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Abstract
The immune system evolved for adequate surveillance 
and killing of pathogens while minimizing host damage, 
such as due to chronic or exaggerated inflammation and 
autoimmunity. This is achieved by negative regulators and 
checkpoints that limit the magnitude and time course of 
the immune response. Tumor cells often escape immune 
surveillance and killing. Therefore, disrupting the brakes 
built into the immune system should effectively boost the 
anticancer immune response. The success of anti-CTLA4, 
anti-PD-1 and anti-PD-L1 have firmly established this 
proof of concept. Since the response rate of anti-CTLA4, 
anti-PD-1 and anti-PD-L1 is still limited, there is an 
intense effort for the identification of new targets and 
development of approaches that can expand the benefits 
of immunotherapy to a larger patient pool. Additional T 
cell checkpoints are obvious targets; however, here we 
focus on the unusual suspects—cells that function to 
initiate and guide T cell activity. Innate immunity is both 
an obligate prerequisite for the initiation of adaptive 
immune responses and a requirement for the recruitment 
of activated T cells to the site of action. We discuss 
some of the molecules present in innate immune cells, 
including natural killer cells, dendritic cells, macrophages, 
myeloid-derived suppressor cells, endothelial cells and 
stromal cells, that can activate or enhance innate immune 
cell functions, and more importantly, the inhibitors or 
checkpoints present in these cells that restrain their 
functions. Boosting innate immunity, either by enhancing 
activator functions or, preferably, by blocking the inhibitors, 
may represent a new anticancer treatment modality or at 
least function as adjuvants to T cell checkpoint inhibitors.

Beyond current immune checkpoints
Immune checkpoint inhibitor therapy (ICT), 
such as with anti-CTLA4 (ipilimumab), 
anti-PD1 (nivolumab, pembrolizumab and 
cemiplimab) or anti-PD-L1 (atezolizumab, 
avelumab and duravalumab), has resulted 
in significant and durable clinical response 
in a subset of patients with certain types of 
cancer.1 2 ICT is U.S. Food and Drug Admin-
istration (FDA) approved for 16 indications 
including unresectable or metastatic mela-
noma, advanced non-small cell lung cancer 
(NSCLC), advanced small cell lung cancer, 
advanced head and neck squamous cell 
carcinoma, classical Hodgkin lymphoma, 
refractory primary mediastinal large B-cell 
lymphoma, certain advanced urothelial 

carcinomas, certain gastric cancers, advanced 
oesophageal cancer, advanced cervical 
cancer, hepatocellular carcinoma (HCC) 
previously treated with sorafenib, advanced 
Merkel cell carcinoma, advanced renal cell 
carcinoma, certain endometrial cancers, 
microsatellite instability high (MSI-H) or 
deficient mismatch repair (dMMR) meta-
static colorectal cancer, and MSI-H cancers. 
Although that the ICT market is predicted to 
be worth US$7 billion by 2020,1 the estimated 
number of responders to ICT in 2018 was 
only a modest 12.46%.1 The majority (~57%) 
of patients with cancer still do not qualify 
for ICT.1 Many cancers remain intractable to 
immune checkpoint inhibitors. Breast, non-
MSI-H and non-dMMR colorectal or prostate 
cancer, for example, are mostly unresponsive 
to ICT therapy. Even among the cancers that 
respond to ICT, only a subset of patients bene-
fits from this treatment. In NSCLC, a cancer 
with the highest response estimate, one study 
determined a successful response in only 
7.09% patients,1 although other studies indi-
cate investigator-assessed objective response 
rate of 41% in treatment-naïve patients and 
23% in previously treated patients.3 For ICT 
to be truly the watershed in cancer treatment, 
this modality needs to be extended to and 
be effective in a significantly larger group of 
cancer patients.

The success of current ICT is based on a 
fundamental understanding of the principle 
that molecular signals constrain active T cells 
during their effector functions.4 5 Current 
efforts towards improving the efficacy and the 
reach of ICT can be broadly grouped into a 
couple of approaches. One approach is essen-
tially iterative: targeting additional T cell 
checkpoint inhibitors such as T cell immu-
noglobulin domain and mucin domain-3 
protein (TIM-3), lymphocyte activation 
gene-3 protein, T cell immunoreceptor with 
Ig and ITIM domains (TIGIT) or costimula-
tory molecules such as 4-1BB or OX40 and 
their ligands.6–9 Yet, the principle that can 
predict the engagement of a specific check-
point over others in a cancer or a molecular 
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subtype of cancer remains undiscovered. At this time, the 
approach of identifying the specific T cell checkpoints to 
be targeted when anti-PD-1/anti-PD-L1 or anti-CTLA4 fail 
is primarily based on trial and error. A different approach 
is combination therapy or including additional thera-
peutic modalities to anti-PD-1/anti-PD-L1 or anti-CTLA4. 
For example, based on the findings that high versus low 
mutation burden of the tumor improves ICT,10–14 the 
combination of ICT with other conventional treatment 
options, such as chemotherapy or radiotherapy, has been 
proposed as a more effective way to enhance antitumor 
immunity.15

Is there a way to rationally identify and reverse some of 
the molecular or cellular factors limiting the efficacy of 
current ICT? One important correlate of success versus 
failure of anti-CTLA4 is the presence of a molecular signa-
ture of a pre-existing T cell response in the tumor tissue 
or so-called T-cell inflamed tumors.16 17 Other factors that 
positively correlate with the efficacy of ICT include favor-
able gut microbiome,18 19 Batf3+ dendritic cells (DCs),20 
activation of the stimulator of interferon genes (STING) 
pathway,21 type I interferons (IFNs),22 signatures of wound 
healing and obesity,23 24 while negative correlates include 
unfavorable gut microbiome,25 Wnt/β-catenin signaling17 
and stromal factors in the tumor microenvironment such 
as TGFβ.26 Implicit in the categorization of the molecular 
correlates of ICT is the understanding that signals that 
are not intrinsic to T cells can determine the success or 
failure of ICT. We posit that identifying and targeting 
immune regulators beyond T cells can drive a new fron-
tier in cancer immunotherapy. Here, we primarily focus 
on a distinct premise—the innate immune response and 
the tumor microenvironment as critical determinants of 
the antitumor response.

The innate immune system constitutes the first line of 
host defense. Innate immunity consists of physical and 
chemical barriers to infection, as well as different cell 
types dedicated to the broad-spectrum pattern-based 
recognition of microorganisms. One of the earliest steps 
during an immune response, for antiviral defense, for 
example, involves the stimulation of innate immune cells 
such as natural killer (NK) cells and DCs. A fundamental 
principle or characteristic of the immune response is 
that the engagement of the innate immune system is an 
obligate prerequisite for induction of T cell responses.27 
Adaptive immunity, which follows the innate immune 
response, eliminates invading pathogens through specific 
recognition of the identity of the microbe (microbial anti-
gens) and establishes immunological memory. However, 
antigen-specific functions of T cells cannot be engaged 
without innate immune cells. Even once T cells are 
activated, the innate immune response can affect their 
effector functions (figure 1). Furthermore, not only are 
T cell responses dependent on the activation of innate 
immune cells, there are also effective ways of immune-
mediated killing of tumor cells that are independent of T 
cells, such as by NK cells—a cell that is part of the innate 
immune system. Importantly, the innate immune cells 

are themselves regulated by built-in activators and inhibi-
tors. Here, we describe cells and molecules that function 
in innate immunity, primarily by regulating the magni-
tude, quality and period of the immune response. Innate 
immune cells and the molecules that regulate their func-
tion represent attractive candidates for improving the 
antitumor immune response—or at least complementary 
approaches to T cell immune checkpoint inhibitors for 
therapeutic targeting. Below, we discuss critical molecules 
and pathways (activators and inhibitors) that can regu-
late the magnitude of the antitumor immune response 
(figure  2), and might represent rational non-T cell 
immune checkpoints.

