Published online 22 June 2010

Nucleic Acids Research, 2010, Vol. 38, No. 19 6813—6830

doi:10.1093/nar/gkq521

Rational design of an orthogonal tryptophanyl
nonsense suppressor tRNA

Randall A. Hughes'? and Andrew D. Ellington3*

"Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300,
Austin, TX 78712, Applied Research Laboratories, The University of Texas at Austin, 10000 Burnet Road,
Austin, TX 78758 and 3Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1

University Station A4800, Austin, TX 78712, USA

Received February 18, 2010; Revised May 20, 2010; Accepted May 24, 2010

ABSTRACT

While a number of aminoacyl tRNA synthetase
(aaRS):tRNA pairs have been engineered to alter or
expand the genetic code, only the Methanococcus
jannaschii tyrosyl tRNA synthetase and tRNA have
been used extensively in bacteria, limiting the types
and numbers of unnatural amino acids that can be
utilized at any one time to expand the genetic code.
In order to expand the number and type of aaRS/
tRNA pairs available for engineering bacterial
genetic codes, we have developed an orthogonal
tryptophanyl tRNA synthetase and tRNA pair,
derived from Saccharomyces cerevisiae. In the
process of developing an amber suppressor tRNA,
we discovered that the Escherichia coli lysyl tRNA
synthetase was responsible for misacylating the
initial amber suppressor version of the yeast
tryptophanyl tRNA. It was discovered that modifica-
tion of the G:C content of the anticodon stem and
therefore reducing the structural flexibility of this
stem eliminated misacylation by the E. coli lysyl
tRNA synthetase, and led to the development of a
functional, orthogonal suppressor pair that should
prove useful for the incorporation of bulky, unnat-
ural amino acids into the genetic code. Our results
provide insight into the role of tRNA flexibility in
molecular recognition and the engineering and
evolution of tRNA specificity.

INTRODUCTION

Engineering the genetic code has recently emerged as a
method to potentially create novel ‘allo-proteins’ which
could have a myriad of applications in the pharmaceutical
and biotechnology industries as well as serve as novel
components for synthetic biology. To facilitate the
site-specific incorporation of novel amino acids into

proteins, additional engineered orthogonal aminoacyl
tRNA synthetase (aaRS):tRNA pairs can be expressed
in cells [reviewed in (1,2)]. Orthogonal aaRS—tRNA
pairs frequently take advantage of the cross-species differ-
ences in the recognition elements of aaRSs and their
cognate tRNAs (3), and have utilized nonsense codons
(3) or frameshift codons (4) to expand the canonical
genetic code.

To date, there have been only eight completely unique
orthogonal pairs reported for use in the prokaryotic
(Escherichia coli) translational system. These orthogonal
pairs include the aspartic acid (5), glutamine (6), and
phenylalanine (7) aaRS/tRNA pairs from Saccharomyces
cerevisiae; the glutamic acid pair from Methanosarcina
mazei (8); the leucine pair from Methanobacterium
thermoautotrophicum (9); the lysine pair from Pyrococcus
horikoshii (4); the pyrrolysine pair from Methanosarcinia
barkeri (10); and the tyrosyl pair from Methanococcus
Jannaschii (3). However, only the TyrRS-tRNA™" pair
from M. jannaschii has been used extensively to expand
the genetic code of bacteria (2).

The tryptophanyl tRNA synthetase (WRS) is part of
the class Ic subclass of aaRSs that also includes the evo-
lutionarily related tyrosyl tRNA synthetase (11). Based on
the structural and phylogenetic studies of the
tryptophanyl and the tyrosyl tRINA synthetases, it is gen-
erally believed that the WRS was the last synthetase to
evolve (12—14). Both the tyrosyl tRNA and WRSs lack
any sort of an editing domain. Instead, they rely on the
interaction of conserved active site residues to specifically
recognize and position their substrates into their binding
pockets (15).

The lack of an editing domain in WRS and its capacious
binding pocket for the largest natural amino acid have led
to its use for the incorporation of amino acid analogs into
proteins (16,17). The expanded substrate flexibility of
WRS has even supported adaptive evolution of whole
bacteria and bacteria phage proteomes to tryptophan
analogs (18-20). However, the engineering of the WRS
for the site-specific insertion of large, unnatural amino
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acids has largely been ignored, especially when compared
with tyrosyl tRNA synthetase (2). Zhang et al. (21) have
used the Bacillus subtilis WRS and an opal suppressor
(anticodon UCA) variant of the B. subtilis tRNA™™ for
the site-specific incorporation of 5-hydroxytryptophan
into proteins in mammalian cells, but this orthogonal
pair cannot be used in E. coli since they have overlapping
recognition elements.

Therefore, to further explore the types of unnatural
amino acids that can be site-specifically encoded in
bacteria and to expand the potential utility of synthetic
orthogonal pairs both in vive and in vitro, we have
sought to develop a new tryptophanyl orthogonal pair.
The E. coli tRNA™™ has a major identity element at the
G73 discriminator base and the anticodon CCA
sequence, and additional weak identity elements in the
first 3bp of the acceptor stem (22). In contrast, yeast
tRNAT™ has an adenosine residue at position 73, and
the identity elements in the first 3 bp of the acceptor stem
also differ from those found in the E. coli tRNAT™ [(23);
Figure 1A]. Himeno et al. have shown that mutations at

to inactivity with the E. coli WRS. Moreover, amber
suppressor versions of E. coli tRNAT™ (anticodon
CUA) lose their ability to be recognized by the E. coli
TrpRS and are instead aminoacylated by the E. coli
GInRS (24). However, this is not the case for the yeast
tRNAT™  which not only maintains its tryptophan
identity in yeast cells but also is an efficient amber sup-
pressor (25,26). Taken together, these results suggest that
it should be possible to develop a new orthogonal pair
for use in E. coli based on the WRS and the amber
suppressor variant of its cognate tRNA from S.
cerevisiae.

MATERIALS AND METHODS
Materials

E. coli strain, CSH108 (Genotype: F’ [F128: LacZ8(Am),
LacI373] A(gpt-lac)s, A-,ara(FG),gyrA-(NAIR),argE-
(Am),rpoB-(rifR), thi-1) was obtained from the E. coli
Genetic Stock Center (Strain # 8081) http://cgsc.biology

. . T . .
AT73 and the G1-C72 base pair of the E. Cﬁ%ll tRNA™™  yale.edu/. Topl0 (for routine cloning) and BL21
that make it more similar to the yeast tRNA "' also lead (DE3)Star chemically competent cells were from
A A
A s 2 B
g g tacl pro luxl term
1AeU72 1GeC 72 ScWRS
GeC A
e, ]
GeC Ge I I
GeC CeG
CeG . GeC o Xbal Xhol
GeC U A GeC u A
UA A A eaglt G uAa & YSYES A
u CUUG GGGAG a CUCG GCAGG
G eoo o U Uy Cc o000 U Uy Cc
s aGAGC, Us G  aGAGC u
u ceGgGU u UeAGG
CeG Ue A
GeC CeG FIS leuV pro argT term
i e
[ ) L ]
c A EctRNA™ A sctRNA™
S e | L
(o] c A (] c A
34 55 36 34 35 36 Kpnl BsrGl
D
FIS
LeuV pro
luxl term
TetR
FIS
LeuV pro
PBRIVTC3B pACYCSOLO-DHFR V10Amb
4.6kb 3.5kb
luxI term

Figure 1. Tryptophan tRNAs and DNA expression constructs. (A) Cloverleaf representations of E. coli tRNAT™ and S. cerevisiae tRNAT™. The
known identity elements for each tRNA are shown in red. (B) Expression construct for SCWRS in plasmids pRS.1 and pRST.11B. (C) Expression
construct for the Sc-tRNAT™®, . and its variants in plasmids pBRIVTC3B and pRST.11B. (D) Plasmid constructs. pRST.11B is the dual tRNA/
aaRS expression vector containing both of the expression constructs shown in (B and C). Plasmid pRS.1 expresses only the SCWRS and is similar to
pRST.1IB except that it lacks the tRNA expression construct shown in (B). Plasmid pBRIVTC3B expresses only the tRNA. Plasmid
pACYCSOLO-DHFR V10Amb is the target protein (DHFR) expression vector. The encoded DHFR gene contains an in-frame amber (TAG)

mutation at the 10th amino acid position and a C-terminal HisTag.



