities include cytokine release syndrome, which can lead to hypotension, fever, and multiorgan dysfunction, as well as neurologic complications, such as immune effector cell-associated neurotoxicity syndrome. Long-term toxicities of CAR T-cell therapy are still being studied but may include secondary malignancies, particularly T-cell neoplasms. Available evidence suggests that the overall risk remains low and is comparable to that of standard therapies; however, long-term monitoring may be needed.

Lung and bronchus

It is estimated that 680,450 people are living in the United States with a previous lung cancer diagnosis as of January 1, 2025, and an additional 226,650 new cases are expected to be diagnosed in 2025. Approximately four fifths (82%) of survivors of lung cancer were aged 65 years and older as of January 1, 2025 (Figure 4), reflecting the older median age at diagnosis (71 years) compared with all cancers combined (median age at diagnosis, 66 years). In part because of the low overall 5-year relative survival for the disease, more than one half of survivors (56%) were diagnosed within the past 5 years (Figure 4).

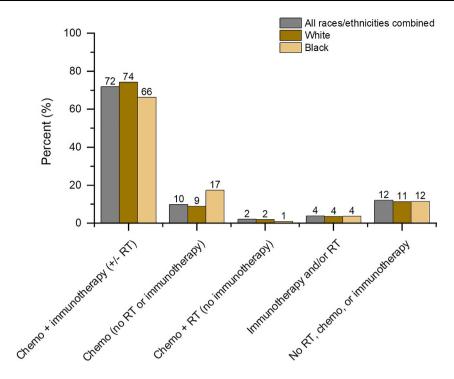


FIGURE 12 Diffuse large B-cell lymphoma treatment patterns (%), 2017–2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. +/- indicates with or without; chemo, chemotherapy (includes targeted therapy); RT, radiation therapy.

Treatment and survival

Lung cancer is classified as small cell lung cancer (13% of cases) or nonsmall cell lung cancer (NSCLC; 83% of cases), with about 4% of cases lacking information on histology. 20 The most common subtypes of NSCLC are squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Surgery is the primary treatment for early stage lung cancer, and approximately one half of patients (52%) who have stage I-II NSCLC undergoing surgery with either wedge resection, sleeve resection, lobectomy, or pneumonectomy (Figure 13). In contrast, only 20% of patients with stage III NSCLC undergo surgery, whereas most (59%) are treated with chemotherapy and/or radiation. Black individuals are less likely to receive surgery than White individuals (47% vs. 52% for stage I-II disease; Figure 13). Black patients who receive treatment at academic centers and from surgeons who specialize in thoracic care are more likely to undergo surgery and have higher survival than those who receive care at community centers, although large disparities remain in the receipt of surgery compared with White individuals. 126,127

The identification of common genetic mutations—including, but not limited to, *EGFR*, *KRAS*, and *ALK*—has led to the development of targeted therapies essential to the treatment of NSCLC. Approvals of immune checkpoint inhibitors targeting programmed death-ligand 1 and PD-1 have further expanded treatment options for specific NSCLC subtypes. The uptake of immunotherapy has been rapid; in 2021, about 40% of patients with stage IV NSCLC received immunotherapy, up from 12% in 2016. 11,129

Advances in early detection and treatment have nearly doubled 5-year relative survival since the mid-1990s, from 15% for patients diagnosed during 1995–1997 to 27% (White patients, 27%; Black patients, 24%) in contemporary population-based data. When stratified by AJCC staging, the 5-year relative survival rate is 67% for stage I lung cancer, although this represents only about 19% of cases because early disease is typically asymptomatic. For stage IV lung cancer, the 5-year survival rate declines to 6% (Figure 7), representing 50% of cases.

Short-term and long-term health effects

Many survivors of lung cancer have impaired pulmonary function before treatment, which can be exacerbated by surgery and/or radiation and may be a contraindication to treatment. Postoperative pulmonary adverse effects (pneumonia, air leakage, atelectasis, bronchial fistula, emphysema, noncardiogenic pulmonary edema, and pulmonary embolism) may prolong hospital stay and shorten survival, especially for older adults. Phe Enhanced Recovery After Surgery program is a multiprong rehabilitative approach designed to minimize postoperative morbidity and mortality after surgical treatment and is increasingly used for lung cancer surgery. Its adoption is growing globally but remains more common in high-volume centers and varies across institutions. Treatment with EGFR and ALK inhibitors can lead to common side effects like nausea, diarrhea, and rash. Immune checkpoint inhibitors used in lung cancer treatment

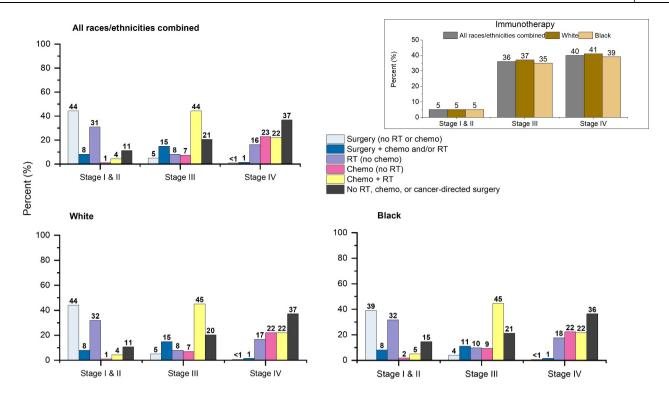


FIGURE 13 Nonsmall cell lung cancer treatment patterns (%) by stage, 2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. + indicates with; Chemo, chemotherapy (includes targeted therapy but does not include immunotherapy, which is shown in the *inset*); RT, radiation therapy.

can lead to immune-mediated toxicities, including pneumonitis, colitis, nephritis, and endocrinopathy. 135

Survivors of lung cancer who currently smoke or have smoked in the past are at increased risk for second primary lung cancers ¹³⁶ as well as additional smoking-related cancers, including, but not limited to. head and neck and bladder cancers. 137 Data suggest that, for those who did smoke, smoking cessation after lung cancer diagnosis reduces the risk of subsequent cancer and improves prognosis, ¹³⁸ highlighting the importance of patient and clinician discussions about smoking status and improving access to cessation resources. 139 Importantly, survivors may feel stigmatized because of the social perception that lung cancer is a self-inflicted disease, which can be particularly difficult for those who have never smoked. 140 In addition to these challenges, sexual dysfunction is an often overlooked concern among survivors of lung cancer. Findings from the Sexual Health Assessment in Women with Lung Cancer (SHAWL) study demonstrated that many women with lung cancer reported little to no interest in sexual activity and reduced sexual satisfaction, highlighting the need to incorporate sexual health assessment into survivorship care. 141

Melanoma of the skin

As of January 1, 2025, it is estimated that nearly 1.6 million people are living in the United States with a previous diagnosis of melanoma of the skin, and an additional 104,960 new cases are expected to be

diagnosed in 2025.¹⁶ Nearly two in five survivors of melanoma (593,570 people) are younger than 65 years, including 189,880 survivors who are younger than 50 years (Figure 4). Women tend to be diagnosed at a younger age than men (median age, 61 vs. 67 years, respectively),²² partly reflecting age-related differences in recreational exposure to ultraviolet radiation.

Treatment and survival

Primary cutaneous melanoma is generally treated with wide excision. 142 Recurrence is common in patients with high-risk, resectable melanoma, and adjuvant anti-PD-1 checkpoint immunotherapy or BRAF-targeted therapy has been shown to improve survival. 142 Neoadjuvant immunotherapy is being actively studied in clinical trials and has shown potential for improving long-term outcomes compared to adjuvant therapy in resectable stage III melanoma. 143

Immunotherapy has been a significant breakthrough for patients with advanced-stage melanoma, substantially improving survival. ⁹⁸ In early 2024, the US Food and Drug Administration approved lifileucel, a tumor-derived autologous T-cell immunotherapy for unresectable or metastatic melanoma previously treated with immune checkpoint inhibitors. ¹⁴⁴ This is the first tumor-infiltrating lymphocyte therapy approved for a solid tumor.

The contemporary 5-year relative survival rate for melanoma is 94%, ¹⁶ which is up from 82% for patients diagnosed in the mid-

1970s, largely because of increased detection of early stage disease throughout the 1980s and 1990s. 16.22.145 More than one half of melanomas are diagnosed at stage I, 17 for which the 5-year relative survival approaches 100% (Figure 7). For the small proportion of patients diagnosed with stage IV melanoma, relative survival has improved over time, which is attributable to previously described advances in therapy, 146 with 3-year relative survival rising from 23% for patients diagnosed during 2010–2012 to 35% for those diagnosed during 2015–2017. 17

Short-term and long-term health effects

Depending on the size and location of the melanoma, removal of these cancers can be disfiguring. Surgical complications may arise after SLNB, including, but not limited to, wound infection, seroma, lymphedema, hematoma, and nerve injury. 147 Patients receiving combination immune checkpoint blockade with a CTLA-4 inhibitor (e.g., ipilimumab) and an anti-PD-1 immune checkpoint inhibitor (e.g., nivolumab) may experience significant immune-related side effects, such as colitis; whereas these immune-related side effects are less frequent in patients treated with single-agent anti-PD-1 immune checkpoint inhibitors, such as nivolumab or pembrolizumab. 98,148 Patients treated with single-agent BRAF inhibitors have an increased risk of developing squamous cell skin cancers compared with those who also receive a MEK inhibitor. 149,150 Survivors of melanoma remain at risk for developing second primary melanoma, highlighting the relevance of routine skin surveillance in follow-up care. 151 The potential impacts of immunotherapy and targeted therapies like BRAF/MEK inhibitors on fertility and sexual health in survivors of melanoma remain insufficiently understood and may have implications for long-term survivorship care.

Prostate

As of January 1, 2025, it is estimated that more than 3.5 million men are living in the United States with a previous prostate cancer diagnosis, and an additional 313,780 new cases are expected to be diagnosed in 2025. ¹⁶ By January 1, 2035, this number is projected to reach about 4.2 million (Figure 2). The majority (87%) of survivors of prostate cancer are aged 65 years and older, whereas less than 1% (18,420) are younger than 50 years (Figure 4). The median age at diagnosis is 67 years. ²²

Treatment and survival

The optimal treatment strategy for prostate cancer involves conducting a risk assessment that takes into account the stage at diagnosis, histologic grading, patient's age and general health, and serum prostate-specific antigen (PSA) levels. 152 For early stage disease that is generally confined to the prostate, treatment options include

active surveillance, surgery (prostatectomy), and radiation. For patients with low-risk localized disease or those who are older and/or have other severe comorbid conditions, active surveillance is often recommended instead of immediate treatment. 152 The use of active surveillance (which includes watchful waiting in SEER) appears to have increased substantially over the past decade, rising from 14% in 2010 to 51% in 2020 among men with low-risk prostate cancer, 153 with limited evidence suggesting a similar trend among men with intermediate-risk disease. 154 Similarly, findings indicate that radical prostatectomy is increasingly being reserved for men with high-risk disease, reflecting a shift toward more selective utilization among those most likely to benefit. 155,156 For men with advanced disease. androgen-deprivation therapy, chemotherapy, bone-directed therapy (such as zoledronic acid or denosumab), radiation, or a combination of these treatments may be used. Newer hormone therapies, such as abiraterone and enzalutamide, are now used in both castrationresistant and castration-sensitive disease. 157-159 In early 2022, radioligand therapy (lutetium-177-PSMA-617) was approved for metastatic castration-resistant prostate cancer in combination with standard regimens. 160 Immunotherapy has limited efficacy in prostate cancer, possibly because of its immunologically cold tumor microenvironment. PARP inhibitors have shown improved progression-free and overall survival in men who have metastatic castration-resistant prostate cancer harboring BRCA1/BRCA2 mutations, particularly after disease progression on next-generation hormonal therapy. 161,162 Despite having higher incidence and mortality rates, 16 Black men face treatment disparities across the disease spectrum, including lower rates of definitive therapy for advanced disease compared with White men. 163,164

The 5-year relative survival rate for all stages combined increased from 68% in the mid-1970s to approaching 100% in contemporary population-based data, ¹⁶ primarily reflecting lead time bias and overdiagnosis associated with PSA screening uptake in the late 1980s and 1990s. Most (83%) prostate cancers are discovered at a local or regional stage, for which the 5-year relative survival rate approaches 100%. ¹⁶ However, it declines to 37% for distant-stage disease. ¹⁶ (Survival is presented by SEER summary stage because TNM (tumor, lymph node, metastasis) stage IV disease also includes high-risk patients without metastasis.)