Boosting and/or harnessing the activators of innate 
immunity for improving antitumor responses
If we know the activators of innate immunity, we can add 
more of it for improving innate immune function for a 
more efficient antitumor response. NK cells belong to the 
family of innate lymphoid cells and are highly efficient in 
detecting and destroying virally infected cells or tumor 
cells.28 NK cell activity is positively regulated by signals 
from activating receptors such as NKp46, NKp30, NKp44, 
NKG2D, NKG2C, 2B4.29 Additionally, NK cell cytotoxic 
activity is promoted by the cytokine interleukin (IL)-15 
that signals through components of the IL-2 receptor (IL-
2R).30 Expanding the number of NK cells, such as through 
PEGylated IL-2, either as monotherapy or in combination 
with ICT (Nektar Therapeutics) or IL-15 superagonist/
IL-15 receptor α fusion complex (ALT-803), is being 
explored.31 A table listing the active clinical trials for IL-2, 
IL-15 and other targets discussed below can be found in 
supplementary materials (online supplementary table).

Pharmacological approaches targeting NK cell acti-
vating receptors are being investigated as anticancer ther-
apies. NK cells expressing a chimeric-antigen receptor 
(CAR) NKG2D-DAP10-CD3ζ were shown to be highly 
cytotoxic against leukemia and solid tumor lines.32 NK 
cells have been engineered to express anti-B-cell antigen 
CD19 single-chain fragment (anti-CD19scFv CAR) as well 
as a fusion receptor consisting of IL-15 with IL-15 receptor 
α for autonomous IL 15 stimulation that increases the 
lifespan of NK CARs after infusion.33 Anti-CD19 CAR 
NK cells are in clinical trials in relapsed and refractory 
B cell lymphoma (Alllife; ​clinicaltrials.​gov identifier: 
NCT03690310). A proteolytic cleavage-resistant CD16 
Fc receptor is also added to some CAR NK cells (Fate 
therapeutics). Other NK CARs for B-cell acute lympho-
blastic leukemia includes Fms-related tyrosine kinase 3 
(FLT3)-specific NK CARs containing CD28-CD3ζ along 
with icasp9 (inducible caspase nine suicide gene)34 or 
CD22-CAR engineered to secrete CD-19 engager.35

Another recent strategy for NK cell activation is based on 
bifunctional and trifunctional killer cell engagers (BiKEs 
and TriKEs) that are designed to trigger antigen-specific 
NK cell-mediated tumor killing. For example, bispecific 
antibodies have been designed to target tumor-specific 
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Figure 1  A constellation of innate immune cells sculpts the environment for effective T cell-mediated killing of cancer cells. 
While T cells are commonly the effectors of antitumor immunity, a panoply of innate immune cells including macrophages, 
dendritic cells, natural killer cells, endothelial cells and stromal cells such as cancer-associated fibroblasts and mesenchymal 
cells can regulate the efficiency of T cell activation and tumor infiltration.

antigens and the NKp46 activating receptor on NK cells 
(Innate Pharma).36 The Fc portion of tumor-specific anti-
bodies bind CD16, a type III Fcγ receptor on NK cells 
that can activate antibody-dependent cell-mediated cyto-
toxicity against tumor cells. Therefore, CD16-directed 
bispecific (eg, CD16 and CD19) or trispecific (eg, CD16 
and two tumor antigens CD19 and CD22 or one tumor 
antigen and an IL-15 linker) antibodies or scFv have been 
developed.37

Although primarily functioning as innate immune 
cells, studies have shown that NK cells might also have 
a role in antigen-specific immunological memory. In a 
Rag2-deficient model of hapten-induced contact hyper-
sensitivity, NK cell-mediated hapten-specific response 
was detected for at least a month after priming.38 Similar 
NK cell memory was demonstrated against mouse cyto-
megalovirus (MCMV).39–41 Whether similar long-lasting 
antitumor NK response exists remains unknown. NK cell-
mediated tumor killing may also impact downstream T cell 
responses. NK cells were shown to accelerate CD8 T cell 
responses against MCMV by negatively regulating immu-
nosuppressive plasmacytoid DC cytokine production.42 

Chemokines and cytokines produced by NK cells, such as 
CCL5, can recruit conventional DCs and prime their anti-
tumor function.43 Such NK cell-mediated accumulation 
of a DC subtype was demonstrated in BRAFV600E mouse 
model of melanoma.43 Another study demonstrated that 
NK-derived FLT3 ligand (FLT3L) can activate intratu-
moral DCs and NK cells predict anti-PD-1 responsiveness 
in patients with melanoma.44 NK cell-mediated killing of 
target cells lacking MHC class I was also demonstrated to 
induce a robust CD4+ and CD8+ T cell response against 
cells.45 The antigen-agnostic ability of NK cells to target 
abnormal or altered somatic cells and the absence of 
need to undergo effector differentiation makes them 
attractive candidates as immunotherapy agents. However, 
as discussed next, NK cells activity can be dampened by 
secreted products from tumor cells such as prostaglandin 
E2 (PGE2).43 Proteolytic shedding of NKG2D ligands 
such as MHC class I-related chain A (MICA) and B 
(MICB) by tumors can also enable their escape from NK 
cell-mediated killing by functioning as decoys and driving 
NK cell exhaustion.46 47
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Figure 2  Activating and inhibitory molecules in innate immune cells regulate their antitumor immune functions. Both activating 
and inhibitory molecules regulate innate immune cell function or are produced by innate immune cells in the context of the 
antitumor immune response. A few examples of activators and inhibitory molecules that regulate or are produced by innate 
immune cells are shown. Green upward arrow indicates molecules that enhance antitumor immunity, while red downward 
arrow indicates molecules that inhibit the antitumor immune response. Overexpression or induction of the function of activators 
can boost antitumor immunity; similarly, the blockade of the inhibitors that dampen antitumor immunity should also drive a 
more effective antitumor response. FAP, fibroblast activation protein; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IL, 
interleukin; RTKs, receptor tyrosine kinases; TLR, Toll-like receptor; TNFα, tumor necrosis factor α.

Other innate immune cells are also being harnessed 
for immunotherapy such as DCs. DCs can take up foreign 
antigen and cross present these to T cells to trigger 
cytotoxic responses. Cross-presenting DCs have been 
shown to be required for mounting an effective immune 

response against immunogenic tumors in mice.48 49 The 
process of cross presentation is facilitated by specific cyto-
kines. For example, type I IFNs are markedly upregulated 
in response to viral infections and promote the ability of 
DC cross priming and activation of cytotoxic T cells.50 
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In principle, this strategy is equally applicable to cancer 
antigens. Indeed, type I IFNs have been shown to be 
required for mounting an effective antitumor response. 
Genetic ablation of type I IFN receptors or neutraliza-
tion of their function rendered mice more susceptible to 
tumor growth.51 52 Consistent with these findings, Rofer-
on-A (IFN α−2a; Roche) is approved for the treatment 
of patients with hairy cell leukemia and AIDS-related 
Kaposi’s sarcoma, while Intron A (IFN α−2b; Merck) is 
approved for hairy cell leukemia, malignant melanoma, 
follicular lymphoma and AIDS-related Kaposi’s sarcoma. 
DC-based efforts are, however, susceptible to adaptive 
changes in the tumor cell. Constant pressure from the 
immune system together with the genetic instability 
of tumor cells can lead to the selection of immunoed-
ited tumor subclones that have lost the neoantigens or 
masked those. For example, analyses of matched tumor 
tissue from pretreatment patients with NSCLC and poste-
mergence of acquired resistance to ICT revealed loss of 
7–18 putative mutation-associated neoantigens.53