Invitrogen (Carlsbad, CA, USA). Terrific Broth Powder
was from VWR Scientific (West Chester, PA, USA).

All restriction enzymes, T4 DNA ligase and vector
pBR322 were from New England Biolabs (Ipswich, MA,
USA). Vector pACYCDuet-1 was obtained from
Novagen (San Diego, CA, USA). Vector pET28b and
KOD polymerase were from Novagen (Gibbstown, NIJ,
USA). Wizard SV Gel and PCR cleanup kit were from
Promega (Madison, WI, USA). Oligonucleotides were
obtained from Integrated DNA Technologies (IDT;
Coralville, TA, USA). The Klenow fragment
polymerase, SimplyBlue Safestain and NuPAGE
4-12% Bis—Tris precast gels were from Invitrogen
(Carlsbad, CA, USA). Quickchange site-directed
mutagensis kits and Pfu polymerase were from
Stratagene (La Jolla, CA, USA).

Protease inhibitor cocktail was from Roche
(Indianapolis, IN, USA). Ni-NTA resin was obtained
from Qiagen (Germantown, MD, USA). The anti-
polyhistidine alkaline phosphatase primary conjugate
antibody was from Sigma-Aldrich (St. Louis, MO,
USA). All buffers and chemicals were obtained from
Sigma-Aldrich (St. Louis, MO, USA) or Fisher Scientific
(Waltham, MA, USA).

Cloning of the S. cerevisiae WRS gene

The coding sequence for the WRS from S. cerevisiae
(ScWRS) (27) was amplified using the PCR and the
primers SCWRS.f-3 5-TCGAAAAGCTTCCATGAGCA
ACGACGAAACTGTAGAG-3" (HindIIl), ScWRS.r-3
5-GCAGCCTCGAGTTACTTCTTTTCTTGCTTAGT
TTTTGGC-3 (Xhol) from a glass-bead lysed yeast cell
extract. The restriction sites introduced are underlined and
specified in parentheses. The resulting approximately
1.3kb PCR product was digested with Xhol and
HindIIT and ligated into a similarly digested pET-28b
vector using T4 DNA ligase following the conditions rec-
ommended by the enzyme supplier. The ligation mixture
was transformed into Topl0 cells and the resulting kana-
mycin resistant-colonies were screened via colony PCR for
the SCWRS insert. Positive clones were verified by DNA
sequencing from purified clonal plasmids using the
primers T7 Terminator Primer 5-GCTAGTTATTGCTC
AGCGG-3" and T7 Promoter Primer 5-TAATACGACT
CACTATAGGG-3. The resulting sequence-confirmed
plasmid was termed pET28b-ScWRS. This expression
vector expresses SCWRS from the T7 promoter with an
N-terminal His-tag.

Design and construction of the pRS.1 tRNA
synthetase expression vector

In order to express the SCWRS gene in E. coli, the expres-
sion construct (module) shown in Figure 1B was con-
structed. This expression construct was designed to be
modular in that different components of the construct
could be replaced using unique restriction sites flanking
each of the three portions of the construct (i.e.
promoter-RBS, aaRS, transcription terminator). For
example, the gene for the ScWRS shown in green in
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FigurelB could be replaced by restriction digestion with
Xbal and Xhol. Since successful nonsense suppression is
the result of an acylated suppressor tRNA successfully
competing with endogenous release factors for termin-
ation codons, maintenance of high levels of acylated sup-
pressor tRNAs within the cell is important, therefore we
expressed ScWRS from the strong, synthetic tacl
promoter (28) and the strong Shine Dalgarno sequence
(AAGGAG) from the expression vector pET14b.
Transcription termination was mediated by the
luxXICDABEG  terminator sequence (Biobrick part:
BBa_B0021) obtained from the Biobrick parts registry at
MIT (http://partsregistry.org/Main_Page). The overall
construct was assembled by overlap extension PCR.

The plasmid construct for expressing the ScWRS is
shown in Figure 1D. The aforementioned synthetase ex-
pression construct was cloned into the HindIII and Eagl
sites of pBR322 to yield the vector pRS-ScWRS. This
cloning step removes the majority of the tetracycline re-
sistance element found in pBR322, but leaves the ampicil-
lin resistance element. This vector contains the ColEl
origin of replication which maintains the plasmid at
15-30 copies per cell (29). To help regulate the expression
of the SCWRS from the strong tacl promoter, the expres-
sion sequence for Laclq was cloned into the Zral and
HindIII sites of this vector to yield vector pRS.1. The
IPTG-induced expression of the SCWRS gene from this
plasmid was verified by a western blot assay by probing
for the C-terminal His-Tag in a His tagged version
of SCWRS (in vector pRS.1ht) using an alkaline phosphat-
ase conjugated anti-polyhistidine antibody (Sigma-
Aldrich; St. Louis, MO, USA). As can be seen from
Supplementary Figure S1, the SCWRS is efficiently ex-
pressed from this construct, though some aggregation in
the pellet occurs due to overexpression. A more detailed
description of the construction of pRS.1 and related
vectors can be found in the Supplementary Data.

Design and construction of the IVTC3 tRNA
expression plasmids

To express the yeast tRNATP amber suppressor, the syn-
thetic construct shown in Figure 1C was designed and
built from overlapping oligonucleotides. This synthetic
construct expresses the tRNA under the control of the
tRNA leuV 5-UTR (region from —112 to +33), which
contains the stable RNA promoter —35 and —10 regions
and an upstream FIS element (30,31). The FIS element
was included in the 5-UTR as it is known to enhance
transcription initiation from this promoter (32). In
addition, the +1 to +33 sequences from the leuV 5-UTR
was maintained as it contains the natural tRNA process-
ing sequence. The tRNA sequence is flanked by unique
Kpnl and BsrGI sites to facilitate cloning of different
tRNA sequences into the expression construct.
Transcription termination is carried out by the rho inde-
pendent terminator contained in the argT 3’-UTR (33).
This construct was cloned into vector pBR322 or vector
pRS.1 to yield the tRNA expression vectors pBRIVTC3
and pRST.11, respectively (Figure 1D). The expression
and maturation of the yeast tRNAT™ amber suppressor
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from these plasmid constructs in vivo was verified via
northern blotting with a Sc-tRNAT™P-specific DNA oligo-
nucleotide probe (Supplementary Figure S2). While the
recombinant Sc-tRNA "P,,., was cleaved from the ex-
pressed pre-tRNA transcript at sufficient levels
(~20-30%) to observe nonsense suppression in vivo,
future improvements to the processing efficiency of
tRNAs expressed from this construct could lead to
increased nonsense suppression efficiency in vivo. A
thorough description of the design, construction and
assay of these constructs and vectors can be found in the
Supplementary Data.