Short-term and long-term health effects

Surgery or radiotherapy for prostate cancer carries a substantial risk of urinary incontinence and bowel complications. Advances in personalized medicine may further improve survivorship outcomes; for example, one study explored the use of polygenic risk scores to identify patients at elevated risk of late bladder toxicity after radiotherapy, with potential implications for individualized treatment planning. Sexual dysfunction remains a prevalent and underaddressed concern among survivors of prostate cancer. Emerging evidence suggests that targeted interventions may help address these adverse effects; for example, a supervised exercise program

combined with psychosexual education was associated with improvements in sexual function among patients with prostate cancer. 167

Long-term use of androgen-deprivation therapy has been associated with an increased risk of coronary heart disease, osteoporosis, obesity, diabetes, dementia, and sexual dysfunction, necessitating careful monitoring. 168 Certain bone-targeted therapies can reduce skeletal morbidity, including bone pain, in patients with metastatic castration-resistant disease. 169 Cardiovascular monitoring is essential for patients receiving androgen receptor-signaling inhibitors alongside androgen-deprivation therapy, with guidelines recommending baseline cardiovascular risk assessment and ongoing evaluation and risk mitigation throughout treatment and survivorship. 170,171

Testis

As of January 1, 2025, it is estimated that 317,930 men are living in the United States with a previous diagnosis of testicular cancer, and an additional 9720 new cases are expected to be diagnosed in 2025. Forty-four percent of survivors of testicular cancer in the United States are younger than 50 years (Figure 4), and the median age at diagnosis is 33 years. Testicular germ cell tumors account for approximately 96% of all testicular cancers. The two main types of testicular germ cell tumors are seminomas (54%) and nonseminomas (12%), with an additional 30% of mixed histology. Nonseminomas generally occur in men in their late teens to early 40s and tend to be more aggressive, whereas seminomas are generally diagnosed in men in their late 30s to early 50s and tend to be slow-growing. The seminomas (12%) and tend to be slow-growing.

Treatment and survival

The most common treatment for stage I seminomas is inguinal orchiectomy without chemotherapy or radiation (83%), whereas most patients with stage II disease undergo surgery followed by chemotherapy (67%), radiation (13%), or both (<1%; Figure 14). Over the last decade, postsurgical active surveillance has become an increasingly preferred management option (over further treatment) for patients with stage I seminomas, as supported by long-term studies. 173,174 Advanced-stage seminomas are generally treated with surgery and chemotherapy (70%; Figure 14). Among men with stage I nonseminomas, more than one half (55%) are treated with orchiectomy alone, whereas the majority of patients with stage II disease receive additional treatment after the initial surgical procedure, including chemotherapy (49%), retroperitoneal lymph node dissection (RPLND; 11%), or both (30%; Figure 14). Men with metastatic nonseminomas are usually treated with chemotherapy in addition to orchiectomy with or without RPLND.

Testicular cancer survival has increased from 83% for patients diagnosed during the mid-1970s to 95% in contemporary population-based data, ¹⁶ largely attributable to the success of chemotherapy regimens for advanced disease. The 5-year relative survival rate is

lower for nonseminomas (89%) than for mixed testicular germ cell tumors (94%) and seminomas (98%), regardless of age.¹⁸ The prognosis for stage III testicular cancer is favorable compared with that for most other cancers, with a 5-year survival rate of 74% (Figure 7); however, disparities still exist (76% in White people vs. 68% in Black people).¹⁷

Short-term and long-term health effects

Testicular cancer and its treatment can affect fertility, hence consultation about fertility status, referral for sperm banking, and other potential side effects should occur before treatment, as appropriate, for fertility preservation and to promote quality-of-life outcomes. 175 RPLND can lead to disordered ejaculation, making unassisted reproduction impossible. 176 Because bleomycin can damage the lungs, bleomycin-free regimens are often suggested for older adults, especially those who smoke or those with a history of chronic obstructive pulmonary disease or disease with reduced pulmonary function. 173 Cisplatin-based chemotherapy causes ototoxicity in about 20% of patients and neuropathy in 20%-40% of cases. 176 Patients treated with cisplatin are also at risk for developing renal and cardiovascular toxicity as well as secondary cancers. 176 Hypogonadism is a common treatment-related side effect among survivors-particularly those who have undergone bilateral orchiectomy; it may necessitate lifelong testosterone-replacement therapy and has been linked to increased risks of metabolic syndrome and cardiovascular disease as well as potential adverse effects on mood, energy, fertility, sexual function, bone health, and muscle strength. 176

Thyroid

As of January 1, 2025, it is estimated that about 1.1 million people are living in the United States with a previous diagnosis of thyroid cancer, and an additional 44,020 new cases are expected to be diagnosed in 2025. ¹⁶ The majority of survivors of thyroid cancer are women (77%), mirroring higher incidence rates in women, which are almost triple those in men. ¹⁶ The median age at diagnosis (55 years for men and 50 years for women) is lower than for all cancers combined (median age at diagnosis, 66 years). ²² Thyroid is the third most common malignant cancer diagnosis in adolescents (aged 15–19 years) after lymphoma and leukemia, ¹⁶ likely in large part because of overdiagnosis.

Treatment and survival

Papillary (88%) and follicular (7%) thyroid cancers, collectively known as *differentiated thyroid cancers*, make up the majority of thyroid cancers.²⁰ These are highly curable and typically respond well to radioactive iodine treatment,¹⁷⁷ unlike medullary or anaplastic

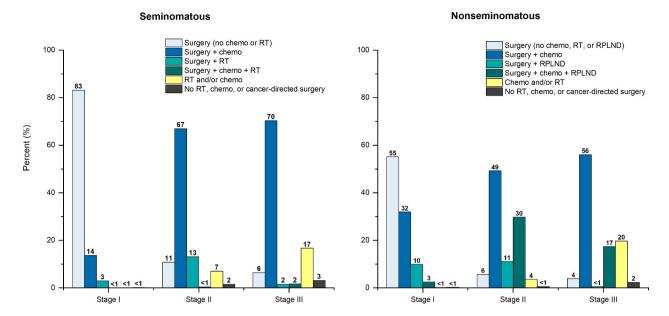


FIGURE 14 Treatment patterns (%) for testicular germ cell tumors by stage, 2017–2021. Percentages may not sum to totals because of rounding. Treatment patterns by race are not presented due to sparse data. The tumors did not include mixed cell types. Surgery includes orchiectomy and other local excision and tumor-destruction procedures but does not include RPNLD. + indicates with; Chemo, chemotherapy (includes targeted therapy and immunotherapy); RPNLD, retroperitoneal lymph node dissection; RT, radiation therapy.

thyroid cancers (3%),²⁰ which often present at a more advanced stage and do not respond to radioactive iodine treatment.^{178,179}

Most patients with thyroid cancer undergo total or partial thyroidectomy. Postoperative management might include radioactive iodine (iodine-131 [I-131]) for differentiated thyroid cancers. I-131 is especially beneficial in patients with high-risk disease because it can destroy remaining thyroid tissue and cancer,¹⁷⁷ although its use in low-risk and intermediate-risk disease remains contested.¹⁷⁷ Thyrotropin suppression using levothyroxine is used to reduce disease recurrence in patients with high-risk disease.¹⁸⁰ For advanced thyroid cancers resistant to radioactive iodine therapy, several systemic therapies have been approved by the US Food and Drug Administration, including multikinase inhibitors and *BRAF/MEK* inhibitors.¹⁸¹

The 5-year relative survival rate for thyroid cancer rose from 92% in the mid-1970s to 98% in contemporary population-based data, partly due to increased incidental detection. However, the 5-year survival rate for medullary and anaplastic carcinoma is 93% and 10%, respectively. However, the 10% of the survival rate for medullary and anaplastic carcinoma is 93% and 10%, respectively.

Short-term and long-term health effects

Postoperative complications include damage to underlying parathyroid glands, leading to issues with calcium metabolism.¹⁷⁷ Surgery can also damage the laryngeal nerve, leading to vocal changes.¹⁷⁷ For those treated with I-131, there is a low risk of temporary loss of or change in taste as well as damage to the salivary glands, which can lead to issues such as dry mouth, dental caries, and dysphagia, which may have delayed onset.¹⁸² Treatment with I-131 has also been found to increase the risk of subsequent cancers in young adults.

especially leukemia.¹⁸³ Furthermore, one study reported that approximately 40% of women who received I-131 experienced early menopause.¹⁸⁴ In this context, fertility preservation and counseling regarding potential reproductive and sexual health effects may be appropriate, particularly for younger patients. About 25% of medulary thyroid cancers occur as part of a genetic syndrome called *multiple endocrine neoplasia* type 2.¹⁸⁵ Hence, patients and family members could be referred to genetic counseling and possible testing.¹⁸⁵

Urinary bladder

As of January 1, 2025, it is estimated that 782,430 people are living in the United States with a previous diagnosis of bladder cancer, and an additional 84,870 new cases are expected to be diagnosed in 2025. The vast majority of survivors of bladder cancer are men (76%), mirroring the four-fold higher incidence than in women. The median age at diagnosis is 72 years. Nearly 70% of patients with bladder cancer are diagnosed with non-muscle invasive cancers (NMIBCs; i.e., AJCC stage 0–I), although the risk of both progression and recurrence is high. 17

Treatment and survival

Bladder cancer prognosis and treatment depend on whether the disease is muscle-invasive or not. After diagnostic transurethral resection of a bladder tumor (TURBT), patients with NMIBC are typically classified into low-risk, intermediate-risk, or high-risk

groups based on factors such as tumor size, the number of tumors, new tumor vs. recurrent, stage, grade, the presence of carcinoma in situ, and involvement of the prostatic urethra, which help guide treatment decisions. Low-risk NMIBC is often managed with TURBT alone, whereas patients with intermediate-risk NMIBC typically receive TURBT followed by intravesical bacillus Calmette-Guérin (BCG) or chemotherapy in some cases. 186 In 2021, the majority of patients with stage I disease (92%) and nearly two thirds (64%) of those with stage II disease underwent TURBT with or without chemotherapy and/or radiation (Figure 15). (Note that the NCDB does not distinguish between systemic and intravesical chemotherapy: however, based on treatment guidelines, it is likely that virtually all chemotherapy for early stage bladder cancer is intravesical.) In patients who are unresponsive to BCG or are unable to access BCG. 187 radical cystectomy can be an option. 188 In 2020, the US Food and Drug Administration approved pembrolizumab for patients with BCG-unresponsive NMIBC who are ineligible for or decline radical cystectomy. 189

Muscle-invasive bladder cancer (MIBC) is generally considered high-grade. Neoadjuvant chemotherapy followed by radical cystectomy and pelvic lymph node dissection are the mainstay treatments, with counseling on urinary diversion options (urostomy, continent diversion, or neobladder) recommended. 188,190 In a subset of patients, bladder-sparing treatments, such as chemoradiation or partial cystectomy, may be used. 186,191 For patients with metastatic disease, the antibody–drug conjugate enfortumab vedotin, in combination with the

anti-PD-1 immune checkpoint inhibitor pembrolizumab, has replaced platinum-based chemotherapy as the primary treatment. ¹⁸⁶

Studies have documented substantial disparities in the receipt of guideline-concordant care among Black patients who have MIBC and NMIBC, with only 35% of Black patients receiving guideline-concordant care for nonmetastatic MIBC compared with 43% of White patients (p < .001). The contemporary 5-year relative survival rate for bladder cancer is 77%, up from 72% for patients diagnosed in the mid-1970s. When stratified by AJCC staging, stage 0 urinary bladder cancer is diagnosed in 49% of patients, with a 5-year relative survival rate of 97% (Figure 7). For patients diagnosed with stage I bladder cancer, the 5-year relative survival rate is 81% overall, with observed differences by race (82% for White patients and 73% for Black patients). The patients who have MIBC and NIBC a

Short-term and long-term health effects

Posttreatment surveillance is crucial given the high rate of recurrence 188 and typically includes urine biomarker assays, urine cytology, and/or cystoscopy. TURBT has relatively low morbidity, with urinary tract infections and hematuria relatively common, whereas bladder perforation and obturator nerve reflex are rare. Patients may experience common local side effects like chemical cystitis, bacterial cystitis, frequency of urination, and hematuria following BCG treatment, but these usually resolve within 72

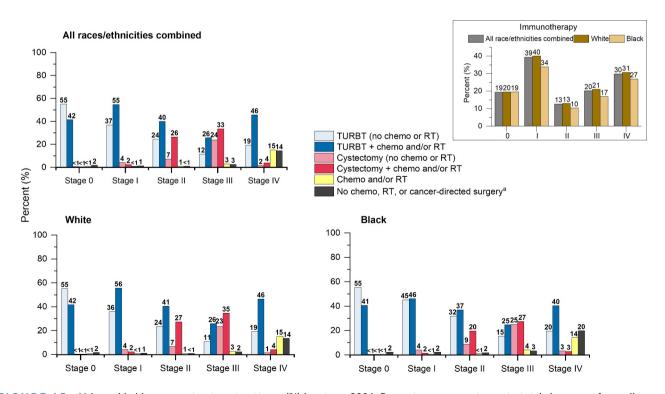


FIGURE 15 Urinary bladder cancer treatment patterns (%) by stage, 2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. ^aThese patients may have received a surgical diagnostic procedure to determine staging. + indicates with; Chemo, chemotherapy (includes targeted therapy but does not include immunotherapy, which is shown in the top right *inset*); RT, radiation therapy; TURBT, transurethral resection of the bladder tumor.

hours¹⁹⁶; whereas systemic side effects, such as malaise, fever, and infections (including sepsis), may occur in <1% to 9% of patients.¹⁹⁶ Radical cystectomy involves the removal of the bladder, prostate, and seminal vesicles in men and removal of the bladder, uterus, fallopian tubes, and anterior vagina in women, often resulting in sexual side effects that are frequently overlooked, particularly in women.^{197,198} The Enhanced Recovery After Surgery protocols have been shown to reduce hospital length of stay after radical cystectomy.¹⁸⁶ Most patients with a neobladder reconstruction after radical cystectomy regain urinary continence with appropriate rehabilitation,¹⁹⁹ although neobladder reconstruction remains much less common than urostomy (9% vs. 91%, respectively), largely because of the complexity of the procedure; its use is substantially higher at larger, higher volume hospitals.²⁰⁰

Uterine corpus (endometrium)