Type I IFNs are expressed in response to the activation 
of specific pattern-recognition receptors, such as Toll-
like receptor (TLR) 7 and TLR 9. This has led to the 
development of pharmacological approaches to activate 
these receptors intratumorally. Multiple TLR 9 agonists, 
including SD-101 (Dynavax), CMP-001 (Checkmate 
Pharmaceuticals) and IMO-2125 (Idera Pharmaceuti-
cals) are being tested in Phase 1 and 2 clinical trials in 
lymphomas or various solid tumors in combination with 
standard of care or immune checkpoint inhibitors (​clin-
icaltrials.​gov identifiers: NCT02521870, NCT03007732, 
NCT03831295, NCT03410901, NCT03322384, 
NCT02254772, NCT01042379, NCT02680184, 
NCT03084640, NCT03618641, NCT03507699, 
NCT03438318, NCT03445533, NCT02644967, 
NCT03865082, NCT03052205). Similarly, agonists of 
TLR3 such as Poly-ICLC or Hiltonol (Oncovir) and 
BO-112 (Bioncotech Therapeutics) are in clinical testing 
in several cancers including prostrate, breast, colon, 
head and neck cancers, sarcomas, glioblastoma and 
low-grade gliomas (including ​clinicaltrials.​gov identi-
fiers: NCT02423863, NCT03665545, NCT03262103, 
NCT02643303, NCT02834052, NCT02828098). TLR7/8 
agonists such as NKTR-262 (Nektar Therapeutics), 
CV8102 (CureVac AG) and LHC-165 (Novartis) are also 
being tested (​clinicaltrials.​gov identifiers: NCT03435640, 
NCT03203005, NCT03291002, NCT03301896).

Another approach for boosting antitumor immunity 
is centered on the recently identified intracellular DNA-
sensing cGAS-STING pathway. The cGAS-STING pathway 
is important for the induction of type I IFNs and effective 
antitumor immunity.21 Intratumoral or intraperitoneal 
delivery of a murine STING agonist DMXAA resulted in 
tumor regression.54 Based on this success, intratumoral 
administration of the human STING agonist (MK-1454, 
Merck) entered clinical trials (​clinicaltrials.​gov identi-
fier: NCT 03010176). Unfortunately, this approach was 
not effective as monotherapy, although it showed partial 

response in combination with anti-PD-1 in patients 
with advanced solid tumors or lymphomas.55 Another 
STING agonist (ADU-S100, Aduro Biotech), in combi-
nation with anti-PD1 or anti-CTLA4, is in multiple clin-
ical trials including head and neck, advanced/metastatic 
solid tumors or lymphomas (​clinicaltrials.​gov identifier: 
NCT03937141, 02675439, 03172936). A recent presenta-
tion on the first outcomes of this clinical trial revealed 
lower response rates than those expected (treatment 
discontinued in 74% of patients), but partial response 
was observed in patients with PD-1 naïve triple negative 
breast cancer and PD-1 relapsed/refractory melanoma.56

The type II IFN, interferon gamma (IFNγ) has antiviral, 
immunoregulatory, and antitumor properties. While IFNγ 
signaling in tumor cells leads to upregulation of PD-L1, 
transporter associated with antigen processing (TAP1), 
MHC class I and T cell chemotaxis factors, as well as IFN-
induced growth inhibition, IFNγ is also a key regulator 
of DCs and macrophages. IFNγ polarizes macrophages 
towards a proinflammatory phenotype characterized by 
elevated production of IL1β, IL-12, IL-23, tumor necrosis 
factor α (TNFα) and nitric oxide (NO).57 IFNγ also 
enables cross presentation.58 Acquired resistance to PD-1 
(pembrolizumab) correlated with somatic loss-of-function 
mutations in JAK2, a gene encoding a tyrosine kinase 
required for IFNγ signaling, in patient tumors.59 While 
the loss of IFNγ signaling directly affected IFN-induced 
growth inhibition of tumor cells,59 similar germline muta-
tions might also correlate with reduced ICT via reduced 
cytokine production by tumor-associated macrophages or 
as a consequence of reduced cross presentation.

The induction of type I or type II IFN notwithstanding, 
an appropriate population of intratumoral DCs is 
required for mounting an antitumor immune response. 
Are DCs present in sufficient numbers in the tumor? The 
abundance of intratumoral DCs was found to be depen-
dent on the production of the cytokine FLT3L produced 
in part by NK cells.44 The pharmacological administra-
tion of FLT3L together with the TLR 3 agonist Poly I:C 
expanded DC numbers and enhanced the response to 
targeted and immunotherapy in mouse models.60 Even if 
DCs are present in sufficient numbers, is their capacity 
to migrate to the draining lymph node important vis-à-vis 
the induction of an effective antitumor response? CCR7 
was found to be required for DC migration and T cell 
priming in the tumor draining lymph node of mice.61 Of 
note, the expression of CCR7 in human tumor samples, 
highly correlated with the expression of CD3E, suggests 
that the same chemokine receptor is relevant in humans.61

Blockade of negative regulators or checkpoints of 
innate immunity for improving antitumor responses
In ‘Through the Looking Glass’ Alice ran as fast as she could only 
to observe: ‘Why, I do believe we’ve been under this tree the whole 
time! Everything’s just as it was!’. Through the Looking-
Glass, Lewis Carroll, 1871.
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Homeostasis mandates that pathways to activate a 
system are balanced by opposing pathways that can ensure 
return to the baseline. Hence, there are a number of 
molecules that function as negative regulators or check-
points during immune activation. For example, immu-
noreceptor tyrosine-based activation motifs or ITAMs 
are often inexorably functionally linked to immunore-
ceptor tyrosine-based inhibitory motifs or ITIMs within 
an immune cell. Sometimes, the faster you accelerate, 
the harder the brakes come on to prevent exaggerated 
responses. Therefore, to drive an effective antitumor 
response, it is often not just sufficient to push the accel-
erator (activating mechanisms) but to additionally disen-
gage the brakes (inhibitory mechanisms). As described 
above, ITIM-containing inhibitory receptors such as PD-1 
and TIGIT have been targeted to boost antitumor immu-
nity. The immune system—both innate and adaptive—is 
replete with examples of activation mechanisms hard-
wired with autologous inhibitory circuit breakers to limit 
the magnitude of the response. Here, we focus on exam-
ples from innate immune cells. As an interesting aside, 
PD-1 and TIGIT are not only expressed in T cells but also 
in NK cells29 and an NK cell-dependent effect was indis-
pensable for the full therapeutic benefit of PD-1/PD-L1 
blockade in several mouse models of cancer.62 ITIMs 
are found not only in PD-1 and TIGIT but also in recep-
tors in NK cells that mediate the recognition of HLA-A, 
B and C molecules and tolerance to self, for example, 
the KIR family members KIR2DL1, KIR2DL2, KIR2DL3, 
KIR2DL5, KIR3DL1, KIR3DL2, and KIR3DL3.29 When 
NK cell receptors recognize the MHCI expression on 
target cells as self, NK cells are ‘turned off’ from killing. 
Infected cells, as well as tumor cells, often lose MHCI 
molecules. The lack of MHCI is a green light for NK 
cells to unleash their killing capacity. Other inhibitory 
receptors include CD158, NKG2A and LIR1.29 Blockade 
of inhibitory receptors can enhance NK cell tumoricidal 
activity. Monalizumab (Innate Pharma) is an NKG2A-
blocking antibody in clinical trials, including in combina-
tion with cetuximab (EGFR inhibitor) or durvalumab.63 
Monalizumab trials are underway in hematological malig-
nancies and in solid tumors such as renal cancer (see 
online supplementary table or ​clinicaltrials.​gov for iden-
tifiers). It is to be noted that NKG2A is also expressed by 
a subset of intratumoral CD8 T cells after cancer vaccine 
treatment. In one study, inhibition of this receptor or its 
ligand potentiated cancer vaccine responses in a CD8 
T-dependent, NK cell-independent manner.64