Construction of vector pACYCSolo

Vector pACYCDuet-1 was digested with EcoNI and
BsrGlI to remove the MCS1 and redundant T7promoter.
The double-digested plasmid band was gel-purified from a
low-melt agarose gel using the Promega (Madison, WI,
USA) PCR and gel purification kit. The linearized
vector was ‘blunted’ by reaction with the Klenow
fragment polymerase using the following conditions:
linearized plasmid, 0.5mM each dNTP, 1x React2
Buffer (Klenow reaction buffer, supplied with enzyme)
and 1.5U Klenow fragment. The elongation reaction
was carried out at room temperature for 30min,
followed by agarose gel purification. The blunted vector
was closed with T4 DNA ligase under the following con-
ditions: linearized vector, 1x T4 DNA ligase buffer
(50 mM Tris pH 7.5, 10mM MgCl,, 10mM DTT, 1 mM
ATP) and 20 U T4 DNA ligase. The ligation mixture was
transformed into Topl0 cells and colonies were screened
via colony PCR using the primers pACYCDuet-f and
pACYCDuet-r. Plasmids that appeared to contain the
correct insert were submitted for sequencing at the
ICMB DNA Core Facility. The sequence verified vector
was named pACYCSolo. This vector contained a multiple
cloning site sequence flanked by the T7lac promoter and a
transcription terminator. It also contained the coding se-
quences for the Lac repressor and chloramphenicol acetyl
transferase. This vector is a pACYC184 derivative and
contains the P15A origin which is compatible with other
vectors containing ColEl origins.

Construction of vectors pACYCSolo-DHFR and
pACYCSolo-DHFR_V10Amb

The coding sequence for E. coli dihydrofolate reductase
(DHFR) and DHFR_VI10Amb was amplified from the
plasmids pIVEX1.4WG-DHFR or pIVEX1.4WG-
DHFR_VI10Amb (R. A. Hughes and A. D. Ellington,
unpublished results), respectively, with primers DHFR-
pivex1l.4-f-1 ¥-GTTACTTTCACATATGATCAGTCTG
ATTGCGGCGTTAGC (Ndel), DHFR-HIS6-r 5-GCT
GCTCGAGTTAATGATGATGATGATGATGGCTGC
CCCGCCGCTCCAGAATCTC-3(Xhol). The restriction
sites used for cloning are underlined. The flanking primer,
DHFR-His6-r, encoded a C-terminal His-tag (amino acid
sequence GSGHHHHHH). The amplified genes were
digested with Ndel and Xhol and cloned into similarly
digested pACYCSolo. Cloned sequences were screened
by colony PCR for insertion of the gene sequence and

verified by sequencing with primers pACYCDuet-f 5'-TT
GCGCCATTCGATGGTGTC and pACYCDuet-r 5-AA
AACCCCTCAAGACCCGTT. Sequence verified clones
were designated pACYCSolo-DHFR and pACYCSolo-
DHFR_VI10 (Figure 1D) for the expression constructs
containing  C-terminal  His-tagged DHFR  and
DHFR_V10Amb, respectively.

DHFR nonsense suppression assay

Plasmids pBRIVTC3B and pRST.11B containing
Sc-tRNAT™™, o or both Sc(WRS and Sc-tRNAT™, ..
respectively, were co-expressed with pACYCSolo-
DHFR_V10Amb in BL21(DE3) or BL21(DE3)Star cells.
A control strain containing pACYCSolo-DHFR _
VI0Amb and pBR322, which lacks both ScWRS and
Sc-tRNAT™, .. was used to determine background sup-
pression rates. The strains containing these plasmids were
grown in Terrific Broth at 37°C to ODygyy ~0.7-0.8 at
which point the expression of DHFR and ScWRS was
induced by the addition of IPTG to 1mM. Cells were
grown overnight at 37 or 30°C. Following induction and
co-expression, the cells were collected by centrifugation
and resuspended in binding buffer (50 mM Tris, pH 8.0,
0.5M NaCl, 5SmM imidazole) containing | x protease in-
hibitor cocktail and 1 mg/ml lysozyme. The resuspended
cells were lysed by sonication on ice using 30% probe
amplitude and five pulse cycles (30s ON, 15s OFF).
Following sonication, the cell debris was pelleted via cen-
trifugation at 10000g for 20 min. The cleared lysate was
transferred to a new centrifuge tube and centrifuged again
at 11000g for 15min to remove any remaining insoluble
material.

The His-tagged DHFR was purified via immobilized
metal affinity chromatography (IMAC) (34). The cleared
lysate was applied to a 1ml (bead volume) Ni-NTA
gravity column pre-incubated with 4x column volumes
of binding buffer and allowed to enter the column by
gravity flow. The column was washed once with
10x column volumes of Binding Buffer, once with
3x column volumes of Wash Buffer 1 (50 mM Tris, pH
8.0, 0.5M NaCl, 20mM imidazole) and once with
3x column volumes of Wash Buffer 2 (50 mM Tris, pH
8.0, 0.5M NaCl, 30mM imidazole). DHFR-His6 was
eluted from the Ni-NTA column by the addition of
4x column volumes of Elution Buffer (50 mM Tris, pH
8.0, 0.5M NaCl, 250mM imidazole). Protein fractions
were analyzed by SDS-PAGE on a 4-12% Bis—Tris
NuPAGE developed in MES SDS buffer (50mM MES
pH 7.3, S0mM Tris, 3.5mM SDS, 1mM EDTA) under
reduced, denaturing conditions and stained using
SimplyBlue Safestain. Each fraction was normalized to
the wet cell pellet weight prior to loading on the gel.
Purified proteins were quantitated using a modified
Bradford Assay (Bio-Rad; Hercules, CA, USA).

Edman N-terminal protein sequencing

Proteins (usually ~300pmol) to be sequenced were
separated on a 4-12% NuPAGE Bis-Tris gradient gels
in MES SDS buffer and transferred to a Polyvinylidene
fluoride (PVDF) membrane using the Bio-Rad semidry



transfer apparatus (Biorad; Hercules, CA, USA) in
NuPAGE transfer buffer (25mM Bis—Tris, pH7.2,
25mM Bicine, 1mM EDTA, 2mM DTT, 20%
methanol). The transfer was performed at 25V for 1h.
Following transfer, the membrane was washed with
HPLC grade water containing 2.5mM DTT for 2min.
The membrane was then stained in 0.1% Coomassie
Blue + 2mM DTT until the protein bands were visible.
The membrane was destained via multiple washes in 50%
methanol, 10% acetic acid, and 1 mM DTT. The destained
membrane was washed in HPLC grade water containing
I mM DTT for 5-10 min. Destained blots were submitted
to the Protein Core Facility (Institute for Cellular and
Molecular Biology, The University of Texas at Austin)
where the first 15-20 amino acids of the membrane-bound
18 kDa DHFR band were excised and sequenced accord-
ing to Edman degradation protocols on an Applied
Biosystems model 477 protein sequencer (ABI; Carlsbad,
CA, USA). Sequenced amino acids were identified and
quantitated using reference standards. Identification of
the amino acid substituted at amber codon 10 of the
modified DHFR protein was done by subtractive com-
parison of the chromatographs produced for position 9
from those produced at position 10. The identity of the
amino acid incorporated at position 10 within DHFR was
defined as the most abundant (in pmol) amino acid in the
subtracted spectrum.