As of January 1, 2025, it is estimated that 945,540 women are living in the United States with a previous diagnosis of uterine corpus cancer, and an additional 69,120 new cases are expected to be diagnosed in 2025. ¹⁶ By January 1, 2035, the prevalence is projected to reach nearly 1.2 million (Figure 2). Cancer of the uterine corpus is often referred to as *endometrial cancer* because more than 90% of cases arise in the endometrium. ²⁰ It is the second most prevalent cancer among women after breast cancer and has a median age at diagnosis of 63 years. ²²

Treatment and survival

Among patients with early stage (stage I) uterine corpus cancer, 69% undergo hysterectomy and bilateral salpingo-oophorectomy without chemotherapy or radiation (Figure 16), with ovarian preservation possible for a select group of premenopausal women who have early disease (i.e., stage IA).²⁰¹ Most patients with stage II disease (64%) undergo surgery alone or with radiation, whereas the majority of patients with stage III disease (71%) undergo surgery and receive chemotherapy with or without radiation (Figure 16). Black women are more likely to receive chemotherapy after surgery, with or without radiation, for both stage I and stage II disease (Figure 16), likely reflecting the higher proportion of nonendometrioid disease, which is generally more aggressive than endometrioid disease.²⁰² When stratified by disease subtype, receipt of guideline-concordant therapy in hospital-based studies was lower among Black women than among White women for endometrioid subtypes²⁰³ but was similar for nonendometrioid cancers. 204,205 However, populationbased studies of patients aged 65 years and older have reported that Black patients are more likely than White patients to experience treatment delays and less likely to receive adjuvant therapy regardless of histology. 206,207

For patients with advanced disease who are not candidates for surgery, conventional treatment options have included external-beam

radiation therapy, brachytherapy, hormone therapy, and chemotherapy with carboplatin or paclitaxel. Immunotherapy now represents a standard component of first-line therapy based on contemporary clinical trials demonstrating that the addition of an anti-PD-1 immune checkpoint inhibitor to platinum-based chemotherapy improves outcomes in patients with advanced or recurrent endometrial cancer. Por patients with metastatic disease who are not candidates for first-line chemoimmunotherapy or who experience disease progression, mismatch repair status can guide further treatment selection. Immune checkpoint inhibitor monotherapy may be considered for tumors with deficient mismatch repair; whereas the combination of lenvatinib, a multikinase inhibitor, and pembrolizumab is recommended for tumors with proficient mismatch repair.

Despite modest improvements in survival for uterine corpus cancer overall, profound racial disparities persist, with Black women experiencing substantially worse outcomes than White women. The contemporary 5-year relative survival rate is 81% but ranges from 84% for White women to 63% for Black women. Although Black women have a higher burden of aggressive tumor subtypes, 11 survival in Black women is lower regardless of histology or stage, 17,212 pointing to pervasive disparities in access to treatment.

Short-term and long-term health effects

Because of the anatomic location of the uterus, surgery may cause pelvic floor dysfunction and urinary and gastrointestinal complications. Younger women with low-risk disease may elect to receive fertility-sparing treatment. S6.214 Bilateral oophorectomy induces menopause in premenopausal women, which can lead to symptoms such as hot flashes, night sweats, atrophic vaginitis, and osteoporosis. Long-term side effects of radiation therapy for uterine cancer can include bladder and bowel dysfunction as well as atrophic vaginitis and vaginal stenosis. Because most treatments for uterine corpus cancer cause infertility, sexual dysfunction, and early menopause, referral to specialty care and assessing psychological implications is often needed.

Cancers in children and adolescents

As of January 1, 2025, it is estimated that 40,260 children (aged 14 years and older) and 44,290 adolescents (aged 15–19 years) are living in the United States with a previous cancer diagnosis. In addition, 9550 children and 5140 adolescents are expected to be newly diagnosed with cancer in 2025. Survivors of leukemia account for about one third of all cancer survivors younger than 20 years. 22

Treatment and survival

Pediatric cancers are treated with a combination of therapies tailored to the type and stage of cancer, often by a coordinated

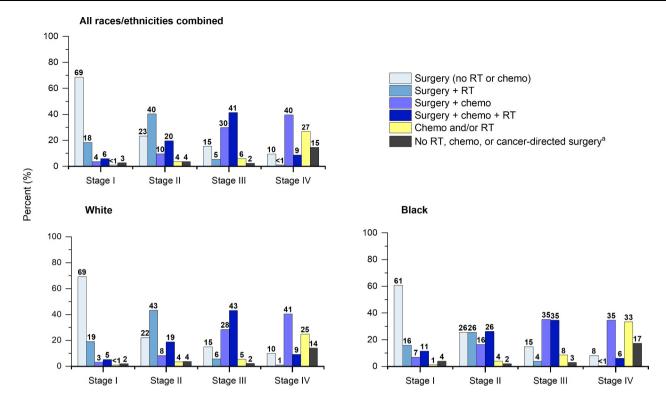


FIGURE 16 Endometrial cancer treatment patterns (%) by stage, 2021. Percentages may not sum to totals because of rounding. Categories for White and Black race exclude persons of Hispanic ethnicity. ^aSome of these patients may have received hormonal therapy. + indicates with; Chemo, chemotherapy (includes targeted therapy and immunotherapy); RT, radiation therapy.

multidisciplinary team that includes pediatric oncologists, surgeons, nurses, social workers, child life specialists, psychologists, and other professionals in specialized centers. Adolescents diagnosed with pediatric cancers are usually treated at pediatric facilities or by pediatric specialists rather than by adult-care specialists, partly because they may be more likely to offer the opportunity for participation in clinical trials. Studies have demonstrated that adolescent patients diagnosed with ALL have better outcomes on pediatric protocols, particularly when treated in pediatric oncology settings thereas cancers more prevalent in adults, such as melanoma, testicular cancer, and thyroid cancer, are generally more appropriately treated by adult-care specialists. 217

For all childhood and adolescent cancers combined (excluding benign and borderline brain tumors), the 5-year relative survival rate increased from 58% during mid-1970s to 85% among children and from 68% to 87% among adolescents in contemporary population-based data, ¹⁶ largely because of the optimization of treatment regimens. However, survival varies considerably, depending on cancer type, patient age, and other characteristics. The overall survival rate among adolescents is heavily influenced by high survival rates for thyroid cancer (>99%) and HL (99%), masking lower survival rates compared with several cancers in children, including ALL (76% vs. 92%) and Ewing sarcoma (68% vs. 81%). ¹⁶

Short-term and long-term health effects

The aggressive treatments used for childhood cancers, especially in the 1970s and 1980s, resulted in several late adverse effects, including an increased risk of subsequent neoplasms and cardiovascular disease. For example, one longitudinal study indicated that 18% of survivors of childhood cancer had experienced a major cardiovascular event by age 50 years compared with 0.9% of community controls. Another study indicated that even survivors exposed to low-to-moderate doses of radiation treatment to the chest had a 1.6-fold risk of developing cardiac disease over the next 30 years if the area of exposure included more than one half of the heart.

Declines in late effects of treatment among survivors of child-hood cancer are in part due to the reduced use of toxic treatments, such as cranial radiation for ALL and abdominal radiation for Wilms tumor.²²¹ However, even newer therapies can increase the risk of serious health conditions. Cognitive impairment affects up to one third of survivors.²²² Some treatments may result in developmental delays and negatively impact mental health and achievement of social and professional goals.^{223,224} For example, 12.5% of adult long-term survivors of childhood cancers have posttraumatic stress symptoms/disorders, with more distress symptoms reported by women and those with lower levels of education.²²⁵ Adolescents may have

negative body image issues, more so in women, often exacerbated by culture and social media. ²²⁶ In addition, some chemotherapies, surgery, and radiation affecting the reproductive organs may cause infertility. ^{227,228} Compared with women who have no history of cancer, survivors of childhood cancer are also more likely to experience serious cardiac problems during pregnancy as well as preterm birth. ²²⁹ The Children's Oncology Group, a National Cancer Institute-supported clinical trials group that cares for more than 90% of US children and adolescents diagnosed with cancer, has developed long-term follow-up guidelines for managing late effects in survivors of childhood cancer (survivorshipguidelines.org, Accessed February 20, 2025).

ACCESS TO CARE IN TREATMENT AND SURVIVORSHIP

Barriers to equitable cancer care and survivorship

Longstanding social and economic advantages have limited access to education, employment opportunities, intergenerational transfer of wealth, and economic mobility for historically underrepresented groups in the United States, including Black and American Indian/ Alaska Native individuals.²³⁰ Consequently, many important social determinants of health continue to be closely associated with race.²³¹ The Social Security Act of 1935 created a system of employment-based health insurance coverage that has interacted with longstanding differences in employment opportunities, contributing to racial variation in health insurance coverage. American Indian/Alaska Native populations experience the highest overall cancer mortality rates of any racial or ethnic group in the United States, 16 which have been linked to limited access to cancer screening, delayed diagnosis, and lower access to quality care. Even after adjusting for differences in stage at diagnosis, 5-year relative survival is lower for Black patients compared with White patients for most cancers, 16 largely driven by differences in access to care and quality of care. 39 Research also suggests that hospitals serving a higher proportion of racially and ethnically diverse populations may be less likely to offer comprehensive cancer treatment and support services typically available in CoC-accredited programs, which may contribute to observed disparities in outcomes.²³² Barriers to education access, challenges in recruitment and career advancement, and limited inclusion in professional networks have contributed to the underrepresentation of these population groups in the medical workforce, especially in leadership positions. This gap may limit the cultural responsiveness of health care delivery and contribute to the inability of the health care system to demonstrate trustworthiness. In addition, gaps in representation across population groups in large clinical trials have also been identified as a major barrier to health equity in cancer treatment.²³³ For example, even when enrolled in the same clinical trials, Black pediatric patients with cancer are less likely to be treated with potentially superior cancer treatment modalities than White pediatric patients.²³⁴ In the posttreatment

phase, Black survivors report poorer physical functioning and less access to culturally appropriate support services compared with White survivors and also receive inadequate disease surveil-lance.^{235–237}

COVID-19 pandemic

The COVID-19 pandemic has disrupted health care and worsened access to cancer screening and early evaluation of signs and symptoms, leading to fewer cancer diagnoses and challenges for the long-term care of survivors.²³⁸ Although many delays are related to radiotherapy or chemotherapy, one study of Medicare recipients reported that surgical procedures likewise declined in the first few months of the pandemic, likely because of fewer diagnoses.²³⁹ Organizations have provided recommendations for triaging and prioritized treatment of patients with cancer during the pandemic, and telehealth has expanded as a socially distanced care option.^{240,241} However, the effectiveness of telehealth for cancer surveillance is still limited, and some people—including, but not limited to, those with limited broadband use, uninsured, and East and South East Asians—were less likely to use telehealth.^{242,243}

Extreme weather events

Extreme weather events impact cancer treatment and survivorship in various ways.²⁴⁴ The frequency and behavior of these events are being altered by the changing climate, making it more difficult for communities to prepare for and respond to unpredictable circumstances and increasing the chances of disruptions in access to cancer care.²⁴⁵ Extreme weather events can damage medical infrastructure, impede transportation, disrupt supply chains, and ultimately interrupt access to potentially life-saving cancer care.²⁴⁶ For instance, patients undergoing radiation therapy for lung cancer during a hurricane have worse mortality compared with similar patients who complete treatment at the same facilities in the absence of disasters.²⁴⁷ There are no disaster preparedness and response guidelines specific to cancer care, although the effects of climate-driven disasters have affected all top cancer centers in the United States in the past decade.²⁴⁸

Cancer diagnosis and treatment can increase an individual's susceptibility to the effects of extreme weather events. For example, certain chemotherapy agents can interfere with the body's ability to regulate temperature, increasing health risks during heatwaves, which are becoming more frequent and intense. Similarly, wildfire activity is increasing in the United States because of changes in temperature and drought. Patients recovering from lung cancer surgery who are exposed to a wildfire have worse mortality than unexposed patients. Therefore, there is an urgent need to better understand and address the specific needs and vulnerabilities of patients and survivors of cancer during extreme weather events.

Quality of life and other concerns in survivorship

Supportive care, including psychosocial support, palliative care, and cancer rehabilitation, plays a critical role in improving pain management, functional well-being, and overall quality of life throughout cancer survivorship.^{253,254} Although many treatment-related side effects are acute, some may become chronic or emerge months or even years after the completion of primary cancer treatment, such as subsequent cancers, neurologic sequelae, cardiomyopathies, sexual dysfunction, and impaired fertility. Many late and long-term effects can be mitigated through early access to cancer rehabilitation. 253,254 Similarly, palliative care has been shown to enhance both quality of life and survival when incorporated early.²⁵⁵ Despite longstanding recommendations for early palliative care in metastatic disease, uptake remains low. Over the past decade, early palliative care use among patients with metastatic disease remained suboptimal, ²⁵⁶ and contemporary patterns of end-of-life care indicated gaps in palliative care utilization.²⁵⁷ Limited training in cancer survivorship for primary care providers, unclear provider roles, and poor information transfer between care settings further exacerbate these challenges. 258,259

Healthy behaviors, including diet, physical activity, and smoking cessation, play a critical role in survivorship, reducing the risk of cancer progression and recurrence as well as the development of subsequent cancers. The American Cancer Society has developed guidelines for survivors of cancer on healthy behaviors related to diet and physical activity. Younger survivors of cancer, in particular, have been shown to have a higher prevalence of smoking after diagnosis than the general population. For example, in 2020, survivors of childhood cancer smoked at almost twice the rate of the individuals who did not have cancer at the same age (27% vs. 14%). Addressing these behaviors within integrated care models can enhance long-term health outcomes.