What are some other inhibitory receptors on innate 
immune cells that can be potential targets for ICT? 
ITIM containing receptors play an important role in 
DC maturation. DCs derived from mice deficient for 
the ITIM containing FcγRIIB can generate improved 
antigen-specific T cell responses in vitro and in vivo.65 
Genetically ablating these receptors or blocking these 
receptors allows DCs to mature spontaneously and upreg-
ulate CD80, CD86 and MHC II molecules,66 67 suggesting 
that these receptors can be targets for improving cancer 

immunotherapy. FcγRIIB receptors were demonstrated 
to promote the internalization of rituximab and thereby 
inhibit macrophage-dependent phagocytosis of malig-
nant B cells in chronic lymphocytic leukemia (CLL) and 
mantle cell leukemia.68 An antagonistic human FcγRIIB 
antibody was found to be effective in mice xenografts of 
primary, as well as CD20-refractory CLL.69 This effect was 
mediated, in part by preventing the internalization of 
rituximab from the surface of malignant cells, and in part 
by direct cytotoxicity.69

Another example of an ITIM-containing receptor 
is SIRPα. The ligand for SIRPα is CD47, a ‘do not eat 
me’ signal that was found to be increased on stem cells 
of patients with acute myeloid leukemia (AML).70 71 The 
observation that CD47 is highly expressed on tumor 
cells was expanded to most of cancers including ovarian, 
breast, colon, bladder, prostate, HCCs and glioblas-
toma.72 Blockade of CD47–SIRPα interaction leads to the 
activation of innate immune cells such as macrophages 
and neutrophils and cancer cell killing by calreticulin-
activated phagocytosis.73 CC-95251 (Celgene), an anti-
SIRPα antibody, is in clinical trials in patients with 
advanced solid or hematological cancers (​clinicaltrials.​
gov identifier: NCT03783403). Hu5F9-G4, a human-
ized monoclonal antibody against CD47, is in trials as 
a monotherapy or in combination with azacitidine in 
hematological malignancies (​clinicaltrials.​gov identifier: 
NCT03248479) or in combination with rituximab in 
relapsed/refractory B-cell lymphoma and solid tumors 
including advanced colorectal cancer (​clinicaltrials.​gov 
identifiers: NCT02953509, NCT02953782). Hu5F9-G4 is 
also under testing in combination with anti-PD-L1 (​clini-
caltrials.​gov identifier: NCT03922477). A CD47 blocking 
antibody, TTI-621 (Trillium), is also in clinical trials for 
hematological malignancies and selected solid tumors (​
clinicaltrials.​gov identifier: NCT02663518). It is to be 
noted however that the blockade of CD47–SIRPα inter-
action with an intact antibody or other tumor opsonizing 
antibodies also drives antibody-dependent cellular 
phagocytosis or cytotoxicity by FcRγ-expressing cells such 
as macrophages, neutrophils or NK cells. More recently 
an alternative "do not eat me" pathway driven by another 
ITIM containing receptor—SIGLEC-10—was identified. 
Specifically, SIGLEC-10 was found to be highly expressed 
by tumor-associated macrophages and mediated an 
antiphagocytic signal in the context of several tumors 
expressing its ligand CD24.74 Determining the specific 
engagement of CD47-dependent and CD24-dependent 
pathways in different tumor types will be relevant for the 
development of personalized immunotherapies based on 
the blockade of "do not eat me" signals.

Extending this paradigm, any receptor with an ITIM 
motif and with known functional role in antagonizing 
activating signals may be a potential ICT target. CD226 
is a costimulatory adhesion molecule expressed by T 
cells and NK cells.75–77 CD155, expressed on transformed 
cells,75 76 can engage CD226. CD96 and TIGIT are 
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ITIM-containing receptors that function as inhibitors of 
CD226 by competing for CD155 binding.75–77 Cd96−/− NK 
cells produce increased amounts of IFNγ and blocking 
CD96 inhibited metastasis in mouse models of B16F10 
and LWT1 melanoma, 3LL lung cancer and RM-1 prostate 
carcinoma.78 79 Furthermore, blockade of CD96 in Tigit−/− 
mice improved the reduction of B16F10 melanoma or 
EO771 lung metastasis.79 CLEC12B also contains an ITIM 
motif and can antagonize NKG2D-mediated signaling, 
although its cellular and molecular function is not well 
characterized.80 Neutrophils, monocytes, macrophages 
and DCs also express the activating PILRβ (activating 
FDF03) and inhibitory PILRα (inhibitory FDF03).81 
PILRα contains ITIMs while PILRβ associates with the 
ITAM-containing adapter DAP12.82 Pilrb−/− macrophages 
produced lower amounts of TNFα and IL-1β and higher 
amounts of IFN-γ and IL-12p70 when challenged with 
Staphylococcus aureus.83 The possible utility of targeting the 
PILRα/β-receptors in cancer is exemplified by a patent 
(US8178094B2).

Another receptor that can mediate exhaustion in NK 
cells is TIM-3. Although TIM-3 does not contain ITIM 
motifs, its expression was upregulated in NK cells in 
patients with melanoma and correlated with poor prog-
nosis.84 NK cells purified from peripheral blood displayed 
an exhausted phenotype, and this exhaustion was 
reversed by soluble TIM-3 blocking antibodies.84 TIM-3 
engagement can block NKG2D-induced killing, much 
like CD94.85 Currently, anti-TIM-3 antibody TSR-022 is 
being tested in a multicenter, open-label phase 1 study 
as monotherapy and in combination with anti-PD-1 in 
patients with advanced solid tumors (Tesaro, ​clinical-
trials.​gov identifier: NCT02817633). Another anti-TIM-3 
agent (MGB453; Novartis), in combination therapy, is 
in trials including in recurrent glioblastoma (​clinical-
trials.​gov identifiers: NCT03961971, NCT02608268, 
NCT03946670). A different anti-TIM-3 antibody 
(LY3321367; Eli Lilly) is also being tested in another trial 
(​clinicaltrials.​gov identifier: NCT03099109).