Construction and cloning of Sc-tRNA™™ variants

All of the tRNA gene sequences were designed to be cloned
between the Kpnl and BsrGI sites of the tRNA expression
cassette in vectors pPBRIVTC3B and pRST.11B. The con-
structs contained tRNA processing sequences (following
the Kpnl site and preceding the BsrGI site).

The construct sequences were assembled from four
overlapping oligonucleotides according to the gene
assembly PCR procedure developed by Stemmer (35).
The component ~60nt oligonucleotides were designed
using DNAWorks software (available at: http://
helixweb.nih.gov/dnaworks/) (36). The oligonucleotides
necessary to assemble the tRNA sequences are shown
in Table 1. Each tRNA variant was assembled from four
overlapping oligonucleotides (numbered XXX.1-XXX.4).
The oligonucleotides were resuspended in sterilized water
to a final concentration of 250 uM, and were mixed
together to give a 2.5uM oligonucleotide mixture of
each oligonucleotide. An initial assembly PCR was
carried out under the following conditions: 1ul 2.5uM
oligo mix, 5ul 10x PfuTurbo buffer, 2.5ul 4mM dNTP
mix, | pl Pfu polymerase (added after an initial denatur-
ation step) and water to 50 pl total volume. The assembly
reactions were thermally cycled under the following
regime: (1) 95°C-5min, (2) 95°C-30sec, (3) 50°C-30sec,
(4) 72°C-60sec, (5) Go to step (2) 25 times and
(6) 72°C-10min. Full-length genes were subsequently
amplified by PCR: 1pM assembly PCR, 5Spul
10x PfuTurbo buffer, 2.5ul 4mM dNTP mix, 1ul of
each flanking primer (20 uM; Table 1), 1 pl Pfu polymerase
(added after an initial denaturation step) and water to
S0ul total volume. The amplification reactions were
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thermally cycled: (1) 95°C-5min, (2) 95°C-30sec,
(3) 62°C-30sec, (4) 72°C-60sec, (5) Go to step (2)
25 times and (6) 72°C-10min. The final PCR was
separated on agarose gels to verify the presence of
full-length product.

The assembled tRNA constructs were digested with
Kpnl and BsrGI and ligated into similarly digested
pBRIVTC3B and pRST.11B with T4 DNA ligase.
Clones were screened via colony PCR and sequences
were confirmed by sequencing with primers pRS1871-94
5-AACCCTTGGCAGAACATATCCATC-3 or
pRS2022-47r 5-CTCGCGTATCGGTGATTCATTCTG
CT-3. Plasmids containing the tRNA variants are
designated by the following nomenclature: plasmid
name-tRNA variant (i.e. pPBRIVTC3B-AS3.4).

B-galactosidase colony spot assay

Plasmids pBRIVTC3B (tRNA only) and pRST.11B
(SCWRS and tRNA) containing Sc-tRNAT™P, . vari-
ants were transformed into strain CSH108 via electropor-
ation. Transformed colonies were picked and suspended
in 10ul of LB broth. Two microliter aliquots of this
mixture were spotted in triplicate onto LB agar plates con-
taining 50 pg/mL ampicillin, 1 mM IPTG and 0.2 mg/mL
X-gal. The spotted plates were incubated at 37°C
overnight.

LB broth cultures (3 ml) containing 50 pg/ml ampicillin
and 1 mM IPTG were also inoculated (10 ul) and grown
overnight at 37°C. Some 2ml of each of the cultures was
spun down and the cells lysed in 300 pl of B-PER reagent
containing 1 x protease inhibitor and 200 pg/ml lysozyme.
The cell debris was removed by centrifugation at 15000g
for 15min. The protein concentration in the lysate
was determined using a modified Bradford Assay. The
B-galactosidase activity in the lysate samples was assayed
using the high sensitivity [-galactosidase assay kit
from Stratagene (Cedar Creek, TX, USA). Triplicate
samples from each culture were measured by optical ab-
sorbance (at 570nm) of the chromogenic product,
chlorophenol red.

RESULTS

Assaying the functionality of the
ScWRS/Sc-tRNAT™®, . pair

In order to test the functionality of the ScWRS/
Sc-tRNAT™, . pair, the plasmids pBRIVTC3B, pRS.1
and pRST.11B which express only the Sc-tRNAT™P, ..
only the ScWRS or both the ScWRS and
Sc-tRNAT™, . together, respectively, were transformed
into E. coli strain CSH108. This strain contains an
episomal lacZ gene with an amber nonsense codon
(TAG) in a position that has previously been shown to
be tolerant of a variety of amino acid substitutions. If a
suppressor tRNA is active in vivo, then full-length
B-galactosidase should be produced resulting in a blue-
colored colony upon cleavage of the galactoside analog,
5-bromo-4-chloro-3-indoyl-f-D-galactopyranoside (X-gal).
A translationally inactive suppressor or an orthogonal
suppressor in the absence of its cognate aaRS will yield
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Table 1. Oligonucleotides used to construct suppressor tRNAs

Oligonucleotide name

Sequence (5'-3")

RH-ScWA_U30G40.1
RH-ScWA_U30G40.2
RH-ScWA_U30G40.3
RH-ScWA_U30G40.4
RH-ScWA_C70.1
RH-ScWA_C70.2
RH-ScWA_C70.3
RH-ScWA_C70.4
RH-ScWA_C70U30G40.1
RH-ScWA_C70U30G40.2
RH-ScWA_C70U30G40.3
RH-ScWA_C70U30G40.4
RH-ScCWA_ASI.1
RH-ScWA_AS1.2
RH-ScCWA_ASI.3
RH-ScCWA_ASI.4
RH-ScWA_AS2.1
RH-ScCWA_AS2.2
RH-ScCWA_AS2.3
RH-ScWA_AS2.4
RH-ScCWA_C70ASI.1
RH-ScWA_C70AS1.2
RH-ScWA_C70AS1.3
RH-ScCWA_C70AS1.4
RH-ScWA_C70AS2.1
RH-ScWA_C70AS2.2
RH-ScCWA_C70AS2.3
RH-ScWA_C70AS2.4
RH-ScWA_AS3.1
RH-ScCWA_AS3.2
RH-ScWA_AS3.2.1
RH-ScWA_AS3.2.2
RH-ScCWA_AS3.2.3
RH-ScCWA_AS3.2.4
RH-ScWA_AS3.3.1
RH-ScWA_AS3.3.2
RH-ScWA_AS3.3.3
RH-ScCWA_AS3.3.4
RH-ScWA_AS3.4.1
RH-ScCWA_AS3.4.2
RH-ScWA_AS3.4.3
RH-ScWA_AS3.4.4
RH-ScCWA_AS3.5.1
RH-ScCWA_AS3.5.2
RH-ScWA_AS3.5.3
RH-ScCWA_AS3.5.4
RH-ScWA_AS3.6.1
RH-ScWA_AS3.6.2
RH-ScCWA_AS3.6.3
RH-ScCWA_AS3.6.4

GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGGC
CCTGCAACCCTTCCATTTAGAGTAGAAAGCTCTACCATTGAGCCACCGCTTCATACCATC
TCTAAATGGAAGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCTT
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGT
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGG
GCAACCCTTCGATTTAGAGTCGAAAGCTCTACCATTGAGCCACCGCTTCATACCATCAAT
GACTCTAAATCGAAGGGTTGCAGGTTCAATTCCTGTCCGCTTCACCAATTTTGAACCCCG
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGTGAAG
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGGC
CCTGCAACCCTTCCATTTAGAGTAGAAAGCTCTACCATTGAGCCACCGCTTCATACCATC
TCTAAATGGAAGGGTTGCAGGTTCAATTCCTGTCCGCTTCACCAATTTTGAACCCCGCTT
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGT
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGGC
ACCTGCAACCCGCCGGTTTAGAGCCGGCAGCTCTACCATTGAGCCACCGCTTCATACCAT
CGGCGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCTTCGGCGGG
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGG
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTG
CAACCCCGCGCTTTAGAGGCGCGAGCTCTACCATTGAGCCACCGCTTCATACCATCAATT
CTCTAAAGCGCGGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCT
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGT
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGGC
ACCTGCAACCCGCCGGTTTAGAGCCGGCAGCTCTACCATTGAGCCACCGCTTCATACCAT
CGGCGGGTTGCAGGTTCAATTCCTGTCCGCTTCACCAATTTTGAACCCCGCTTCGGCGGG
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGG
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGG
CCGCGCTTTAGAGGCGCGAGCTCTACCATTGAGCCACCGCTTCATACCATCAATTCTTAA
CGCCTCTAAAGCGCGGGGTTGCAGGTTCAATTCCTGTCCGCTTCACCAATTTTGAACCCC
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGTGAAGC
TAGAGCTGCCGCCTCTAAAGCGGCGGGTTGC
GCAACCCGCCGCTTTAGAGGCGGCAGCTCTA
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGG
TGCAACCCGGCGGTTTAGAGCCGCCAGCTCTACCATTGAGCCACCGCTTCATACCATCAA
AACCGCCGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCTTCGGC
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCA
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGG
TGCAACCCCCCGGTTTAGAGCCGGGAGCTCTACCATTGAGCCACCGCTTCATACCATCAA
TAAACCGGGGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCTTCG
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTG
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTGG
TGCAACCCGGCGCTTTAGAGGCGCCAGCTCTACCATTGAGCCACCGCTTCATACCATCAA
AAGCGCCGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCTTCGGC
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCA
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTG
CAACCCCCCGCTTTAGAGGCGGGAGCTCTACCATTGAGCCACCGCTTCATACCATCAATT
CTCTAAAGCGGGGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCT
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGT
GCGCCTCCGTGGTACCAATTCTTTTTAAGAATTGATGGTATGAAGCGGTG
CAACCCCGCGGTTTAGAGCCGCGAGCTCTACCATTGAGCCACCGCTTCATACCATCAATT
CTCTAAACCGCGGGGTTGCAGGTTCAATTCCTGTCCGTTTCACCAATTTTGAACCCCGCT
GTGACGAAATGTACAGAAAACAAAAAACCCCGCCGAAGCGGGGTTCAAAATTGGT

in a white colored colony due to in-frame translation
termination.

As can be seen in Figure 2, when the ScWRS/
tRNAT™, . pair was expressed in CSHI108, a blue
colony was formed, indicating that the heterologous
yeast suppressor tRNA was active in the bacterial trans-
lational system. However, a blue colony was also obtained
when the Sc-tRNAT™P, . was expressed by itself in
CSH108, indicating that this tRNA was not completely
orthogonal to the set of E. coli tRNA synthetases. That
said, when these strains were grown in solution, the
tryptophanyl pair produced 66 Miller units of
B-galactosidase per milligram of total protein (U/mg),
whereas the strain carrying only Sc-tRNAT™, .

suppressor produced 21 U/mg of enzyme. While it was
likely that the SCWRS was being expressed in an active
form and was able to aminoacylate its cognate suppressor
tRNA in E. coli, the background aminoacylation activity
of the Sc-tRNAT™, . required additional modification in
order to create an orthogonal suppressor.

Identifying background mischarging

To determine which aaRS was responsible for
misacylating the yeast tryptophanyl suppressor tRNA
(Sc-tRNAT™, ), the plasmid pBRIVTC3B that
expresses the Sc-tRNAT™, . was co-transformed with
pACYCSolo-DHFR_V10Amb, a plasmid that expresses



Nucleic Acids Research, 2010, Vol. 38, No. 19 6819

A B 80
70 A
60 4
50 4
40

30 4

Miller Units (U/mg)

20 4

10 4
pRS.1

0

pRST.11B

I
1

@ Sc WRS/tRNA
m (-) control

pBRIVTC3B

==

RS

RS+tRNA tRNA

Figure 2. LacZ suppression assay with Sc-tRNAT™, . (A) B-galactosidase suppression assay for SSWRS/tRNAT™, .\ pair activity. Triplicate spots
from the same initial culture are shown in column orientation. Cultures transformed with (+) or without (—) the Sc-tRNAT™, . or SCWRS are
shown in the right panel. The (—) negative control culture represents the background level of B-galactosidase activity in the absence of a suppressor
tRNA. The (+) control represents B-galactosidase activity in the presence of a known amber suppressor tRNA [SupF, (Ec-tRNA™", )] which is
expressed from the pBRIVTC3B plasmid similar to the experimental suppressor tRNAs. (B) Quantitation of -galactosidase activity produced by the
suppression assay shown in A. pRS.1 expresses just the SCWRS, pRST.11B expresses the SCWRS/tRNAT™, . pair and pBRIVTC3B expresses just

the Sc-tRNAT™, . suppressor. Error bars represent 1 SD (n = 3).

the protein DHFR. The DHFR protein sequence contains
an amber nonsense codon (TAG) at amino acid position
10 (VI0Amber). Therefore, only in the presence of an
amber suppressor tRNA is full-length DHFR translated
(Figure 3A). Expression of the pACYCSolo-DHFR_
V10Amb plasmid in the absence of the Sc-tRNAT™P,, .
suppressor does not yield any DHFR as determined by
a Commassie stained SDS-PAGE gel (control (—)
bands, Figure 3B). The DHFR expressed in the presence
of the suppressor was purified via its C-terminal HisTag
and submitted for N-terminal Edman peptide sequencing
(37). As can be seen in Figure 3C, the Sc-tRNAT™, o
suppressor mediated the incorporation of lysine (K) at
position 10 of DHFR. [Indicating that the
Sc-tRNAT™, . was being misacylated by the E. coli
lysine tRNA synthetase (EcKRS) when expressed alone
in E. coli. In contrast, when pACYCSolo-DHFR _
V10Amb was co-transformed with plasmid, pRST.11B,
which  expresses both the ScWRS and the
Sc-tRNAT™, . suppressor DHFR contained primarily
tryptophan at position 10 of DHFR (Figure 3D), again
confirming the activity of SCWRS in E. coli.