Quality-of-life issues also encompass the concerns of informal caregivers (i.e., family members or friends), who provide substantial emotional and physical support to survivors. Caregivers frequently report having unmet psychosocial and medical needs and are vulnerable to depression, anxiety, and psychological distress. In one study, about 40% of caregivers reported that they found caregiving emotionally challenging, and 12% reported experiencing depression. Social support programs for caregivers that teach coping skills have been shown to diminish the negative impact of caregiver stress. Sci3-265

The national patient economic burden associated with cancer care was estimated to be over \$21 billion in 2019.²⁶⁶ Survivors are vulnerable to medical financial hardship, which may manifest as material (e.g., problems paying medical bills, medical debt, and bankruptcy), psychological (e.g., stress or worry about paying medical bills), or behavioral (e.g., delaying or forgoing necessary medical care because of cost) hardships. Survivors who are younger, underinsured or uninsured, and/or have lower income, as well as long-term survivors of childhood cancer, are more likely to experience financial hardship.^{267,268} Even when cancer treatment is covered, employment disruptions and loss of household income can contribute to lasting

financial hardship, particularly for working-age adults.²⁶⁹ Expanding Medicaid coverage, enhancing Affordable Care Act subsidies, and improving patient navigation programs may help mitigate financial hardship and ensure sustained health insurance coverage for younger survivors.²⁶⁹

Comprehensive population-based surveillance of survivorship outcomes remains limited. To address this, NCI-funded cancer epidemiology survivor cohorts have been established that follow survivors over time, capturing data on treatment exposures, long-term health outcomes, and social determinants of health to inform future guidelines and interventions. Expanding these initiatives can improve our understanding of survivorship needs and help shape evidence-based interventions.

LIMITATIONS

Cancer prevalence estimates cannot be compared with previously published estimates because they are model-based projections based on population-based incidence and mortality through 2021 and survival data up to 2020 and may reflect the impact of diagnostic and treatment delays related to the COVID-19 pandemic. In addition, these estimates are based on SEER-12, whereas prior estimates used a combination of SEER-9 and SEER-18, and they incorporate updated population projections based on the 2020 census rather than the 2010 census. Furthermore, the prevalence estimates do not distinguish disease status and thus include individuals living disease-free and those undergoing active treatment.

The NCDB is a hospital-based cancer registry and may lack comprehensive data for treatments commonly administered in outpatient settings. Furthermore, the data are collected for patients diagnosed or treated at CoC-accredited facilities, which are more likely to be located in larger urban areas than non-CoC-accredited facilities and may not be representative of all patients in the United States.²⁷¹ Nevertheless, the NCDB includes more than 70% of newly diagnosed patients with cancer and facilities in all states and the District of Columbia.¹²

Five-year relative survival rates by AJCC stage are based on patients diagnosed during 2013–2017 and do not reflect the impact of newer treatment advances. Contemporary data (2014–2020) for estimating five-year survival rates could not be stratified by AJCC stage due to changes in staging criteria following the adoption of the eighth edition in 2018.

CONCLUSION

Despite increasing awareness of survivorship issues and the resilience of survivors of cancer, considerable challenges persist. The number of people living with a history of cancer diagnosis is projected to exceed 22 million by 2035, highlighting the ongoing need to address their long-term health and supportive care needs. As more individuals live longer after a cancer diagnosis, the most prevalent

malignancies include those of the prostate and the breast. However, survivorship experiences and outcomes are not equitable across populations. Access to treatment and supportive care differs across racial and ethnic groups, influencing cancer-related outcomes. These differences are influenced by longstanding societal and health care system factors, including fragmentation in health care delivery, inadequate survivorship care coordination, clinician shortages, lack of workforce diversity, gaps in survivor-focused research, and insufficient evidence-based guidelines for posttreatment care. Barriers related to cost, transportation, and insurance coverage further limit access to high-quality survivorship care. Addressing these disparities will require sustained, coordinated action across multiple levels-individual, provider, health system, and policy. Expanding access to affordable, high-quality insurance coverage through both private and public programs; identifying best practices for the equitable delivery of quality cancer care; and consistent implementation of evidencebased survivorship guidelines will be essential to reducing disparities and supporting long-term health of all survivors.

ACKNOWLEDGMENTS

The authors gratefully acknowledge all cancer registries and their staff for their hard work and diligence in collecting cancer information, without which this research could not have been accomplished.

CONFLICT OF INTEREST STATEMENT

K. Robin Yabroff reports support for professional activities from Flatiron Health outside the submitted work. Patricia A. Ganz reports personal/consulting fees from Blue Note Therapeutics, Grail, Informed DNA, and Roche; and service on a Data and Safety Monitoring Board for Astellas Pharma and Duke University outside the submitted work. Nikita Sandeep Wagle, Leticia Nogueira, K. Robin Yabroff, Farhad Islami, Ahmedin Jemal, Rick Alteri, and Rebecca L. Siegel are employed by the American Cancer Society, which receives grants from private and corporate foundations, including foundations associated with companies in the health sector, for research outside of the submitted work. The authors are not funded by or key personnel for any of these grants, and their salary is solely funded through American Cancer Society funds. Other authors report no conflicts of interest.

ORCID

Nikita Sandeep Wagle https://orcid.org/0000-0003-1337-483X Leticia Nogueira https://orcid.org/0000-0001-6990-3660 Theresa P. Devasia https://orcid.org/0000-0002-0348-1407 K. Robin Yabroff https://orcid.org/0000-0003-0644-5572 Farhad Islami https://orcid.org/0000-0002-7357-5994 Patricia A. Ganz https://orcid.org/0000-0002-1841-4143 Rebecca L. Siegel https://orcid.org/0000-0001-5247-8522

REFERENCES

 Tonorezos E, Devasia T, Mariotto AB, et al. Prevalence of cancer survivors in the United States. J Natl Cancer Inst. 2024;116(11):1784-1790. doi:10.1093/jnci/djae135

- Weaver KE, Forsythe LP, Reeve BB, et al. Mental and physical health-related quality of life among U.S. cancer survivors: population estimates from the 2010 National Health Interview Survey. Cancer Epidemiol Biomarkers Prev. 2012;21(11):2108-2117. doi:10. 1158/1055-9965.EPI-12-0740
- Han X, Robinson LA, Jensen RE, Smith TG, Yabroff KR. Factors associated with health-related quality of life among cancer survivors in the United States. JNCI Cancer Spectr. 2021;5(1):pkaa123. doi:10.1093/jncics/pkaa123
- Berry LL, Davis SW, Godfrey Flynn A, Landercasper J, Deming KA.
 Is it time to reconsider the term "cancer survivor?" J Psychosoc Oncol. 2019;37(4):1-14. doi:10.1080/07347332.2018.1522411
- Verdecchia A, De Angelis G, Capocaccia R. Estimation and projections of cancer prevalence from cancer registry data. Stat Med. 2002;21(22):3511-3526. doi:10.1002/sim.1304
- Howlader N, Bhattacharya M, Scoppa S, et al. Cancer and COVID-19: US cancer incidence rates during the first year of the pandemic. J Natl Cancer Inst. 2024;116(2):208-215. doi:10.1093/jnci/djad205
- Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Explorer. Cancer Statistics Explorer Network, SEER Program, National Cancer Institute, National Institutes of Health; 2024. Accessed December 20, 2024. https://seer.cancer.gov/statistics-network/explorer/
- National Cancer Institute. Complete Prevalence (ComPrev) Software, version 3.0.31. Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute; 2022.
- Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A III, eds. AJCC Cancer Staging Manual. 7th ed. Springer; 2010.
- Amin MB, Edge SB, Greene FL, et al., eds. AJCC Cancer Staging Manual. 8th ed. Springer; 2016.
- American College of Surgeons Commission on Cancer. National Cancer Dabatase, 2023 data submission. American College of Surgeons; 2024.
- Mallin K, Browner A, Palis B, et al. Incident cases captured in the National Cancer Database compared with those in U.S. population based central cancer registries in 2012–2014. Ann Surg Oncol. 2019;26(6):1604-1612. doi:10.1245/s10434-019-07213-1
- Fritz A, Percy C, Jack A, et al., eds. International Classification of Diseases for Oncology. 3rd ed. World Health Organization; 2000.
- Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification of Childhood Cancer, third edition. Cancer. 2005; 103(7):1457-1467. doi:10.1002/cncr.20910
- Steliarova-Foucher E, Colombet M, Ries LAG, et al. International incidence of childhood cancer, 2001–10: a population-based registry study. *Lancet Oncol.* 2017;18(6):719-731. doi:10.1016/S1470-2045(17)30186-9
- Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. doi:10.3322/ caac.21871
- 17. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER Research Plus Data, 17 Registries, November 2023 Submission (2000–2021)—Linked To County Attributes—Total U.S., 1969–2022 Counties, released April 2024, based on the November 2023 submission. National Cancer Institute, Division of Cancer Control and Population Sciences, Surveillance Research Program; 2024.
- 18. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER Research Plus Limited-Field Data, 22 Registries (excluding Illinois and Massachusetts), November 2023 Submission (2000–2021)—Linked To County Attributes—Total U.S., 1969–2022 Counties, released April 2024, based on the November 2023 submission. National Cancer Institute, Division of Cancer Control and Population Sciences, Surveillance Research Program; 2024
- Surveillance Research Program, National Cancer Institute. SEER*-Stat software, version 8.4.3. National Cancer Institute; 2024.

- 20. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: North American Association of Central Cancer Registries (NAACCR) Incidence Data—Cancer in North America Research Data, 1995–2021, Standard File, American Cancer Society Facts & Figures (which includes data from the Centers for Disease Control and Prevention's National Program of Cancer Registries, the Canadian Council of Cancer Registry's Provincial and Territorial Registries, and the National Cancer Institute's SEER Registries), certified by the NAACCR as meeting high-quality incidence data standards for the specified time periods, submitted December 2023. National Cancer Institute, Division of Cancer Control and Population Sciences, Surveillance Research Program, Surveillance Systems Branch; 2023.
- Gallicchio L, Devasia TP, Tonorezos E, Mollica MA, Mariotto A. Estimation of the number of individuals living with metastatic cancer in the United States. J Natl Cancer Inst. 2022;114(11):1476-1483. doi:10.1093/inci/djac158
- Howlader N, Noone AM, Krapcho M, et al., eds. SEER Cancer Statistics Review 1975–2018 (based on the November 2020 SEER data submission). National Cancer Institute; 2021.
- Wheeler SB, Spencer J, Pinheiro LC, et al. Endocrine therapy nonadherence and discontinuation in Black and White women. J Natl Cancer Inst. 2018;111(5):498-508. doi:10.1093/jnci/djy136
- Rajan KK, Fairhurst K, Birkbeck B, et al. Overall survival after mastectomy versus breast-conserving surgery with adjuvant radiotherapy for early-stage breast cancer: meta-analysis. BJS Open. 2024;8(3):zrae040. doi:10.1093/bjsopen/zrae040
- Gradishar WJ, Anderson BO, Balassanian R, et al. Breast Cancer, Version 4.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(3):310-320. doi:10.6004/jnccn. 2018.0012
- Thomssen C, Balic M, Harbeck N, Gnant M. St. Gallen/Vienna 2021:
 a brief summary of the consensus discussion on customizing therapies for women with early breast cancer. Breast Care (Basel). 2021;16(2):135-143. doi:10.1159/000516114
- Montagna G, Morrow M. Contralateral prophylactic mastectomy in breast cancer: what to discuss with patients. Expert Rev Anticancer Ther. 2020;20(3):159-166. doi:10.1080/14737140.2020.1732213
- Baskin AS, Wang T, Bredbeck BC, Sinco BR, Berlin NL, Dossett LA. Trends in contralateral prophylactic mastectomy utilization for small unilateral breast cancer. J Surg Res. 2021;262:71-84. doi:10. 1016/j.jss.2020.12.057
- Graboyes EM, Chaiyachati KH, Sisto Gall J, et al. Addressing transportation insecurity among patients with cancer. J Natl Cancer Inst. 2022;114(12):1593-1600. doi:10.1093/jnci/djac134
- Wang T, Baskin AS, Dossett LA. Deimplementation of the Choosing Wisely recommendations for low-value breast cancer surgery: a systematic review. JAMA Surg. 2020;155(8):759-770. doi:10.1001/ jamasurg.2020.0322
- 31. Yao K, Winchester DJ, Czechura T, Huo D. Contralateral prophylactic mastectomy and survival: report from the National Cancer Data Base, 1998–2002. *Breast Cancer Res Treat*. 2013;142(3):465-476. doi:10.1007/s10549-013-2745-1
- Boughey JC, Attai DJ, Chen SL, et al. Contralateral prophylactic mastectomy (CPM) consensus statement from the American Society of Breast Surgeons: data on CPM outcomes and risks. Ann Surg Oncol. 2016;23(10):3100-3105. doi:10.1245/s10434-016-5443-5
- Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triplenegative breast cancer. N Engl J Med. 2020;382(9):810-821. doi:10. 1056/NEJMoa1910549
- Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast Cancer. N Engl J Med. 2021;384(25):2394-2405. doi:10.1056/NEJMoa2105215

 Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529-1541. doi:10.1056/NEJMoa2028485