Specific protein–protein interaction motifs can also 
function to disrupt aggregative activating signaling and 
function as checkpoints for inflammatory signaling. 
IL-1R8/SIGIRR counteracts TLR and interleukin 1 recep-
tors (IL1R)-dependent activation.86 IL-1R8 contains TIR 
domains. These domains are found in receptors such as 
TLRs, which dimerize on ligand binding. TIR domains 
are also found in critical cytoplasmic adaptors such as 
MyD88 and Mal/TIRAP, which are recruited to the recep-
tors such as TLRs via TIR–TIR interactions thus driving 
downstream signaling cascades. Unlike the TIR domains 
described above, the IL-1R8 TIR domain interferes 
with the TIR-domain associations of receptors during 
formation of the Myddosome and functions as a nega-
tive regulator of inflammatory signaling.87 IL-1R8 also 
functions as the coreceptor of IL-1R5/IL-18Rα for the 
anti-inflammatory cytokine IL-37.88 Il1r8−/− mice are char-
acterized by increased frequency and absolute numbers 
of NK cells and earlier NK cell maturation (by 2–3 weeks 

of age).89 Expression of NKG2D, DNAM-1 and Ly49H 
NK cell activating receptors were enhanced and the cells 
were more proficient in IFNγ, Granzyme B and FasL 
production. In a model of diethylnitrosamine-induced 
HCC, Il1r8−/− mice demonstrated improved protection, 
which correlated with increased production of IFNγ and 
reduced levels of inflammatory cytokines and chemokines 
such as IL-6, TNFα, IL-1β, CCL2 and CXCL1.89 Similarly, 
Il1r8−/− mice showed reduced lung metastasis in a MN/
MCA1 sarcoma model and liver metastasis in MC38 colon 
cancer model. Furthermore, the protection against HCC 
and lung metastasis was mediated by NK cells.89 IL-1R8 is 
also upregulated in breast cancers.90

Ectoenzymes can also profoundly negatively regulate 
the immune response, including innate immunity. Extra-
cellular ATP (eATP) is serially converted into ADP, AMP 
and adenosine by a group of ectoenzymes that include 
CD39 and CD73.91 eATP can signal through a panoply 
of purinergic receptors that induce the activation and 
migration of myeloid cells.92 93 Of note, eATP can also 
also affect adaptive immunity, by enhancing effector 
T cell function while inhibiting the differentiation of 
immunosuppressive Tr1 cells or inducing apoptosis of 
T regulatory (T reg) cells.91 By contrast, adenosine can 
activate the adenosine receptors such as A2b receptor 
and promote tolerogenic DCs.94 Thus, blockade of the 
ectonucleotidases CD39 and CD73 can tilt the balance 
between immunostimulatory concentrations of eATP and 
its suppressive metabolic products. Genetic and pharma-
cological approaches targeting CD39 and CD73 in mice 
support the potential translation of this axis in cancer 
immunotherapy.95–98

Plasma membrane proteases such as ADAM17/TACE 
are involved not only in the proteolytic cleavage and 
generation of oncogenic ligands such as EGFR ligand 
TGFα, but also in shedding of cell surface molecules 
including MICA/B and FcγRIIA that can help cancer cells 
evade NK cells.99 100 Proteases such as ADAM17/TACE 
have complex effect on inflammation as their substrate-
derived products can boost inflammation such as through 
CD154, soluble TNFα and IL-6R, as well as dampen T cell 
activation such as by cleaving cell adhesion molecules 
as L-selectin (CD62L). An ADAM17/TACE inhibitory 
antibody INCB7839 (Aderbasib), in combination with 
rituximab, is in phase I/II clinical trial as consolidation 
therapy after autologous hematopoietic cell transplant 
for patients with diffuse large B cell lymphoma (​clinical-
trials.​gov identifier: NCT02141451).

Intracellular negative regulators of innate immunity, 
in addition to plasma membrane inhibitory receptors 
and ectoenzymes, have come to the forefront in the 
development of new cancer immunotherapies. Exam-
ples of cytoplasmic inhibitory molecules with distinct 
mechanisms of action abound, from ubiquitin ligase, 
kinases and phosphatases to metabolic enzymes, to 
name a few.101–105 Following the same paradigm as the 
inhibitory pathways described above, intracellular nega-
tive regulators are engaged as a consequence of immune 



8 Rothlin CV, Ghosh S. J Immunother Cancer 2020;8:e000695. doi:10.1136/jitc-2020-000695

Open access�

activation. For example, inflammation induces the 
expression of indoleamine 2,3-dioxygenase 1 (IDO1) 
in DCs, a rate limiting enzyme in the metabolism of 
tryptophan into kynurenine.105 Kynurenine and related 
metabolites are potent suppressors of effector T cells 
and inducers of T reg cells.105 The immunosuppressive 
function of tryptophan metabolites in preclinical cancer 
models, the poor prognosis of patients with cancer 
with high IDO1 activity and the motivation for gener-
ating complementary approaches to T cell checkpoint 
inhibitors propelled the development of multiple IDO1 
inhibitors, including indoximod (NewLink Genetics), 
epacadostat (Incyte) and BMS-986205 (Bristol-Myers 
Squibb).106 107 Unfortunately, despite encouraging 
preliminary antitumor activity and safety profile of the 
IDO1 inhibitor Epacadostat in a phase 1 trial, adminis-
tration of this IDO1 inhibitor together with pembroli-
zumab did not improve either the progression-free 
survival or the overall survival in comparison to placebo 
plus pembrolizumab in patients with unresectable or 
metastatic melanoma.108

Kinases, both receptor tyrosine kinases (RTKs) and 
intracellular kinases, have also emerged as negative 
regulators of innate immunity and targeted for ICT. 
The function of the TYRO3, AXL and MERTK RTKs in 
the regulation of antitumor immunity is discussed next. 
Intracellular kinases, such as PI3Kγ, have been found 
to limit the inflammatory response of macrophages.103 
Specifically, genetic ablation of PI3Kγ in macrophages 
led to increased production of inflammatory cytokines 
such as IL1β and TNFα, but reduced expression of IL-10 
or activity of ARG1.103 These inflammatory changes 
correlated with a restoration in CD8+ T cell activation 
and synergism with ICT in mouse models of cancer.103 
Kinases are ideal targets for pharmacological interven-
tion with small molecule inhibitors. Indeed, the revo-
lution of targeted therapy in cancer was founded in 
the development of small molecule kinase inhibitors. 
A small molecule inhibitor of PI3Kγ (IPI-549, Infinity 
Pharmaceuticals) given in combination with anti-PD1 
and nanoparticle albumin-bound paclitaxel is under 
investigation in a phase 2 clinical trial in patients with 
front-line triple-negative breast cancer (​clinicaltrials.​
gov identifier: NCT03961698). Other combinations, 
such as IPI-549 together with the dual adenosine A2a 
and A2b receptor inhibitor (AB928, Arcus Biosciences), 
are also being tested for safety and tolerability (​clinical-
trials.​gov identifier: NCT03719326).

Inhibition of checkpoints at the interface of innate 
and adaptive immunity for improving antitumor 
responses
The examples described above include tumor cell-
derived ligands, tumor microenvironment-derived 
ligands and autologous mechanisms within T cells and 
innate immune cells that signal to suppress adaptive 
and/or innate immunity. Additionally, we described 

molecules produced by innate immune cells such as 
IDO that can dampen adaptive immunity. Now, we 
will discuss how adaptive immunity can also influence 
innate immunity.

Innate immunity is essential for inducing the adaptive 
response.27 However, once engaged, adaptive immunity 
has the advantage over innate immunity in terms of the 
specificity of the response. Antigen specificity of adap-
tive immunity, in concert with dedicated mechanisms 
to cull responses against self-antigens, reduces the pros-
pects of self-harm. In contrast, chronic or exaggerated 
innate immunity can be damaging to the host. There-
fore, unsurprisingly, signals derived from cells respon-
sible for adaptive immunity can negatively feedback on 
innate immune cells to regulate the overall magnitude 
of the immune response.