As was the case with B-galactosidase assay, when the
strains were grown in solution the suppressor tRNA led to
tryptophan being incorporated preferentially to lysine
(actually exclusively, within limits of detection for the
assay). The ScCWRS/Sc-tRNAT™, . pair produced 138
milligrams of DHFR per liter of bacterial culture (mg/l),
versus 14mg/l for the Sc-tRNAT™P, ., suppressor alone
and 418 mg/l in the absence of the stop codon. Thus, the
suppression efficiency of the SSWRS/Sc-tRNAT™P .\ pair
can be estimated to be about 33% versus 3% for the
Sc-tRNAT™, . alone. The greater discrimination
against lysine in the DHFR expression assay relative to
the B-galactosidase expression assay may be due to the
fact that protein expression alone was monitored, as
opposed to enzymatic activity.

Rational design of an orthogonal tRNA™™
amber suppressor

Since the EcKRS was determined to be responsible
for causing the background aminoacylation of the
Sc-tRNAT™, .. we compared the Sc-tRNAT™, ., and
the E. coli tRNA™® (Ec-tRNAM*) sequences to determine
what features these tRNAs might have in common.
Figure 4 shows the cloverleaf secondary structure of
both tRNAs with conserved residues colored in green
(identical between Ec-tRNA™® and Sc-tRNAT™,, )
or blue (universally conserved amongst tRNAs).
Surprisingly, the yeast tRNA'™P, . suppressor shares
73% sequence identity with the Ec-tRNA™®, More im-
portantly, Sc-tRNA'™™P, . shares several key lysyl
identity determinants with the Ec- tRNA™®. In particular,
the A73 discriminator base is a major identity element for
both the ECKRS (38,39) and the S. cerevisiae WRS (40).
In addition to this discriminator base, the anticodon
sequence UUU for Ec-tRNA™* (38,39) and CCA for
Sc-tRNAT™ (23) are important identity elements for
recognition by their cognate aaRSs. In the case of the
yeast amber suppressor Sc-tRNAT™, . since the CCA
anticodon sequence has been changed to CUA, the
critical lysine identity element U35 (39) is inadvertently
added to the anticodon sequence of the suppressor
tRNA. While the U34 anticodon base in Ec-tRNA™*
is normally modified to 5-[(methylamino)-methyl]-
2-thiouridine (mnm®*U) to help read the rare AAG
lysine codon (since E. coli lacks an isoacceptor with a
CUU anticodon), the C34 in the amber suppressor is
accommodated equally well (41).

The fact that the CUA amber suppressor anticodon in
Sc-tRNAT™, . is cross-reactive is not unique. In fact, the
importance of the A73 discriminator and U35 anticodon
bases for lysine recognition leads amber suppressor
tRNAs derived from yeast tRNAs for the other
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Figure 3. DHFR suppression assay. (A) The gene for DHFR containing a VIOAmber mutation on plasmid pACYCSolo-DHFR_V10Amb produces
full-length protein when a functional nonsense suppressor is co-expressed with it. (B) Coomassie stained SDS-PAGE gel showing purification
fractions from an immobilized nickel chromatography column for DHFR_VIOAmb expressed without Sc-tRNAT™®, . or ScCWRS (—) with
Sc-tRNAT™, " only (tRNA by or with both SCWRS and Sc-tRNAT™P, (RS +tRNA ). M = marker, W = wash fractions and E = elution
fractions. Full length DHFR appears as an 18 kDa protein band. (C) N-terminal sequencing results for DHFR position 10 from a culture containing
pBRIVTC3B (Sc-tRNAT™, . only). The bar graph represents the detected chromatographic amino acid abundances for position 10 of DHFR
minus those from position 9. Positive abundance represents occupation at position 10 of the DHFR sample, whereas the negatively abundant peaks
are carried over from the previous round of sequencing (position 9). (D) N-terminal sequencing results for DHFR position 10 from a culture
containing pRST.11B (ScWRS and Sc-tRNA'™, ..). The yields of purified DHFR produced via suppression of the VIOAmber codon are given for
each sample.
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Figure 4. Comparing Sc-tRNAT™, . and Ec-tRNA™ . Cloverleaf structures of both tRNAs showing the universally conserved residues in blue
and residues conserved between the two tRNAs in green, for a total of 73% sequence identity overall.



aromatic amino acids (Phe, Tyr) to be cross-reactive to the
EcKRS in vivo (42,43). These tRNAs also all share a
common G-C base pair between positions 1 and 72 in
the acceptor stem, and an anticodon loop sequence that
is similar to that of Ec-tRNA™M*,

Since the anticodon loop and the 1-72 base pair se-
quences are required for translation activity in most
tRNAs, it is unlikely that they can be altered in order to
enhance discrimination and orthogonality between the
Sc-tRNAT™, . and Ec-tRNAM . Instead, it has pre-
viously been hypothesized that cross recognition may also
be due to the structural plasticity of amber suppressor
tRNAs to adapt to the KRS binding site (44). A number
of facts support this hypothesis. While the crystal struc-
ture of the KRS—tRNA™® complex has not been
determined in its entirety, the anticodon binding domain
has been studied in some detail (41,45-47). These struc-
tural and biochemical analyses of KRS reveals that it
undergoes a dramatic change in conformation upon
binding lysine as well as upon the formation of the
Lys-AMP adenylate (41,48). Recently, it has been shown
that the anticodon binding domain of KRS can enhance
the binding efficiency of the lysyl-adenylate in the active
site (49).

The hypothesis that the amber suppressor may be
flexible enough to be charged by lysyl tRNA synthetase
in turn suggests how the suppressor might be rationally
engineered to avoid cross-reaction. The anticodon stem of
both the E. coli lysine tRNA and the yeast suppressor
tRNA share a relatively A-U rich (3/5bp) stem
sequence. Indeed, the Ec-tRNA™* has only one G-C
pair (G30-C40) in the anticodon stem, while most E. coli
tRNA sequences contain three or more G-C pairs in this

u UeACC
Ue A
CeG
GeC
Ael
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> >

C U A
Sc tRNATrpCUA
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stem. We therefore hypothesized that ‘stiffening’ the anti-
codon stem of the suppressor by making it more G-C rich
should lead to a reduction in background aminoacylation
by EcKRS. This hypothesis was further supported by
the fact that most of the known orthogonal suppressors
in E. coli have relatively G-C rich anticodon stems
(Supplementary Figure S3) and that Fukunaga et al.
(43) have reported that the misacylation of the
Sc-tRNA™" amber suppressor by the EcKRS can also
be reduced by G-C enrichment of the anticodon stem.

Other substitutions have also been shown to reduce
background charging by EcKRS. A U30-G40 wobble
pair has previously been shown to eliminate the cross re-
activity of the ECKRS with the yeast tRNA"® amber sup-
pressor (50). This same negative discriminator was also
inserted into the anticodon stem of the Sc-tRNAPh
amber suppressor which led to a reduction in the back-
ground misacylation caused by the ECKRS (7).

Based on this analysis, parallel paths were devised to
eliminate the EcKRS-catalyzed background misacylation
of Sc-tRNAT™. First, we constructed G-C rich anticodon
stem variants of Sc-tRNAT™ (Figure 5, Round 1
Mutants). Secondly, we introduced the negative identity
determinant U30-G40 wobble pair into the anticodon
stem of Sc-tRNAT™. Finally, a U69C substitution was
introduced into the acceptor stem, since replacement of
a similar wobble pair (U4-G69) in yeast tRNA™" had
previously been shown to increase the suppression
activity of this tRNA. Combinations of these changes
were also generated.