- Modi S, Park H, Murthy RK, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase lb study. *J Clin Oncol*. 2020;38(17):1887-1896. doi:10.1200/jco.19.02318
- Modi S, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022;387(1):9-20. doi:10.1056/NEJMoa2203690
- Caswell-Jin JL, Sun LP, Munoz D, et al. Analysis of breast cancer mortality in the US-1975 to 2019. JAMA. 2024;331(3):233-241. doi:10.1001/jama.2023.25881
- Jemal A, Robbins AS, Lin CC, et al. Factors that contributed to Black-White disparities in survival among nonelderly women with breast cancer between 2004 and 2013. J Clin Oncol. 2018;36(1):14-24. doi:10.1200/JCO.2017.73.7932
- Ellis L, Canchola AJ, Spiegel D, Ladabaum U, Haile R, Gomez SL. Racial and ethnic disparities in cancer survival: the contribution of tumor, sociodemographic, institutional, and neighborhood characteristics. J Clin Oncol. 2018;36(1):25-33. doi:10.1200/JCO.2017.74.2049
- Giaquinto AN, Sung H, Newman LA, et al. Breast cancer statistics 2024. CA Cancer J Clin. 2024;74(6):477-495. doi:10.3322/caac. 21863
- Lorona NC, Malone KE, Li CI. Racial/ethnic disparities in risk of breast cancer mortality by molecular subtype and stage at diagnosis. Breast Cancer Res Treat. 2021;190(3):549-558. doi:10.1007/ s10549-021-06311-7
- McLaughlin SA, Brunelle CL, Taghian A. Breast cancer-related lymphedema: risk factors, screening, management, and the impact of locoregional treatment. J Clin Oncol. 2020;38(20):2341-2350. doi:10.1200/JCO.19.02896
- Rafn BS, Christensen J, Larsen A, Bloomquist K. Prospective surveillance for breast cancer-related arm lymphedema: a systematic review and meta-analysis. J Clin Oncol. 2022;40(9):1009-1026. doi:10.1200/JCO.21.01681
- Runowicz CD, Leach CR, Henry NL, et al. American Cancer Society/ American Society of Clinical Oncology breast cancer survivorship care guideline. J Clin Oncol. 2015;34(6):611-635. doi:10.1200/JCO. 2015.64.3809
- Paramanandam VS, Dylke E, Clark GM, et al. Prophylactic use of compression sleeves reduces the incidence of arm swelling in women at high risk of breast cancer-related lymphedema: a randomized controlled trial. J Clin Oncol. 2022;40(18):2004-2012. doi:10.1200/JCO.21.02567
- Schmitz KH, Demanelis K, Crisafio ME, et al. Proximity to cancer rehabilitation and exercise oncology by geography, race, and socioeconomic status. *Cancer.* 2025;131(1):e35515. doi:10.1002/ cncr.35515
- Wang K, Yee C, Tam S, et al. Prevalence of pain in patients with breast cancer post-treatment: a systematic review. *Breast.* 2018;42: 113-127. doi:10.1016/j.breast.2018.08.105
- Wang L, Guyatt GH, Kennedy SA, et al. Predictors of persistent pain after breast cancer surgery: a systematic review and metaanalysis of observational studies. CMAJ. 2016;188(14):E352-E361. doi:10.1503/cmaj.151276
- Rivera DR, Ganz PA, Weyrich MS, Bandos H, Melnikow J. Chemotherapy-associated peripheral neuropathy in patients with early-stage breast cancer: a systematic review. J Natl Cancer Inst. 2017;110(2):dix140. doi:10.1093/jnci/dix140
- Ren Y, Maselko J, Tan X, et al. Patterns of change in emotional and functional well-being following breast cancer diagnosis. *Cancer Epidemiol Biomarkers Prev.* Published online March 26, 2025. doi:10. 1158/1055-9965.EPI-24-0849

- Carter J, Lacchetti C, Andersen BL, et al. Interventions to address sexual problems in people with cancer: American Society of Clinical Oncology clinical practice guideline adaptation of Cancer Care Ontario guideline. J Clin Oncol. 2018;36(5):492-511. doi:10.1200/ JCO.2017.75.8995
- Rosenberg SM, Dominici LS, Gelber S, et al. Association of breast cancer surgery with quality of life and psychosocial well-being in young breast cancer survivors. JAMA Surg. 2020;155(11):1035-1042. doi:10.1001/jamasurg.2020.3325
- Franzoi MA, Agostinetto E, Perachino M, et al. Evidence-based approaches for the management of side-effects of adjuvant endocrine therapy in patients with breast cancer. *Lancet Oncol*. 2021;22(7):e303-e313. doi:10.1016/S1470-2045(20)30666-5
- Lambertini M, Arecco L, Woodard TL, Messelt A, Rojas KE. Advances in the management of menopausal symptoms, fertility preservation, and bone health for women with breast cancer on endocrine therapy. Am Soc Clin Oncol Educ Book. 2023(43): e390442. doi:10.1200/edbk_390442
- Oktay K, Harvey BE, Partridge AH, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36(19):1994-2001. doi:10.1200/JCO.2018.78.1914
- Lambertini M, Blondeaux E, Perrone F, Mastro LD. Improving adjuvant endocrine treatment tailoring in premenopausal women with hormone receptor-positive breast cancer. J Clin Oncol. 2020;38(12):1258-1267. doi:10.1200/jco.19.02242
- Letourneau JM, Wald K, Sinha N, et al. Fertility preservation before breast cancer treatment appears unlikely to affect disease-free survival at a median follow-up of 43 months after fertilitypreservation consultation. *Cancer*. 2020;126(3):487-495. doi:10. 1002/cncr.32546
- Rodriguez-Wallberg KA, Eloranta S, Krawiec K, Lissmats A, Bergh J, Liljegren A. Safety of fertility preservation in breast cancer patients in a register-based matched cohort study. *Breast Cancer Res Treat*. 2018;167(3):761-769. doi:10.1007/s10549-017-4555-3
- Greer AC, Lanes A, Poorvu PD, et al. The impact of fertility preservation on the timing of breast cancer treatment, recurrence, and survival. *Cancer*. 2021;127(20):3872-3880. doi:10.1002/cncr. 33601
- Williams AM, Khan CP, Heckler CE, et al. Fatigue, anxiety, and quality of life in breast cancer patients compared to non-cancer controls: a nationwide longitudinal analysis. *Breast Cancer Res Treat*. 2021;187(1):275-285. doi:10.1007/s10549-020-06067-6
- Bodelon C, Masters M, Bloodworth DE, et al. Physical health decline after chemotherapy or endocrine therapy in breast cancer survivors. JAMA Netw Open. 2025;8(2):e2462365. doi:10.1001/ jamanetworkopen.2024.62365
- Polter EJ, Prizment AE, Walker RF, et al. Cardiovascular disease with hormone therapy and ovarian suppression in premenopausal breast cancer survivors. JACC CardioOncol. 2024;6(6):907-918. doi:10.1016/j.jaccao.2024.08.006
- 64. Yeh ET, Chang HM. Oncocardiology—past, present, and future: a review. JAMA Cardiol. 2016;1(9):1066-1072. doi:10.1001/jamacardio.2016.2132
- Armenian SH, Lacchetti C, Barac A, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. *J Clin Oncol.* 2017;35(8):893-911. doi:10.1200/JCO.2016.70.5400
- Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233-254. doi:10.3322/caac.21772
- Kannarkatt J, Joseph J, Kurniali PC, Al-Janadi A, Hrinczenko B. Adjuvant chemotherapy for stage II colon cancer: a clinical dilemma. J Oncol Pract. 2017;13(4):233-241. doi:10.1200/JOP. 2016.017210

- Baxter NN, Kennedy EB, Bergsland E, et al. Adjuvant therapy for stage II colon cancer: ASCO guideline update. J Clin Oncol. 2022;40(8):892-910. doi:10.1200/jco.21.02538
- Sonbol MB, Mountjoy LJ, Firwana B, et al. The role of maintenance strategies in metastatic colorectal cancer: a systematic review and network meta-analysis of randomized clinical trials. JAMA Oncol. 2020;6(3):e194489. doi:10.1001/jamaoncol.2019.4489
- Chida K, Kotani D, Masuishi T, et al. The prognostic impact of KRAS G12C mutation in patients with metastatic colorectal cancer: a multicenter retrospective observational study. *Oncologist*. 2021;26(10):845-853. doi:10.1002/onco.13870
- Salem ME, El-Refai SM, Sha W, et al. Landscape of KRAS G12C, associated genomic alterations, and interrelation with immunooncology biomarkers in KRAS-mutated cancers. JCO Precis Oncol. 2022;6:e2100245. doi:10.1200/PO.21.00245
- Fujii S, Magliocco AM, Valtorta E, et al. International harmonization of diagnostic criteria for HER2-amplified metastatic colorectal cancer and application of targeted next-generation sequencing panel as a diagnostic method [abstract]. *J Clin Oncol.* 2018;36(15 suppl):3594. doi:10.1200/JCO.2018.36.15_suppl.3594
- Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669-685. doi:10.1001/ jama.2021.0106
- Pathak PS, Chan G, Deming DA, Chee CE. State-of-the-art management of colorectal cancer: treatment advances and innovation.
 Am Soc Clin Oncol Educ Book. 2024;44(3):e438466. doi:10.1200/edbk 438466
- Shahjehan F, Kasi PM, Habermann E, et al. Trends and outcomes of sphincter-preserving surgery for rectal cancer: a National Cancer Database study. *Int J Colorectal Dis.* 2019;34(2):239-245. doi:10. 1007/s00384-018-3171-y
- Arsoniadis EG, Fan Y, Jarosek S, et al. Decreased use of sphincterpreserving procedures among African Americans with rectal cancer. Ann Surg Oncol. 2018;25(3):720-728. doi:10.1245/s10434-017-6306-4
- Hao S, Snyder RA, Irish W, Parikh AA. Association of race and health insurance in treatment disparities of colon cancer: a retrospective analysis utilizing a national population database in the United States. *PLoS Med.* 2021;18(10):e1003842. doi:10.1371/ journal.pmed.1003842
- Nogueira LM, May FP, Yabroff KR, Siegel RL. Racial disparities in receipt of guideline-concordant care for early-onset colorectal cancer in the United States. J Clin Oncol. 2024;42(12):1368-1377. doi:10.1200/jco.23.00539
- Sineshaw HM, Ng K, Flanders WD, Brawley OW, Jemal A. Factors that contribute to differences in survival of Black vs White patients with colorectal cancer. *Gastroenterology*. 2018;154(4):906-915e7. doi:10.1053/j.gastro.2017.11.005
- Gielen AHC; Guideline Development Group. Guideline for the assessment and management of gastrointestinal symptoms following colorectal surgery—a UEG/ESCP/EAES/ESPCG/ESPEN/ ESNM/ESSO collaboration. Part I—sequelae to oncological diseases. United European Gastroenterol J. 2024;12(10):1489-1506. doi:10.1002/ueg2.12658
- Dalsania RM, Shah KP, Stotsky-Himelfarb E, Hoffe S, Willingham FF. Management of long-term toxicity from pelvic radiation therapy. Am Soc Clin Oncol Educ Book. 2021(41):147-157. doi:10.1200/edbk.323525
- Luo X, Li J, Chen M, Gong J, Xu Y, Li Q. A literature review of posttreatment survivorship interventions for colorectal cancer survivors and/or their caregivers. *Psychooncology*. 2021;30(6):807-817. doi:10.1002/pon.5657
- 83. Han CJ, Yang GS, Syrjala K. Symptom experiences in colorectal cancer survivors after cancer treatments: a systematic review and

meta-analysis. *Cancer Nurs*. 2020;43(3):E132-E158. doi:10.1097/ncc.000000000000785

- 84. Sun V, Grant M, Wendel CS, et al. Sexual function and healthrelated quality of life in long-term rectal cancer survivors. *J Sex Med.* 2016;13(7):1071-1079. doi:10.1016/j.jsxm.2016.05.005
- Bulkley JE, McMullen CK, Grant M, Wendel C, Hornbrook MC, Krouse RS. Ongoing ostomy self-care challenges of long-term rectal cancer survivors. Support Care Cancer. 2018;26(11):3933-3939. doi:10.1007/s00520-018-4268-0
- 86. Nehemiah A, Zhang S, Appel S, et al. Intimacy and survivors of cancer with ostomies: findings from the Ostomy Self-Management Training trial. *J Sex Med.* 2023;20(11):1319-1324. doi:10.1093/jsxmed/gdad119
- 87. Iveson TJ, Sobrero AF, Yoshino T, et al. Duration of adjuvant doublet chemotherapy (3 or 6 months) in patients with high-risk stage II colorectal cancer. *J Clin Oncol*. 2021;39(6):631-641. doi:10.1200/ICO.20.01330
- 88. Grothey A, Sobrero AF, Shields AF, et al. Duration of adjuvant chemotherapy for stage III colon cancer. *N Engl J Med.* 2018;378(13):1177-1188. doi:10.1056/NEJMoa1713709
- Holowatyj AN, Eng C, Lewis MA. Incorporating reproductive health in the clinical management of early-onset colorectal cancer. JCO Oncol Pract. 2022;18(3):169-172. doi:10.1200/OP.21. 00525
- Ljungberg B, Campbell SC, Cho HY, et al. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60(4):615-621. doi:10.1016/j.eururo. 2011.06.049
- 91. Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2019;30(5):706-720. doi:10.1093/annonc/mdz056
- Rose TL, Kim WY. Renal cell carcinoma: a review. JAMA. 2024;332(12):1001-1010. doi:10.1001/jama.2024.12848
- 93. Dutcher JP, Flippot R, Fallah J, Escudier B. On the shoulders of giants: the evolution of renal cell carcinoma treatment—cytokines, targeted therapy, and immunotherapy. *Am Soc Clin Oncol Educ Book*. 2020(40):418-435. doi:10.1200/edbk 280817
- 94. US Food and Drug Administration (FDA). FDA approves lenvatinib plus pembrolizumab for advanced renal cell carcinoma. FDA; 2021. Accessed February 20, 2025. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lenvatinib-plus-pembrolizumab-advanced-renal-cell-carcinoma
- 95. US Food and Drug Administration (FDA). FDA approves nivolumab plus cabozantinib for advanced renal cell carcinoma. FDA; 2021. Accessed February 20, 2025. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-plus-cabozantinib-advanced-renal-cell-carcinoma
- Antonelli A, Allinovi M, Cocci A, et al. The predictive role of biomarkers for the detection of acute kidney injury after partial or radical nephrectomy: a systematic review of the literature. Eur Urol Focus. 2020;6(2):344-353. doi:10.1016/j.euf. 2018.09.020
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology. Kidney Cancer Version 2.2025. NCCN: 2024.
- Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immunecheckpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563-580. doi:10.1038/s41571-019-0218-0
- Lee N, Lee JL, Lee JY. Analysis of anti-angiogenesis-related adverse events associated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) in patients with metastatic renal cell carcinoma. *Target Oncol.* 2023;18(2):247-255. doi:10.1007/s11523-023-00951-z