V-domain immunoglobulin suppressor of T cell acti-
vation (VISTA) is a well-known T cell checkpoint.109 
CA-170 (Curis), a small molecule targeting PD-L1 and 
PD-L2, also targets VISTA (​clinicaltrials.​gov identifier: 
NCT02812875). Johnson & Johnson developed a fully 
humanized monoclonal antibody (JNJ-61610588), 
although the study to determine its safety and tolera-
bility was terminated before completion (​clinicaltrials.​
gov identifier: NCT02671955). VISTA is expressed in 
myeloid cells as well as in cancer cells and acts on VISTA 
receptor to suppress the proliferation and cytokine 
production in CD4+ and CD8+ T cells.109 VISTA is also 
expressed in CD4+, CD8+ and Foxp3+ T reg cells. While 
this can function in suppressing T cell activation in an 
autologous manner, a study using imiquimod-induced 
murine psoriasis demonstrated that VISTA inhibits the 
activation of DCs and the production of IL-23 following 
TLR 7 activation.110 The same study also demonstrated 
that VISTA negatively regulates the activation of IL-17-
producting γδ T cells and Th17 cells.110 Therefore, it is 
conceivable that at least some aspects of VISTA blockade 
in boosting antitumor immunity involve releasing the 
brakes on innate immunity.

A well-known mechanism that functions at the inter-
face of innate and adaptive immunity is the PROS1-
TYRO3/AXL/MERTK RTK signaling axis.102 Once DCs 
activate antigen-specific T cells, these activated T cells 
express PROS1,111 112 which is a ligand for the RTKs 
TYRO3, AXL and MERTK (collectively termed TAM 
RTKs). There are, in fact, two ligands for the TAM RTKs: 
GAS6 and PROS1. GAS6 has the highest affinity for AXL, 
but can also activate TYRO3 and MERTK.102 PROS1 can 
activate MERTK and TYRO3, but not AXL.102 PROS1, 
but not GAS6, was found to be expressed by activated, 
and not by resting, murine T cells.111 An additional 
feature of the TAM ligands is that they contain a vitamin 
K-dependent carboxylation/gamma-carboxyglutamic 
acid (Gla)-domain. This domain binds phosphati-
dylserine (PtdSer) when exposed on the outer leaflet of 
the cell surface plasma membrane. Activated, but not 
resting T cells transiently expose PtdSer.111 Therefore, 
T cell-derived PROS1 may be displayed on its surface 
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through PtdSer binding. This PtdSer-bound PROS1, 
in turn, binds MERTK and/or TYRO3 in DCs. The net 
result is a dampening of DC activation.111 On one hand, 
PROS1-MERTK signaling appears to be more relevant 
in a type I immune response setting where its effect on 
DCs were to lower levels of MHC II expression, decrease 
expression of costimulatory molecules CD80 and CD86 
and reduce the production of cytokines such as IL6 and 
TNFα.111 On the other hand, PROS1-TYRO3 signaling 
was observed in PDL-2+ DCs associated with a type II 
immune response and resulted in the dampening of 
the cytokines IL-4, IL-5 and IL-13, and the chemokines 
CCL17, CCL22 and CCL5.113 Disabling the PROS1-
MERTK axis enhances antitumor immunity. Mertk−/− 
mice have been shown to be more resistant to tumor 
growth in various murine tumor models.114 115 Whether 
this is a result of disabling MERTK function specifi-
cally in DCs resulting in their enhanced activation or 
if the loss of MERTK-dependent phagocytic function of 
macrophages (please see below) also contribute to anti-
immunity remains unknown. Interestingly, the genetic 
ablation of MERTK promotes proinflammatory macro-
phage polarization.116 Similar results were observed 
in tumor-infiltrating leukocytes. In syngeneic mouse 
models of breast cancer, melanoma and colon cancer, 
tumor-associated Mertk−/− CD11b+ cells produced more 
IL-1β, IL-6 and IL-12p40 than their Mertk+/+counter-
parts, suggesting that these macrophages were more 
proinflammatory.114 Tumors grew slower and were less 
metastatic in Mertk−/−mice, in comparison to wild-type 
control mice.114 This protective effect was shown to 
be dependent on Mertk−/− bone marrow.114 Although 
macrophage-specific Mertk deletion was not used in this 
study, the results are consistent with the notion that the 
proinflammatory macrophage phenotype enabled an 
improved CD8+ T cell response, as antibody-mediated 
depletion of CD8+ T cells abolished the acquired anti-
tumor immunity in Mertk−/−mice.114 Consistent with 
these results, tumor cells upregulate GAS6 and PROS1 
expression and PROS1, but not GAS6, inhibited LPS+IF-
Nγ-driven macrophage production of IL-1 and IL-6.117 
Coculture of B16F10 mouse melanoma cells with 
LPS+IFNγ-polarized macrophages from wild-type and 
Axl−/− mice, but not Mertk−/− or Tyro3−/− mice, resulted 
in inhibition of IL-1 and IL-6 expression.117 Thus, inhi-
bition of TAM signaling improves the antitumor func-
tion of DCs, as well as macrophages. While enhanced 
type II immunity has been shown to drive antitumor 
immune responses in some settings,118 119 it remains to 
the be tested if inhibiting the PROS1-TYRO3 axis at the 
DC:T cell interface also can boost antitumor immunity.

A number of TAM receptor inhibitors are currently 
in clinical trials and preclinical development. These 
include BGB324/bemcentinib (BergenBio) in NSCLC 
(​clinicaltrials.​gov identifiers: NCT02424617 and 
NCT02922777), in pancreatic cancer (​clinicaltrials.​
gov identifier: NCT03649321), in AML and myelo-
dysplastic syndromes (​clinicaltrials.​gov identifier: 

NCT02488408) and in glioblastoma (​clinicaltrials.​gov 
identifier: NCT03965494). Another small molecule 
inhibitor, TP-0903 (Tolero Pharmaceuticals), is also 
in multiple clinical trials (​clinicaltrials.​gov identifiers: 
NCT02729298 and NCT03572634). MGCD265/Glesat-
inib (Mirati Therapeutics) is another small molecule 
tyrosine kinase inhibitor that targets MET and TAM 
receptors. It is being evaluated in NSCLC (​clinical-
trials.​gov identifier: NCT02544633). Safety, tolerability 
and efficacy studies with a dual AXL-MERTK inhib-
itor, ONO-7475 (ONO Pharmaceutical Company), 
are underway in AML (​clinicaltrials.​gov identifier: 
NCT03176277). MRX-2843 (Meryx) is a MERTK-FLT3 
inhibitor undergoing similar trials in advanced solid 
tumors (​clinicaltrials.​gov identifier: NCT03510104). 
AVB-S6-500 (Aravive Biologics), an AXL Fc-fusion 
protein that binds GAS6, gained FDA fast track desig-
nation as potential treatment of platinum-resistant 
recurrent ovarian cancer following a phase 1/b study (​
clinicaltrials.​gov identifier: NCT03639246).