These suppressor variants were assayed either alone or
in combination with the U69C substitution in the acceptor
stem (Figure 6). The suppressor tRNA variants were

Round 1 Mutants

AS1 AS2 U30G40
GeC| |CeG| [(UeA
CeG| [GeC| (UeA
CeG| |CeG| |CeG
GeC| |GeC| |UeG
GeC| [CeG| [AeU

Round 2 Mutants

AS3.1 AS3.2 AS3.3 AS3.4
GeC| |GeC| |CeG| [GeC
CeG|l |GeC| |CeG| |Gel
CeG| [CeG| [CeG| [CeG
GeC| [GeC| (GeC| |GeC
Ce |GeC| |GeC| [CeG
U30G40 U30G40
AS3.5 AS3.6 G31C39 c31G39
CeG CeGl [UeA|l [UeA
CeG 0| |UeA| [UeA
CeG| |CeG| |CeG| |[CeG
GeC| |GeC| |(UeG| |[UeG
Cels GeC se C X ic

Figure 5. Rational Sc-tRNAT™¢, mutants. Designed anticodon stem sequences are shown. The first round of mutations from the original sup-
pressor tRNA are shown in red. The anticodon stem mutants were also made in combination with the U69C mutation. The second round anticodon
stem mutations that differ from the first set of suppressor designs are shown in cyan. Mutations preserved from the first round are shown in red.

Unchanged nucleotides from the original suppressor tRNA are in black.
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Figure 6. Suppression activity of rational suppressor tRNA mutants. (A) Structures of tRNA mutants anticodon stems. Sequence changes from
Sc-tRNAT™, . are denoted by red circles. (B) p-galactosidase colony spot activity assay. Each mutant tRNA was expressed with (+) or without (—)
the SCWRS to test for orthogonality. Each sample was taken from the same culture and spotted in triplicate in column format. (C) Quantitation of
suppression activity with p-galactosidase. Error bars represent 1 SD (n = 3).

cloned into the pBRIVTC3B or pRST.11B expression
vectors and transformed into E. coli strain CSH108 with
or without the cognate SCWRS. Specific suppression of the
amber nonsense mutation in the fB-galactosidase gene by
strains containing the SCWRS/Sc-tRNAT™P, . pair was
compared with background suppression from the strains
only containing the suppressor tRNA variants (Figure 6).

The AS.1 variant shows no suppression activity with or
without the SCWRS. The U30G40 substitution not only
had greatly reduced activity with SCWRS but also showed
no background suppression activity. The AS.2 variant
shows roughly equivalent suppression activity to its
parent, but had 13-fold reduced background suppression
activity (Figure 6).



Interestingly, all of the variants that contained the
U69C substitution in the acceptor stem showed increased
background suppression relative to the original
Sc-tRNAT™, . suppressor. N-terminal sequencing of
the DHFR protein produced from the DHFR_V10amb
construct co-expressed with this suppressor revealed that
the U69C substitution changes the identity of the
Sc-tRNAT™ suppressor from tryptophan to histidine
(data not shown). Therefore, the G4-C69 base pair
introduced by this substitution appears to be a heretofore
unknown identity element for the E. coli histidine tRNA
synthetase (EcCHRS) and when combined with the known
G1-C72 and A73 identity elements that are also fortuit-
ously in Sc-tRNAT™ leads to efficient aminoacylation
by EcHRS.

Optimization of an orthogonal tRNA™™ amber suppressor

Since initial results indicated that ‘stiffening’ the anti-
codon stem yielded improved suppressor function, each
of the A-U base pairs in the original tRNA anticodon
stem was systematically replaced with G-C base pairs
(Figure 5, Round 2 Mutants). In addition, since the
U30G40 variant eliminated background activity this sub-
stitution was also combined with G-C base pairs
(Figure 5, Round 2 Mutants). These variants were again
screened in the presence and absence of ScWRS
(Figure 7).

The G-C replacements showed a range of activities with
and without the SCWRS. Variant AS3.1 was translation-
ally inactive, whereas variants AS3.2, AS3.3 and AS3.6
were active yet still showed significant background sup-
pression activity. However, variants AS3.4 and AS3.5
showed a marked reduction in background suppression
activity while maintaining activity in the presence of
ScWRS. AS3.4 reduced background activity by 28-fold
over the original Sc-tRNAT™ suppressor, while AS3.5
showed a reduction of nearly 50-fold over the
Sc-tRNAT™ suppressor. All of the variants containing
U30G40 were either inactive or showed residual back-
ground activity.

Verifying the orthogonality of suppressors AS3.4
and AS3.5

To verify the orthogonality of the two promising suppres-
sor candidates (AS3.4, AS3.5) from the LacZ screen, these
suppressors were co-expressed with and without the
ScWRS in the presence of the DHFR_VI10Amber
plasmid. Full-length DHFR with a C-terminal histidine
tag was isolated by IMAC, yielding 270 mgs/1 DHFR for
AS3.4 or 260mgs/l DHFR for AS3.5 [roughly two-thirds
the yield from the construct lacking the amber (TAG) stop
codon (pACYCSolo-DHFR-wt)].

However, as can be seen in Figure 8A, the AS3.5 sup-
pressor still produces a faint DHFR band on a
Coomassie-stained gel. Concentration of these protein
samples cells that only contained the suppressor tRNA
clearly reveals that DHFR is still being expressed in the
presence of the AS3.5 suppressor but not the AS3.4 sup-
pressor (93-fold concentration; Figure 8B). N-terminal
peptide sequencing of the DHFR samples isolated from
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the strains expressing the AS3.4 and the AS3.5 suppres-
sors with the SCWRS revealed that both incorporate tryp-
tophan in DHFR in response to the amber nonsense
codon at position 10 (Figure 8C and D). However,
N-terminal sequencing of the DHFR band from the
AS3.5 suppressor-only sample revealed that lysine was
still being misincorporated at a low level by the
Sc-tRNA ""P-AS3.5 suppressor (Figure 8E).

Pathways for the acquisition of suppressor activity

Several functional patterns emerge from these results. If
the anticodon stem contains the G27-C43/C28-G42 pairs,
the suppressors are non-functional (see variants AS.1 and
AS3.1). If the anticodon stem contains the G31-C39 base
pair, these tRNAs are functional but show varying levels
of background suppression (see variants AS3.2, AS3.3 and
AS3.6). If the base of the anticodon stem contains the
C31-G39 base pair, the tRNA demonstrates reduced back-
ground suppression levels (see variants AS2, AS3.4
and AS3.5).

The contributions of individual base pairs towards
charging and orthogonality can be better determined by
comparing individual variants (Figure 9). Starting with
the inactive AS1 variant, if the C28-G42 base pair is
changed to G28-C42 base pair found in variant AS3.2, a
significant restoration of suppression activity is restored in
the presence of SCWRS (A 93.2 U/mg of B-galactosidase
activity) but an increase in the background from ASI is
also seen (A 2.2 U/mg).

Continuing to compare substitutions, if the G31-C39
base pair at the base of the stem in variant AS3.2 is
then changed to C31-G39 to yield variant AS3.4, we
lose most of the background activity seen in AS3.2
(A —19U/mg) but gain a small amount of activity
(A 8.1 U/mg) in the presence of SCWRS. A similar effect
is seen if we go from variant AS1 to AS3.1 and then to
AS3.4. If the G31-C39 base pair in AS1 is first changed
to the C31-G39 base pair to yield variant AS3.1, only
a modest gain in activity is seen (A 0.5U/mg) but the
suppressor remains largely inactive and produces a
white colony in the spotting assay with or without the
ScWRS. When the C28-G42 base pair in AS3.1 is finally
changed to G28-C42 to yield variant AS3.4, there is a
quite significant gain in suppression activity in the
presence of the ScWRS (A 100.8 U/mg) but little in
the way of background activity (A 0.1 U/mg). In other
words, both mutational routes from AS1 to AS3.4 yield
sequence intermediates whose activities can be readily
rationalized.