- Yilmaz M, Kantarjian H, Ravandi F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021;11(6):123. doi:10.1038/s41408-021-00514-3
- Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(3):502-526. doi:10.1002/ajh.26822
- Kantarjian H, Kadia T, DiNardo C, et al. Acute myeloid leukemia: current progress and future directions. *Blood Cancer J.* 2021;11(2): 41. doi:10.1038/s41408-021-00425-3
- Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. *Blood*. 2017;130(22):2373-2376. doi:10.1182/ blood-2017-09-797712
- Cucchi DGJ, Polak TB, Ossenkoppele GJ, et al. Two decades of targeted therapies in acute myeloid leukemia. *Leukemia*. 2021;35(3): 651-660. doi:10.1038/s41375-021-01164-x
- Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136-1152. doi:10.1056/NEJMra1 406184
- Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. Am J Hematol. 2024;99(11): 2191-2212. doi:10.1002/ajh.27443
- Haddad FG, Sasaki K, Issa GC, et al. Treatment-free remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors. Am J Hematol. 2022;97(7):856-864. doi:10.1002/aih.26550
- 108. Rousselot P, Loiseau C, Delord M, Besson C, Cayuela JM, Spentchian M. A report on 114 patients who experienced treatment free remission in a single institution during a 15 years period: long term follow-up, late molecular relapses and second attempts [abstract]. Blood. 2019;134(suppl 1):27. doi:10.1182/blood-2019-129919
- Schoenbeck KL, Atallah E, Lin L, et al. Patient-reported functional outcomes in patients with chronic myeloid leukemia after stopping tyrosine kinase inhibitors. J Natl Cancer Inst. 2022;114(1):160-164. doi:10.1093/jnci/djab184
- Malard F, Mohty M. Acute lymphoblastic leukaemia. *Lancet*. 2020;395(10230):1146-1162. doi:10.1016/S0140-6736(19) 33018-1
- Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia.
 Lancet. 2013;381(9881):1943-1955. doi:10.1016/S0140-6736(12)
 62187-4
- Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. 2016;108(7):djv439. doi:10.1093/jnci/djv439
- 113. DeAngelo DJ, Stevenson KE, Dahlberg SE, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29(3):526-534. doi:10.1038/leu.2014.229
- Shadman M. Diagnosis and treatment of chronic lymphocytic leukemia: a review. JAMA. 2023;329(11):918-932. doi:10.1001/jama. 2023.1946
- Alonso C, Dutta SW, Mitra N, et al. Adult nodular lymphocytepredominant Hodgkin lymphoma: treatment modality utilization and survival. *Cancer Med.* 2018;7(4):1118-1126. doi:10.1002/cam4. 1383
- Ansell SM. Hodgkin lymphoma: 2025 update on diagnosis, riskstratification, and management. Am J Hematol. 2024;99(12):2367-2378. doi:10.1002/ajh.27470
- Ullah F, Dima D, Omar N, Ogbue O, Ahmed S. Advances in the treatment of Hodgkin lymphoma: current and future approaches. Front Oncol. 2023;13:1067289. doi:10.3389/fonc.2023.1067289
- 118. Eichenauer DA, Fuchs M. Treatment of nodular lymphocytepredominant Hodgkin lymphoma: where do we stand? Where do we go? *Cancers (Basel)*. 2023;15(13):3310. doi:10.3390/cancers1 5133310

- Silkenstedt E, Salles G, Campo E, Dreyling M. B-cell non-Hodgkin lymphomas. Lancet. 2024;403(10438):1791-1807. doi:10.1016/ S0140-6736(23)02705-8
- Sahin U, Toprak SK, Atilla PA, Atilla E, Demirer T. An overview of infectious complications after allogeneic hematopoietic stem cell transplantation. J Infect Chemother. 2016;22(8):505-514. doi:10. 1016/j.jiac.2016.05.006
- 121. Shyam SS, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 2023;8(1):262. doi:10.1038/s41392-023-01469-6
- 122. Follows AM, Santarsieri A. Minimising the toxicities of first line Hodgkin lymphoma treatment in the modern era. *Cancers (Basel)*. 2022;14(21):5390. doi:10.3390/cancers14215390
- 123. Brudno JN, Maus MV, Hinrichs CS. CAR T cells and T-cell therapies for cancer: a translational science review. JAMA. 2024;332(22):1924-1935. doi:10.1001/jama.2024.19462
- 124. Elsallab M, Ellithi M, Lunning MA, et al. Second primary malignancies after commercial CAR T-cell therapy: analysis of the FDA Adverse Events Reporting System. Blood. 2024;143(20):2099-2105. doi:10.1182/blood.2024024166
- 125. Hamilton MP, Sugio T, Noordenbos T, et al. Risk of second tumors and T-cell lymphoma after CAR T-cell therapy. N Engl J Med. 2024;390(22):2047-2060. doi:10.1056/NEJMoa2401361
- Merritt RE, Abdel-Rasoul M, D'Souza DM, Kneuertz PJ. Racial disparities in overall survival and surgical treatment for early stage lung cancer by facility type. Clin Lung Cancer. 2021;22(5):e691e698. doi:10.1016/j.cllc.2021.01.007
- 127. Ezer N, Mhango G, Bagiella E, Goodman E, Flores R, Wisnivesky JP. Racial disparities in resection of early stage non-small cell lung cancer: variability among surgeons. *Med Care*. 2020;58(4):392-398. doi:10.1097/MLR.000000000001280
- Horn L, Mansfield AS, Szczesna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220-2229. doi:10.1056/NEJMoa1809064
- Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72(5):409-436. doi:10.3322/caac.21731
- Merlo A, Carlson R, Espey J 3rd, et al. Postoperative symptom burden in patients undergoing lung cancer surgery. *J Pain Symptom Manag.* 2022;64(3):254-267. doi:10.1016/j.jpainsymman.2022. 05.016
- 131. Saji H, Ueno T, Nakamura H, et al. A proposal for a comprehensive risk scoring system for predicting postoperative complications in octogenarian patients with medically operable lung cancer: JACS1303. Eur J Cardiothorac Surg. 2017;53(4):835-841. doi:10. 1093/eicts/ezx415
- 132. Finley CJ, Begum HA, Pearce K, et al. The effect of major and minor complications after lung surgery on length of stay and readmission. J Patient Exp. 2022;9:23743735221077524. doi:10.1177/23743735221077524
- Li R, Wang K, Qu C, et al. The effect of the enhanced recovery after surgery program on lung cancer surgery: a systematic review and meta-analysis. J Thorac Dis. 2021;13(6):3566-3586. doi:10.21037/ itd-21-433
- Mithoowani H, Febbraro M. Non-small-cell lung cancer in 2022: a review for general practitioners in oncology. *Curr Oncol*. 2022;29(3): 1828-1839. doi:10.3390/curroncol29030150
- Guo X, Chen S, Wang X, Liu X. Immune-related pulmonary toxicities of checkpoint inhibitors in non-small cell lung cancer: diagnosis, mechanism, and treatment strategies. Front Immunol. 2023;14:1138483. doi:10.3389/fimmu.2023.1138483
- Aredo JV, Luo SJ, Gardner RM, et al. Tobacco smoking and risk of second primary lung cancer. J Thorac Oncol. 2021;16(6):968-979. doi:10.1016/j.jtho.2021.02.024

- Barclay ME, Lyratzopoulos G, Walter FM, Jefferies S, Peake MD, Rintoul RC. Incidence of second and higher order smoking-related primary cancers following lung cancer: a population-based cohort study. *Thorax*. 2019;74(5):466-472. doi:10.1136/thoraxjnl-2018-212456
- Sheikh M, Mukeriya A, Shangina O, Brennan P, Zaridze D. Postdiagnosis smoking cessation and reduced risk for lung cancer progression and mortality: a prospective cohort study. *Ann Intern Med.* 2021;174(9):1232-1239. doi:10.7326/M21-0252
- Gemine RE, Ghosal R, Collier G, et al. Longitudinal study to assess impact of smoking at diagnosis and quitting on 1-year survival for people with non-small cell lung cancer. *Lung Cancer*. Mar 2019;129:1-7. doi:10.1016/j.lungcan.2018.12.028
- 140. Rigney M, Rapsomaniki E, Carter-Harris L, King JC. A 10-year cross-sectional analysis of public, oncologist, and patient attitudes about lung cancer and associated stigma. *J Thorac Oncol.* 2021;16(1):151-155. doi:10.1016/j.jtho.2020.09.011
- 141. Florez N, Kiel L, Meza K, et al. Sexual Health Assessment in Women with Lung Cancer study: sexual health assessment in women with lung cancer. Cancer. 2024;130(3):375-384. doi:10.1002/cncr. 35057
- 142. Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. *Lancet*. 2023;402(10400):485-502. doi:10. 1016/S0140-6736(23)00821-8
- 143. Blank CU, Lucas MW, Scolyer RA, et al. Neoadjuvant nivolumab and ipilimumab in resectable stage III melanoma. N Engl J Med. 2024;391(18):1696-1708. doi:10.1056/NEJMoa2402604
- 144. US Food and Drug Administration (FDA). FDA grants accelerated approval to lifileucel for unresectable or metastatic melanoma. FDA; 2024. Accessed February 20, 2025. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-lifileucel-unresectable-or-metastatic-melanoma
- Welch HG, Woloshin S, Schwartz LM. Skin biopsy rates and incidence of melanoma: population based ecological study. BMJ. 2005;331(7515):481. doi:10.1136/bmj.38516.649537.E0
- 146. Farrow NE, Turner MC, Salama AKS, Beasley GM. Overall survival improved for contemporary patients with melanoma: a 2004–2015 National Cancer Database analysis. Oncol Ther. 2020;8(2):261-275. doi:10.1007/s40487-020-00117-1
- Lindqvist EK, Laine E, Kamali A, Sars C, Gillgren P, Schultz I. Risk factors for post-operative complications after sentinel lymph node biopsy for cutaneous melanoma: results from a large cohort study. J Plast Reconstr Aesthet Surg. 2019;72(12):1956-1962. doi:10.1016/ j.bjps.2019.08.011
- Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158-168. doi:10.1056/NEJMra1703481
- 149. Peng L, Wang Y, Hong Y, et al. Incidence and relative risk of cutaneous squamous cell carcinoma with single-agent BRAF inhibitor and dual BRAF/MEK inhibitors in cancer patients: a metaanalysis. Oncotarget. 2017;8(47):83280-83291. doi:10.18632/ oncotarget.21059
- Garutti M, Bergnach M, Polesel J, Palmero L, Pizzichetta MA, Puglisi F. BRAF and MEK inhibitors and their toxicities: a meta-analysis. Cancers (Basel). 2022;15(1):141. doi:10.3390/cancers15010141
- 151. Wiener AA, Schumacher JR, Racz JM, Weber SM, Xu YG, Neuman HB. Incidence of second primary melanoma in cutaneous melanoma survivors. *Ann Surg Oncol*. 2022;29(9):5925-5932. doi:10. 1245/s10434-022-11725-8
- Schaeffer EM, Srinivas S, Adra N, et al. Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2023;21(10):1067-1096. doi:10.6004/jnccn. 2023.0050
- 153. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence: SEER Research Plus Specialized Data

(Prostate Cancer with Additional Treatment Modalities and Risk Stratification Fields), 17 Registries, based on the November 2022 Submission (2000–2020)—Linked To County Attributes—Total U. S., 1969–2021 Counties. National Cancer Institute, Division of Cancer Control and Population Sciences, Surveillance Research Program, Surveillance Systems Branch; 2023.