Neutralizing myeloid-derived suppressor cells 
(MDSCs) to enhance antitumor immunity
Absent in healthy individuals at baseline, MDSCs are 
myeloid cells resembling neutrophils and monocytes 
that are enriched with chronic inflammation. MDSCs 
are potent suppressors of the immune response.120 121 
Cancer-associated Gr1+ CD11b+ are a heterogenous 
population of cells composed of polymorphonuclear 
(CD11b+ Ly6G+ Ly6Clo PMN-MDSC) and monocytic 
(CD11b+ Ly6G− Ly6Chi M-MDSC) subsets that are 
correlated with poor overall and progression-free 
survival of the patients.122 MDSCs can mediate immune 
suppression via both antigen-specific T cell suppres-
sion such as by ROS production and nitration of T 
cell-receptors, as well as non-specific mechanisms to 
suppress T cell functions including the production 
of ARG1, iNOS, TGFβ, IL-10, COX2, IDO and other 
factors.120 121 123 124 Not surprisingly, MDSC levels have 
been associated with patient response to anti-CTLA4 
and anti-PD-1 therapy.125–128 MDSC numbers can be 
reduced by gemcitabine, 5-fluorouracil, PDE-5 inhibitor 
tadalafil, class 1 HDAC inhibitor entinostat, all-trans 
retinoic acid, and by targeting the TRAIL receptor, 
CXCR2, TNFα/TNFR1, CSF1 and IL-18.127 129–141 Addi-
tionally, STAT3 inhibition can potentiate MDSC differ-
entiation into DCs.142 143

Interestingly, both PMN-MDSCs and M-MDSCs upreg-
ulate AXL, MERTK and TYRO3, as well as their ligands 
GAS6 and PROS1 in a subcutaneous mouse model of 
melanoma.144 Consistent with this finding, the frequency 
of MERTK+ and TYRO3+ PMN-MDSCs and M-MDSCs 
was increased in patients with metastatic melanoma.144 
Genetic ablation of Axl, Mertk or Tyro3 individually in 
mice led to reduced ARG1, TGFβ and ROS produc-
tion in both types of MDSCs and iNOS and IDO is 
M-MDSCs.144 iNOS was also reduced in PMN-MDSCs in 
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Axl −/− and Tyro3−/− mice and IDO in in PMN-MDSCs in 
Axl−/− and Mertk−/− mice. In in vitro assays, the loss of 
TAM RTKs and their ligands reversed MDSC-induced 
suppression of T cell proliferation and also improved 
differentiation of MDSCs into DCs and macrophages.144 
A TAM RTK inhibitor UNC4241, by itself and in combi-
nation with anti-PD-1, reduced tumor volume, but only 
the combination increased survival in the mouse model 
of melanoma.144

Molecules that license T cell entry into tumor 
microenvironment as targets to improve antitumor 
immunity
Innate immune checkpoints are not only important for 
initiating a more robust antitumor immune response, 
molecules expressed in endothelial or stromal cells that 
license T cell infiltration into the tumor parenchyma may 
also function as checkpoints. T cells extravasate and home 
to inflamed tissue by at least three, distinct steps: T cell 
rolling on endothelium mediated by selectin interactions, 
activation of integrins through chemokine signaling and 
integrin-dependent transmigration. Therefore, activation 
of molecules expressed by endothelial cells that allow 
and/or instruct T cell extravasation and infiltration, or 
inhibition of those that prevent these processes, may also 
effectively function in boosting ICT. For example, upreg-
ulation of E-selectin or P-selectin in tumor-associated 
endothelia might allow improved homing of T cells 
expressing E-selectin and P-selectin ligands. Similarly, 
increased CXCL9 and CXCL10 produced by tumor endo-
thelia may enhance the recruitment of T cells via CXCR3 
and activate the leukocyte integrins LFA-1 and VLA-4 for 
binding ICAM-1 and VCAM-1.145 In contrast, CD155 or 
galectin 9 expressed in endothelial cells inhibit effector 
T cell activation via TIGIT and TIM3, respectively.7 146–150 
Therefore, blockade of such inhibitory molecules may 
enhance ICT.

Not only endothelia-derived molecules, but also mole-
cules produced by stromal cells can license or prevent the 
presence of T cells at the tumor site. A TGFβ signature in 
cancer-associated fibroblasts was associated with exclusion 
of CD8+ T cells from the tumor parenchyma in patients 
with anti-PD-L1 (atezolizumab) non-responsive meta-
static urothelial cancer.26 Instead, the fibroblast-rich and 
collagen-rich peritumoral stroma was enriched in CD8+ T 
cells in these patients, suggesting a distinct licensing event 
for T cells to infiltrate the tumor parenchyma.26 Depletion 
of tumor-associated mesenchymal cells expressing fibro-
blast activation protein-α (FAP) resulted in suppression 
of immunogenic Lewis Lung Carcinoma (LLC) tumor 
growth, but not of non-immunogenic tumors.151 Although 
FAP+ mesenchymal stromal cells did not alter the propor-
tions of CD8+ and CD4+ T cell or of Foxp3+ T reg cells, they 
inhibited the production of TNFα and IFNγ in the tumor 
microenvironment.151 Similar results were observed with 
a pancreatic ductal adenocarcinoma mouse model.151 A 
chemokine mediating the immunosuppressive effects of 

FAP+ mesenchymal stromal cells in this autochthonous 
model was CXCL12.152 A CXCL12 receptor inhibitor, 
AMD3100, synergized with anti-PD-L1 for an effective 
antitumor immune response.152

Finally, the tumor-associated vasculature may be the 
target of efforts to improve cancer immunotherapy. The 
physical nature of tumor angiogenesis, characterized by 
lack of pericyte coverage of vessels, tortuous vessel path 
and leakiness, may exclude T cells from approaching 
the tumor.153 The genetic deletion of RGS5 in mice not 
only restores pericyte maturation and results in vessel 
normalization, but also improves CD8+ and CD4+ T cell 
trafficking after adoptive transfer to tumor parenchyma 
in RIP1-Tag5 mouse tumor model.154 This correlated with 
improved survival of tumor-bearing mice.154

TAM RTK signaling may also function in endothelial 
cells and in the tumor microenvironment. GAS6 has been 
demonstrated to drive proliferation and prevent apop-
tosis in vascular smooth muscle cells.155–157 Another study 
showed that migration of human umbilical vein endothe-
lial cells was significantly reduced when the expression 
of Axl or its agonist Gas6 were silenced.158 Axl-deficient 
mice have impaired blood vessel formation and function, 
indicating the importance of AXL in angiogenesis.159 
However, other studies demonstrated a somewhat contra-
dictory role of AXL in angiogenesis. For example, Gallic-
chio et al described an AXL-dependent inhibitory role of 
GAS6 in VEGFA-VEGFR2-dependent angiogenesis.160 The 
endothelial/vasculature functions of GAS6 in the context 
of tumors have not been characterized. GAS6, as well as 
the TAM RTKs, also have direct effects on promoting 
tumor growth.102 Tumor-infiltrating leukocytes upregu-
late GAS6 and support tumor growth.161 Taken together 
with its role in the interface of innate and adaptive immu-
nity, the neutralization of TAM ligands or the inhibition 
of TAM RTK signaling might mediate tumor killing via 
multiple mechanisms.

Sensing and processing dead cells for antitumor 
immunity
A physiological immune response not only fights off the 
foreign invader while restraining itself so as not to exces-
sively injure the host tissue through exaggerated inflam-
mation, but also resolves and allows tissue repair. We posit 
that cell death can function as a novel checkpoint where 
the immune response transitions from being on a warpath 
to adopting a role supporting tissue repair and restitu-
tion. The later might abet tumor progression. Cancer has 
been described, originally by Harold Dvorak in 1986, as 
‘wounds that do not heal’.162 In fact, the historical paper 
of Kerr et al published in 1972 that coined the term ‘apop-
tosis’ reported widespread apoptotic cell death in malig-
nant neoplasms including rectal adenocarcinoma and 
squamous cell carcinoma of the human cervix uteri.163 
Therefore, the abnormal and perhaps continuous pres-
ence of cell death, or the response to it, might force a 
premature transition of the immune response to its tissue 
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repair mode and prevent a consistent proinflammatory 
environment favoring the generation of an antitumor T 
cell immune response. For example, we have previously 
shown that macrophages transition to a tissue-repair 
phenotype in the presence of apoptotic cells and IL-4.116 
This is achieved through the TAM RTK signaling that 
is known to mediate phagocytosis of apoptotic cells—
termed efferocytosis—by macrophages. The ligands for 
TAM RTK—GAS6 and PROS1—contain Gla domains, 
which when γ-carboxylated in a vitamin K-dependent 
manner, bind PtdSer in apoptotic cells, effectively 
bridging the dying cells to TAM RTKs on macrophages.102 
Therefore, blocking apoptotic cell death recognition by 
TAM RTKs may function as a novel mechanism of check-
point blockade to boost the antitumor T cell responses.