- 154. Diven MA, Tshering L, Ma X, et al. Trends in active surveillance for men with intermediate-risk prostate cancer. JAMA Netw Open. 2024;7(8):e2429760. doi:10.1001/jamanetworkopen.2024. 29760
- 155. Meissner VH, Glöckler V, Jahnen M, Schiele S, Gschwend JE, Herkommer K. Changing nationwide trends away from overtreatment among patients undergoing radical prostatectomy over the past 25 years. World J Urol. 2023;41(6):1497-1502. doi:10.1007/s00345-023-04418-8
- 156. Vaculik K, Luu M, Howard LE, et al. Time trends in use of radical prostatectomy by tumor risk and life expectancy in a national Veterans Affairs cohort. JAMA Netw Open. 2021;4(6):e2112214. doi:10.1001/jamanetworkopen.2021.12214
- James ND, Bono JS, Spears MR, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377(4):338-351. doi:10.1056/NEJMoa1702900
- 158. Attard G, Murphy L, Clarke NW, et al. Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol. *Lancet Oncol.* 2023;24(5):443-456. doi:10.1016/s1470-2045(23)00148-1
- Fizazi K, Tran N, Fein L, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377(4):352-360. doi:10.1056/NEJMoa1704174
- Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091-1103. doi:10.1056/NEJMoa2107322
- de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castrationresistant prostate cancer. N Engl J Med. 2020;382(22):2091-2102. doi:10.1056/NEJMoa1911440
- Hussain M, Mateo J, Fizazi K, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med. 2020;383(24):2345-2357. doi:10.1056/NEJMoa2022485
- 163. Beebe-Dimmer JL, Ruterbusch JJ, Cooney KA, et al. Racial differences in patterns of treatment among men diagnosed with de novo advanced prostate cancer: a SEER-Medicare investigation. Cancer Med. 2019;8(6):3325-3335. doi:10.1002/cam4.2092
- 164. George DJ, Agarwal N, Ramaswamy K, et al. Emerging racial disparities among Medicare beneficiaries and veterans with metastatic castration-sensitive prostate cancer. Prostate Cancer Prostatic Dis. 2024;27(4):765-775. doi:10.1038/s41391-024-00815-1
- Raychaudhuri R, Lin DW, Montgomery RB. Prostate cancer: a review. JAMA. Published online March 10, 2025. doi:10.1001/jama. 2025.0228
- 166. Farazi M, Yang X, Gehl CJ, et al. A polygenic risk score for late bladder toxicity following radiotherapy for non-metastatic prostate cancer. *Cancer Epidemiol Biomarkers Prev.* Published online March 3, 2025. doi:10.1158/1055-9965.Epi-24-1228
- 167. Galvão DA, Newton RU, Taaffe DR, et al. Exercise and psychosexual education to improve sexual function in men with prostate cancer: a randomized clinical trial. JAMA Netw Open. 2025;8(3): e250413. doi:10.1001/jamanetworkopen.2025.0413
- 168. Nguyen C, Lairson DR, Swartz MD, Du XL. Risks of major long-term side effects associated with androgen-deprivation therapy in men with prostate cancer. *Pharmacotherapy*. 2018;38(10):999-1009. doi:10.1002/phar.2168

- 169. Mitchell AP, Mishra A, Panageas KS, Lipitz-Snyderman A, Bach PB, Morris MJ. Real-world use of bone modifying agents in metastatic castration-sensitive prostate cancer. J Natl Cancer Inst. 2021;114(3):419-426. doi:10.1093/jnci/djab196
- El-Taji O, Taktak S, Jones C, Brown M, Clarke N, Sachdeva A. Cardiovascular events and androgen receptor signaling inhibitors in advanced prostate cancer: a systematic review and meta-analysis. JAMA Oncol. 2024;10(7):874-884. doi:10.1001/jamaoncol.2024.
- 171. Atkins KM, Nikolova AP. Cardiovascular risk in prostate cancer—a call to action? *JAMA Oncol*. 2024;10(7):885-886. doi:10.1001/jamaoncol.2024.0860
- 172. Ghazarian AA, Kelly SP, Altekruse SF, Rosenberg PS, McGlynn KA. Future of testicular germ cell tumor incidence in the United States: forecast through 2026. Cancer. 2017;123(12):2320-2328. doi:10.1002/cncr.30597
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology, Testicular Cancer Version 2.2024. NCCN: 2024.
- 174. Stephenson A, Bass EB, Bixler BR, et al. Diagnosis and treatment of early-stage testicular cancer: AUA guideline amendment 2023. J Urol. 2024;211(1):20-25. doi:10.1097/ju.000000000003694
- Singla N, Bagrodia A, Baraban E, Fankhauser CD, Ged YMA. Testicular germ cell tumors: a review. JAMA. 2025;333(9):793-803. doi:10.1001/jama.2024.27122
- Fung C, Dinh PC, Fossa SD, Travis LB. Testicular cancer survivorship. J Natl Compr Canc Netw. 2019;17(12):1557-1568. doi:10. 6004/jnccn.2019.7369
- 177. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid*. 2016;26(1):1-133. doi:10. 1089/thy.2015.0020
- 178. Bible KC, Kebebew E, Brierley J, et al. 2021 American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. *Thyroid*. 2021;31(3):337-386. doi:10.1089/thy. 2020.0944
- 179. Wells SA Jr., Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. *Thyroid*. 2015;25(6):567-610. doi:10.1089/thy.2014. 0335
- Chen DW, Lang BHH, McLeod DSA, Newbold K, Haymart MR. Thyroid cancer. Lancet. 2023;401(10387):1531-1544. doi:10.1016/s0140-6736(23)00020-x
- Yun KM, Cohen EEW. An era of advances in systemic therapies for advanced thyroid cancer. JCO Oncol Pract. 2024;20(7):899-906. doi:10.1200/op.23.00747
- 182. Clement SC, Peeters RP, Ronckers CM, et al. Intermediate and long-term adverse effects of radioiodine therapy for differentiated thyroid carcinoma—a systematic review. *Cancer Treat Rev.* 2015;41(10):925-934. doi:10.1016/j.ctrv.2015.09.001
- 183. Pasqual E, Schonfeld S, Morton LM, et al. Association between radioactive iodine treatment for pediatric and young adulthood differentiated thyroid cancer and risk of second primary malignancies. J Clin Oncol. 2022;40(13):1439-1449. doi:10.1200/jco.21. 01841
- Navarro P, Rocher S, Miró-Martínez P, Oltra-Crespo S. Radioactive iodine and female fertility. Sci Rep. 2022;12(1):3704. doi:10.1038/ s41598-022-07592-8
- Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054-1067. doi:10.1056/ NEJMra1501993

- Lopez-Beltran A, Cookson MS, Guercio BJ, Cheng L. Advances in diagnosis and treatment of bladder cancer. BMJ. 2024;384: e076743. doi:10.1136/bmj-2023-076743
- Golla V, Lenis AT, Faiena I, Chamie K. Intravesical therapy for nonmuscle invasive bladder cancer—current and future options in the age of bacillus Calmette–Guerin shortage. Rev Urol. 2019;21(4): 145-153.
- 188. Compérat E, Amin MB, Cathomas R, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. *Lancet*. 2022;400(10364):1712-1721. doi:10.1016/S0140-6736 (22)01188-6
- 189. Balar AV, Kamat AM, Kulkarni GS, et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study. *Lancet Oncol.* 2021;22(7):919-930. doi:10.1016/s1470-2045(21)00147-9
- Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: a review.
 JAMA. 2020;324(19):1980-1991. doi:10.1001/jama.2020.17598
- Fan X, He W, Huang J. Bladder-sparing approaches for muscle invasive bladder cancer: a narrative review of current evidence and future perspectives. *Transl Androl Urol.* 2023;12(5):802-808. doi:10. 21037/tau-23-124
- Marinaro J, Zeymo A, Egan J, et al. Sex and racial disparities in the treatment and outcomes of muscle-invasive bladder cancer. *Urology*. 2021;151:154-162. doi:10.1016/j.urology.2020.06.087
- Washington SL 3rd, Neuhaus J, Meng MV, Porten SP. Social determinants of appropriate treatment for muscle-invasive bladder cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(8):1339-1344. doi:10.1158/1055-9965.Epi-18-1280
- 194. Washington SL 3rd, Gregorich SE, Meng MV, Suskind AM, Porten SP. Race modifies survival benefit of guideline-based treatment: implications for reducing disparities in muscle invasive bladder cancer. Cancer Med. 2020;9(22):8310-8317. doi:10.1002/cam4. 3429
- Kim LHC, Patel MI. Transurethral resection of bladder tumour (TURBT). Transl Androl Urol. 2020;9(6):3056-3072. doi:10.21037/ tau.2019.09.38
- 196. Koch GE, Smelser WW, Chang SS. Side effects of intravesical BCG and chemotherapy for bladder cancer: what they are and how to manage them. *Urology*. 2021;149:11-20. doi:10.1016/j.urology. 2020.10.039
- Davis L, Isali I, Prunty M, et al. Female sexual function following radical cystectomy in bladder cancer. Sex Med Rev. 2022;10(2):231-239. doi:10.1016/j.sxmr.2021.10.005
- 198. Pederzoli F, Campbell JD, Matsui H, Sopko NA, Bivalacqua TJ. Surgical factors associated with male and female sexual dysfunction after radical cystectomy: what do we know and how can we improve outcomes? Sex Med Rev. 2018;6(3):469-481. doi:10.1016/j. sxmr.2017.11.003
- Lee RK, Abol-Enein H, Artibani W, et al. Urinary diversion after radical cystectomy for bladder cancer: options, patient selection, and outcomes. *BJU Int.* 2014;113(1):11-23. doi:10.1111/bju. 12121
- Roghmann F, Becker A, Trinh QD, et al. Updated assessment of neobladder utilization and morbidity according to urinary diversion after radical cystectomy: a contemporary US-population-based cohort. Can Urol Assoc J. 2013;7(9-10):E552-E560. doi:10.5489/ cuaj.221
- Oaknin A, Bosse TJ, Creutzberg CL, et al. Endometrial cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up.
 Ann Oncol. 2022;33(9):860-877. doi:10.1016/j.annonc.2022.05.009
- Abel MK, Liao C-I, Chan C, et al. Racial disparities in high-risk uterine cancer histologic subtypes: a United States Cancer Statistics study. Gynecol Oncol. 2021;161(2):470-476. doi:10.1016/j. ygyno.2021.02.037

- Kaspers M, Llamocca E, Quick A, Dholakia J, Salani R, Felix AS. Black and Hispanic women are less likely than White women to receive guideline-concordant endometrial cancer treatment. Am J Obstet Gynecol. 2020;223(3):398e1-398e18. doi:10.1016/j.ajog. 2020.02.041
- Dholakia J, Llamocca E, Quick A, Salani R, Felix AS. Guidelineconcordant treatment is associated with improved survival among women with non-endometrioid endometrial cancer. *Gynecol Oncol.* 2020;157(3):716-722. doi:10.1016/j.ygyno.2020.03.016
- Felix AS, Cohn DE, Brasky TM, et al. Receipt of adjuvant endometrial cancer treatment according to race: an NRG Oncology/ Gynecologic Oncology Group 210 study. Am J Obstet Gynecol. 2018;219(5):459e1-459e11. doi:10.1016/j.ajog.2018.08.002
- Saris DH, Smith AJB, Brensinger C, et al. Disparities in cancerspecific and overall survival in Black women with endometrial cancer: a Medicare-SEER study. *Gynecol Oncol Rep.* 2022;40:100922. doi:10.1016/j.gore.2022.100922
- Corey L, Cote ML, Ruterbusch JJ, Vezina A, Winer I. Disparities in adjuvant treatment of high-grade endometrial cancer in the Medicare population. Am J Obstet Gynecol. 2021;226(4):541.e1-541.e13. doi:10.1016/j.ajog.2021.10.031
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines), Uterine Neoplasms Version 3.2025. NCCN; 2025.
- Eskander RN, Sill MW, Beffa L, et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N Engl J Med. 2023;388(23):2159-2170. doi:10.1056/NEJMoa2302312
- Mirza MR, Chase DM, Slomovitz BM, et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med. 2023;388(23):2145-2158. doi:10.1056/NEJMoa2216334
- Fedewa SA, Lerro C, Chase D, Ward EM. Insurance status and racial differences in uterine cancer survival: a study of patients in the National Cancer Database. *Gynecol Oncol.* 2011;122(1):63-68. doi:10.1016/j.ygyno.2011.03.010
- Clarke MA, Devesa SS, Harvey SV, Wentzensen N. Hysterectomycorrected uterine corpus cancer incidence trends and differences in relative survival reveal racial disparities and rising rates of nonendometrioid cancers. *J Clin Oncol.* 2019;37(22):1895-1908. doi:10.1200/JCO.19.00151
- Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N. Endometrial cancer. *Lancet*. 2022;399(10333):1412-1428. doi:10.1016/S0140-6736(22)00323-3
- 214. Wright JD, Buck AM, Shah M, Burke WM, Schiff PB, Herzog TJ. Safety of ovarian preservation in premenopausal women with endometrial cancer. *J Clin Oncol*. 2009;27(8):1214-1219. doi:10.1200/JCO.2008.19.8150
- 215. Siembida EJ, Loomans-Kropp HA, Trivedi N, et al. Systematic review of barriers and facilitators to clinical trial enrollment among adolescents and young adults with cancer: identifying opportunities for intervention. Cancer. 2020;126(5):949-957. doi:10.1002/cncr. 32675
- Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. *Blood*. 2019;133(14):1548-1559. doi:10. 1182/blood-2018-10-881961
- 217. Bleyer A. Young adult oncology: the patients and their survival challenges. *CA Cancer J Clin.* 2007;57(4):242-255. doi:10.3322/canjclin.57.4.242
- Armstrong GT, Chen Y, Yasui Y, et al. Reduction in late mortality among 5-year survivors of childhood cancer. N Engl J Med. 2016;374(9):833-842. doi:10.1056/NEJMoa1510795
- 219. Hammoud RA, Liu Q, Dixon SB, et al. The burden of cardiovascular disease and risk for subsequent major adverse cardiovascular events in survivors of childhood cancer: a prospective, longitudinal analysis from the St Jude Lifetime Cohort Study.

Lancet Oncol. 2024;25(6):811-822. doi:10.1016/S1470-2045(24) 00157-8

- Bates JE, Howell RM, Liu Q, et al. Therapy-related cardiac risk in childhood cancer survivors: an analysis of the Childhood Cancer Survivor Study. J Clin Oncol. 2019;37(13):1090-1101. doi:10.1200/ JCO.18.01764
- Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. *J Clin Oncol.* 2013;31(29):3673-3680. doi:10.1200/JCO. 2013.49.3205
- Castellino SM, Ullrich NJ, Whelen MJ, Lange BJ. Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors. J Natl Cancer Inst. 2014;106(8):dju186. doi:10. 1093/jnci/dju186
- Chow EJ, Ness KK, Armstrong GT, et al. Current and coming challenges in the management of the survivorship population. Semin Oncol. 2020;47(1):23-39. doi:10.1053/j.seminoncol.2020. 02.007
- 224. Barr RD, Ferrari A, Ries L, Whelan J, Bleyer WA. Cancer in adolescents and young adults: a narrative review of the current status and a view of the future. JAMA Pediatr. 2016;170(5):495. doi:10. 1001/jamapediatrics.2015.4689
- Allen J, Willard VW, Klosky JL, et al. Posttraumatic stress-related psychological functioning in adult survivors of childhood cancer. *J Cancer Surviv.* 2018;12(2):216-223. doi:10.1007/s11764-017-0660-x
- Olsson M, Enskär K, Steineck G, Wilderäng U, Jarfelt M. Self-perceived physical attractiveness in relation to scars among adolescent and young adult cancer survivors: a population-based study. J Adolesc Young Adult Oncol. 2018;7(3):358-366. doi:10. 1089/jayao.2017.0089
- 227. Barton SE, Najita JS, Ginsburg ES, et al. Infertility, infertility treatment, and achievement of pregnancy in female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study cohort. *Lancet Oncol*. 2013;14(9):873-881. doi:10.1016/S1470-2045(13)70251-1
- Wasilewski-Masker K, Seidel KD, Leisenring W, et al. Male infertility in long-term survivors of pediatric cancer: a report from the Childhood Cancer Survivor Study. J Cancer Surviv. 2014;8(3):437-447. doi:10.1007/s11764-014-0354-6
- Zgardau A, Ray JG, Baxter NN, et al. Obstetrical and perinatal outcomes in female survivors of childhood and adolescent cancer: a population-based cohort study. J Natl Cancer Inst. 2022;114(4):553-564. doi:10.1093/jnci/djac005
- Islami F, Baeker Bispo J, Lee H, et al. American Cancer Society's report on the status of cancer disparities in the United States, 2023. CA Cancer J Clin. 2024;74(2):136-166. doi:10.3322/caac.21812
- 231. Bailey ZD, Feldman JM, Bassett MT. How structural racism works —racist policies as a root cause of U.S. racial health inequities. N Engl J Med. 2021;384(8):768-773. doi:10.1056/NEJMms2025396
- Himmelstein G, Ganz PA. Distribution of cancer care resources across US hospitals by patient race and ethnicity. JAMA Oncol. 2024;10(1):134-137. doi:10.1001/jamaoncol.2023.4952
- Freedman RA, Ruddy KJ. Who are the patients in our clinical trials for cancer? J Clin Oncol. 2019;37(18):1519-1523. doi:10.1200/JCO.19. 00382
- Bitterman DS, Bona K, Laurie F, et al. Race disparities in proton radiotherapy uses for cancer treatment in patients enrolled in Children's Oncology Group trials. JAMA Oncol. 2020;6(9):1465-1468. doi:10.1001/jamaoncol.2020.2259
- Lee Smith J, Hall IJ. Advancing health equity in cancer survivorship: opportunities for public health. Am J Prev Med. 2015;49(6 suppl 5): S477-S482. doi:10.1016/j.amepre.2015.08.008
- Bowen DJ, Alfano CM, McGregor BA, et al. Possible socioeconomic and ethnic disparities in quality of life in a cohort of breast cancer

- survivors. Breast Cancer Res Treat. 2007;106(1):85-95. doi:10.1007/s10549-006-9479-2
- Brawarsky P, Neville BA, Fitzmaurice GM, Earle C, Haas JS. Surveillance after resection for colorectal cancer. *Cancer.* 2013;119(6): 1235-1242. doi:10.1002/cncr.27852
- Zhao J, Reese JB, Han X, Yabroff KR. Loneliness and mortality risk among cancer survivors in the United States: a retrospective, longitudinal study. J Natl Compr Cancer Netw. 2024;22(4):244-248. doi:10.6004/jnccn.2023.7114
- Patt D, Gordan L, Diaz M, et al. Impact of COVID-19 on cancer care: how the pandemic is delaying cancer diagnosis and treatment for American seniors. JCO Clin Cancer Inform. 2020;4:1059-1071. doi:10.1200/CCI.20.00134
- 240. Dietz JR, Moran MS, Isakoff SJ, et al. Recommendations for prioritization, treatment, and triage of breast cancer patients during the COVID-19 pandemic. The COVID-19 pandemic breast cancer consortium. *Breast Cancer Res Treat*. 2020;181(3):487-497. doi:10.1007/s10549-020-05644-z
- Jazieh AR, Chan SL, Curigliano G, et al. Delivering cancer care during the COVID-19 pandemic: recommendations and lessons learned from ASCO global webinars. JCO Glob Oncol. 2020;6:1461-1471. doi:10.1200/GO.20.00423
- 242. Chan RJ, Crichton M, Crawford-Williams F, et al. The efficacy, challenges, and facilitators of telemedicine in post-treatment cancer survivorship care: an overview of systematic reviews. *Ann Oncol.* 2021;32(12):1552-1570. doi:10.1016/j.annonc.2021.09.001
- 243. Zhang D, Shi L, Han X, et al. Disparities in telehealth utilization during the COVID-19 pandemic: findings from a nationally representative survey in the United States. J Telemed Telecare. 2024;30(1):90-97. doi:10.1177/1357633x211051677
- Nogueira LM, Crane TE, Ortiz AP, D'Angelo H, Neta G. Climate change and cancer. Cancer Epidemiol Biomarkers Prev. 2023;32(7): 869-875. doi:10.1158/1055-9965.Epi-22-1234
- 245. Shultz JM, Kossin JP, Ettman C, Kinney PL, Galea S. The 2017 perfect storm season, climate change, and environmental injustice. *Lancet Planet Health*. 2018;2(9):e370-e371. doi:10.1016/s2542-5196(18)30168-2
- Espinel Z, Nogueira LM, Gay HA, et al. Climate-driven Atlantic hurricanes create complex challenges for cancer care. *Lancet Oncol*. 2022;23(12):1497-1498. doi:10.1016/s1470-2045(22)00635-0
- Nogueira LM, Sahar L, Efstathiou JA, Jemal A, Yabroff KR. Association between declared hurricane disasters and survival of patients with lung cancer undergoing radiation treatment. JAMA. 2019;322(3):269-271. doi:10.1001/jama.2019.7657
- 248. Espinel Z, Shultz JM, Aubry VP, et al. Protecting vulnerable patient populations from climate hazards: the role of the nation's cancer centers. *J Natl Cancer Inst.* 2023;115(11):1252-1261. doi:10.1093/jnci/djad139
- 249. Hassan AM, Nogueira L, Lin YL, Rogers JE, Nori-Sarma A, Offodile AC 2nd. Impact of heatwaves on cancer care delivery: potential mechanisms, health equity concerns, and adaptation strategies. J Clin Oncol. 2023;41(17):3104-3109. doi:10.1200/jco.22.01951
- Perkins-Kirkpatrick SE, Lewis SC. Increasing trends in regional heatwaves. *Nat Commun.* 2020;11(1):3357. doi:10.1038/s41467-020-16970-7
- Schoennagel T, Balch JK, Brenkert-Smith H, et al. Adapt to more wildfire in western North American forests as climate changes. Proc Natl Acad Sci U S A. 2017;114(18):4582-4590. doi:10.1073/ pnas.1617464114
- Zhang D, Xi Y, Boffa DJ, Liu Y, Nogueira LM. Association of wildfire exposure while recovering from lung cancer surgery with overall survival. JAMA Oncol. 2023;9(9):1214-1220. doi:10.1001/ jamaoncol.2023.2144
- Nekhlyudov L, Campbell GB, Schmitz KH, et al. Cancer-related impairments and functional limitations among long-term cancer

- survivors: gaps and opportunities for clinical practice. *Cancer*. 2022;128(2):222-229. doi:10.1002/cncr.33913
- National Academies of Sciences, Engineering, and Medicine. Diagnosing and Treating Adult Cancers and Associated Impairments. The National Academies Press; 2021.
- Parikh RB, Kirch RA, Smith TJ, Temel JS. Early specialty palliative care—translating data in oncology into practice. N Engl J Med. 2013;369(24):2347-2351. doi:10.1056/NEJMsb1305469
- 256. Hu X, Kwon Y, Jiang C, et al. Trend and provider- and organizational-level factors associated with early palliative care billing among patients diagnosed with distant-stage cancers in 2010–2019 in the United States. *J Clin Oncol.* Published online March 7, 2025. doi:10.1200/jco-24-01935
- Kwon Y, Hu X, Shi KS, et al. Contemporary patterns of end-of-life care among Medicare beneficiaries with advanced cancer. JAMA Health Forum. 2025;6(2):e245436. doi:10.1001/jamahealthforum. 2024.5436
- Crabtree BF, Miller WL, Howard J, et al. Cancer survivorship care roles for primary care physicians. Ann Fam Med. 2020;18(3):202-209. doi:10.1370/afm.2498
- 259. Hayes BD, Young HG, Atrchian S, et al. Primary care provider-led cancer survivorship care in the first 5 years following initial cancer treatment: a scoping review of the barriers and solutions to implementation. J Cancer Surviv. 2024;18(2):352-365. doi:10.1007/s11764-022-01268-v
- Rock CL, Thomson CA, Sullivan KR, et al. American Cancer Society nutrition and physical activity guideline for cancer survivors. CA Cancer J Clin. 2022;72(3):230-262. doi:10.3322/caac.21719
- Nghiem VT, Jin J, Mennemeyer ST, Wong FL. Health-related risk behaviors among U.S. childhood cancer survivors: a nationwide estimate. BMC Cancer. 2024;24(1):180. doi:10.1186/s12885-024-11894-7
- Ornstein KA, Kelley AS, Bollens-Lund E, Wolff JL. A national profile of end-of-life caregiving in the United States. *Health Aff (Millwood)*. 2017;36(7):1184-1192. doi:10.1377/hlthaff.2017.0134
- Applebaum AJ, Breitbart W. Care for the cancer caregiver: a systematic review. *Palliat Support Care*. 2013;11(3):231-252. doi:10. 1017/S1478951512000594

- Dubenske LL, Gustafson DH, Namkoong K, et al. CHESS improves cancer caregivers' burden and mood: results of an eHealth RCT. Health Psychol. 2013;33(10):1261-1272. doi:10.1037/a0034216
- Waldron EA, Janke EA, Bechtel CF, Ramirez M, Cohen A. A systematic review of psychosocial interventions to improve cancer caregiver quality of life. *Psychooncology*. 2013;22(6):1200-1207. doi:10.1002/pon.3118
- Yabroff KR, Mariotto A, Tangka F, et al. Annual Report to the Nation on the Status of Cancer, part 2: patient economic burden associated with cancer care. J Natl Cancer Inst. 2021;113(12):1670-1682. doi:10.1093/jnci/djab192
- Nathan PC, Henderson TO, Kirchhoff AC, Park ER, Yabroff KR. Financial hardship and the economic effect of childhood cancer survivorship. *J Clin Oncol.* 2018;36(21):2198-2205. doi:10.1200/ JCO.2017.76.4431
- Zheng Z, Jemal A, Han X, et al. Medical financial hardship among cancer survivors in the United States. *Cancer*. 2019;125(10):1737-1747. doi:10.1002/cncr.31913
- Yabroff KR, Doran JF, Zhao J, et al. Cancer diagnosis and treatment in working-age adults: implications for employment, health insurance coverage, and financial hardship in the United States. CA Cancer J Clin. 2024;74(4):341-358. doi:10.3322/caac.21837
- Gallicchio L, Burnett-Hartman AN, Filipski KK, Shelburne N, Freedman AN. National Cancer Institute-funded cancer epidemiology survivor cohorts: overview, progress, and opportunities. *Cancer Epidemiol Biomarkers Prev.* Published online March 4, 2025. doi:10.1158/1055-9965.Epi-24-1750
- Schroeder MC, Gao X, Lizarraga I, Kahl AR, Charlton ME. The impact of Commission on Cancer accreditation status, hospital rurality and hospital size on quality measure performance rates. *Ann Surg Oncol.* 2022;29(4):2527-2536. doi:10.1245/s10434-021-11304-3

How to cite this article: Wagle NS, Nogueira L, Devasia TP, et al. Cancer treatment and survivorship statistics, 2025. CA Cancer J Clin. 2025;75(4):308-340. doi:10.3322/caac.70011