The beneficial effects of blocking apoptotic cell death 
sensing is likely to extend beyond TAM RTK function. PtdSer 
is exposed on the outer leaflet of dying cells and serves as 
a ligand for a number of receptors including TIM-3 and 
TIM-4.164 TIM-4 is expressed in cancer tissue, including 
in colorectal cancers and NSCLC.165 166 While TIM-4 is 
known to be expressed in tumor-associated macrophages 
and DCs in B16F10 mouse model of melanoma,167 168 and 
in fact, is known to signal through MERTK,169 only tumor 
cell-intrinsic functions were described in the colorectal 
cancer and the lung cancer studies.165 166 By contrast, an 
immunological mechanism was described in the B16F10 
mouse model of melanoma.167 168 The upregulation of 
TIM-4 on tumor-associated myeloid cells was reported to 
be induced by the release of danger-associated molecular 
patterns (DAMPs) from chemotherapy-damaged tumor 
cells.168 TIM-4 activated autophagy-mediated degrada-
tion of tumor material in the tumor-associated myeloid 
cells.168 This resulted in reduced antigen presentation 
and impaired cytotoxic T cell responses against the 
tumors, including reduced IFNγ+ T cells.168 Blockade 
of TIM-4 augmented the benefits of chemotherapy and 
increased tumor-specific cytotoxic T cell response.168 The 
same group also demonstrated that blockade of TIM-3 
and TIM-4 using antagonistic antibodies enhanced the 
response of B16 melanoma to a vaccination protocol with 
irradiated B16 cells expressing FLT3L.167 It remains to be 
determined if ablation or inhibition of efferocytosis by 
TIM-4 also alters macrophage polarization and thereby 
contributes to the antitumor response. Another PtdSer 
receptor BAI1 has been shown to drive a proinflamma-
tory anti-gram-negative bacterial macrophage response 
against Salmonella enterica serotype typhimurium,170 as 
well as an antiviral macrophage response against onco-
lytic herpes simplex virus.171 Whether BAI1-dependent 
efferocytosis has any role in tumor progression remains 
unknown. While macrophages are considered the major 
undertakers and therefore the effectors of PtdSer-
directed interventions, it was described that treatment of 
mouse melanoma models by a combination of anti-PtdSer 
antibody and anti-PD-1 resulted in reduction of MDSCs 
and enhancement of antitumor immune response.172 In 
conclusion, blocking the sensing of apoptotic cell death 

may drive an increasingly proinflammatory, antitumor 
immune response.

In contrast to apoptotic cell death, inducing non-
apoptotic programmed cell death such as ferroptosis 
or necroptosis can synergize with ICT. An inducer of 
ferroptosis, cyst(e)inase, synergized with anti-PD-L1 in 
reducing tumor growth in mice bearing ID8 ovarian 
tumor cells.173 PD-L1 blockade alone also induces 
ferroptotic cell death and inhibition of this form of 
programmed cell death attenuated the effects of PD-L1, 
and PD-1 and CTLA-4 blockade.173 Interestingly, Jurkat 
cells undergoing ferroptosis expressed comparatively 
reduced levels of PtdSer relative to apoptotic cells, and 
were engulfed less efficiently by human peripheral blood 
monocyte-derived macrophages in comparison to apop-
totic and necroptotic cells.174 Necroptotic cell death of 
tumor cells in LL2 lung carcinoma or B16F10 melanoma 
mouse models or in the tumor microenvironment in LL2 
lung carcinoma, B16F10 melanoma and E.G7 thymoma 
mouse models also reduced tumor growth.175 Necroptosis 
in the tumor microenvironment created an environment 
for enhanced antigen uptake by tumor-associated antigen 
presenting cells and, tumor control required Batf3+ DCs 
and CD8+ T cells.175 Additionally, this necroptosis syner-
gized with anti-PD-1 and generated long-term memory.175 
Prostaglandins such as PGE2 is released on cell death and 
functions as an inhibitory DAMP.176 PGE2 in the tumor 
microenvironment reduced NK cell survival and their 
function in recruiting Batf3+ DCs through CCL5 and 
XCL1.43 The reduction in NK cell number and Batf3+ 
DCs function resulted in cancer immune evasion.43 Thus, 
certain modalities of cell death, the mechanisms of clear-
ance of the corpses or factors associated with cell death 
may dampen ICT response while others favor its bene-
ficial effects. Importantly, it is not only tumor cells that 
die during therapies including ICT, but also stromal and 
immune cells. Therefore, even the death of immune and/
or stromal cells by a specific modality provides a positive 
feedback for antitumor immunity.175

Sensing and uptake of cellular corpses is followed by 
degradation of the cargo and its metabolic processing. 
The degradation of the engulfed cargo relies on phago-
some maturation. This is a complex process that in 
some settings involves components of the autophagy 
machinery and is known as LC3-mediated phagocytosis 
or LAP.177 Similar to the results from the activation of 
the efferocytosis receptors TAM and TIM-4 described 
above, engagement of LAP suppresses the inflamma-
tory response.178 179 Consistently, genetic ablation of LAP 
components in myeloid cells led to increase resistance 
to tumor growth in multiple models including B16F10 
melanoma, LLC, MC38 adenocarcinoma and Kirsten 
rat sarcoma oncogen (KRAS)-driven lung cancer.178 The 
antitumor response in mice deficient in LAP was charac-
terized by an increase in STING-dependent production 
of type I IFNs and cytotoxicity of CD4+ and CD8+ tumor-
infiltrating lymphocytes.178 It should be noted that LAP-
deficient phagocytes are still able to engulf dying cell. It 
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is conceivable that the processing of the engulfed cargo 
is aberrant in LAP-deficient cells and leads to a STING-
dependent anti-tumor immunity.

Concluding remarks
ICT need not rely solely on the blockade of T cell check-
points. At least in theory, all negative regulatory nodes 
that restrain the immune response can be targeted for 
improving ICT. Therefore, there is still a lot of real estate to 
explore in this area. It remains to be determined whether 
innate immune checkpoint blockade would be effective 
on its own as a therapeutic modality, or whether its benefi-
cial effects may be counteracted by T cell exhaustion. In a 
scenario wherein T cell exhaustion limits innate immune 
checkpoint blockades, these novel immunotherapy 
modalities could be combined with T cell checkpoint 
inhibitors. Another area of concern is immune-related 
adverse events. Negative regulators or checkpoints likely 
evolved to limit host damage due to exaggerated immune 
response. Even approved T cell checkpoint inhibitors 
can be associated with immune-related adverse events.180 
Such events may represent a significant hurdle for strat-
egies that let off the brakes of innate immunity. Perhaps 
transient or limited release of these brakes can empower 
the immune system to fight cancer while avoiding severe 
immune-related adverse events. Nevertheless, the future 
of ICT appears poised for a rapid expansion.
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