We can also calculate the contribution of the G27-C43
base pair to suppression activity by comparing the activity
of variant AS2 with variant AS3.4. In this case, the
C27-G43 base pair at the top of the acceptor stem in
AS2 is changed to a G27-C43 base pair found in AS3.4,
and this more than doubles the activity of the suppressor
with SC(WRS (A 57.3U/mg), while reducing the back-
ground at the same time (A —0.4 U/mg).

Overall from these results, it is apparent that the
G28-C42 base pair is responsible for increasing the
overall activity of the suppressor, but especially the
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Figure 7. Suppression activity of optimized, rational suppressor tRNA mutants. (A) Mutant tRNA anticodon stem structures with mutations shown
in red or cyan. (B) B-galactosidase colony spot activity assay. Each mutant tRNA was expressed with (+) or without (—) the SCWRS to test for
orthogonality. Each sample was taken from the same culture and spotted in triplicate in column format. (C) Quantitation of suppression activity with
f-galactosidase. Error bars represent 1 SD (n = 3).

activity associated with the SCWRS. The G27-C43 base contribute greatly to the overall activity of the suppressor
pair not only contributes to the overall activity of the sup- with the SCWRS, but is the main contributor to the reduc-
pressor in the presence of the SCWRS, but also contributes tion of background activity with the E. coli KRS. It is
in part to reducing the background activity associated remarkable that these contributions are apparently
with the E. coli KRS. The C31-G39 base pair does not modular, and not highly context-dependent.
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Figure 8. Verifying the orthogonality of AS3.4 and AS3.5. (A) Coomassie stained SDS-PAGE gel of IMAC purified DHFR expressed with and
without SCWRS and with the AS3.4 or the AS3.5 suppressor reveals that low level background suppression (AS3.5 suppressor tRNA without
ScWRS) still occurs with AS3.5. (B) Concentration of the suppressor tRNA-only (expressed from plasmid pBRIVTC3B) samples confirms the
presence of the 18.7kDa DHFR band in the AS3.5 fraction, but not the AS3.4 fraction. The lane next to the marker is wild-type DHFR run with no
additional concentration. The elution fractions from IMAC columns for AS3.4 and AS3.5 expressed without ScCWRS but with plasmid
pACYCSOLO-DHFR_VI0Amb were concentrated and run on the gel at fractions representing concentration factors of 6.2-, 15.5-, 31-, 62- and
93-fold over the initially isolated protein concentration (Top panel). Western blot probing of the C-terminal HisTag on DHFR by a primary
AP-conjugated anti-polyhistidine antibody confirms that DHFR is expressed at low levels in the AS3.5 sample but not in the AS3.4 sample (Bottom
panel). N-terminal sequencing of the purified DHFR samples reveals that both incorporate tryptophan when the SCWRS is co-expressed with the
suppressor tRNA (C and D). However, the AS3.5 suppressor is also misacylated by the E. coli KRS when expressed by itself (E).

DISCUSSION

One of the requirements for developing an orthogonal
aaRS -tRNA pair is that the tRNA works independently
of the host aaRSs and tRNAs. This means that the tRNA
must not interact with the endogenous aaRSs because this
could result in the insertion of more than one amino acid
at a given codon. The aaRS -tRNA recognition is
governed by interactions between a given aaRS and
identity elements on its cognate, the so-called ‘second
genetic code’. These interactions are not only unique to
each pair, but also typically exhibit species-specific differ-
ences, as well, which is one reason that heterologous pairs
can often be engineered to function as orthogonal pairs
(40). In the case of tryptophanyl tRNAs, the relevant
identity elements are thought to be discriminator bases
at position 73, either A73 in bacteria or G73 in eukaryotes
(40,51).

In order to introduce multiple unnatural amino acids
into proteins and whole organisms, it will be useful to
have multiple orthogonal tRNA synthetase:tRNA pairs.

In particular, we have previously attempted to evolve
E. coli to completely utilize the unnatural amino acid
4-fluorotryptophan (20). Insights from these experiments
revealed that ‘top-down’ evolution of an organism’s
genetic code is not a practical approach to augment the
encoded amino acid content of proteins in a living cell
(52). These efforts were only partially successful, owing
in part to the fact that we did not attempt to pre-engineer
the aaRS -tRNA constituents of the cell. Over the last
decade, several groups have demonstrated the utility of
using mutated or evolved aaRSs and their cognate
tRNAs to expand the genctic code and add additional
amino acids into proteins (2,53). These ‘bottom-up’
approaches to evolving the genetic code when combined
with the cellular adaptation protocols used in the
‘top-down’ approaches may some day lead to artificial
cells that have refracted genetic codes which simultaneous-
ly encode for multiple unnatural amino acids (52). In
order to expand the amino acid diversity of a cell,
multiple distinct aaRS—tRNA orthogonal pairs will be
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Figure 9. Dissecting the contribution of mutations to suppressor activity. Anticodon representations of the designed suppressors are shown with the
mutations made in the first and second round of designs shown in red and cyan, respectively. Grey spheres represent positions unchanged from the
original Sc-tRNAT™, . suppressor. The suppressor activities were calculated from the average values obtained from the P-galactosidase assay.
The top numbers (black) represent the change in activity between any two variants in the presence of the ScCWRS. The bottom number (red)
represents the change in the background suppressor activity (tRNA only) between any two variants. The boxed values are the raw averaged
suppressor activities obtained for each variant, with the top number representing the activity with the SCWRS and the bottom number the

activity without the ScCWRS.

required to accommodate the structural diversity multiple
unnatural amino acids while maintaining the selectivity of
the translation process. To date, there are relatively few
orthogonal tRNA synthetase:tRNA pairs available for use
in E. coli, therefore in order to generate an ‘unColi” with
an alternative genetic code and a proteome that is com-
pletely augmented with an unnatural amino acid, we have
developed a new orthogonal tRNA synthetase:tRNA pair
based on the S. cerevisiae WRS and tRNA.

We chose the WRS and its cognate tRNA as a starting
point for constructing an orthogonal pair due to a number
of features which make it particularly attractive for poten-
tially adding unnatural amino acids into proteins. These
features include the lack of an editing domain in the WRS
and its capacious binding pocket for the largest natural

amino acid which has previously led to its use for
incorporating tryptophan analogs into proteins (16,17).
The expanded substrate flexibility of WRS has even sup-
ported adaptive evolution of whole bacteria and bacteria
phage proteomes to tryptophan analogs (18-20).
However, the engineering of the WRS (and its cognate
tRNA) for the site-specific insertion of large, heterocyclic
unnatural amino acids has not been sufficiently explored,
especially when compared with commonly used tyrosyl
tRNA synthetase (54). Zhang et al. (21) have used the
WRS from E. coli and an opal (TGA) nonsense suppres-
sor version of its cognate tRNA for the site-specific in-
corporation of 5-hydroxytryptophan into proteins in
mammalian cells, but this orthogonal pair cannot be
used in E. coli since it is of bacterial origin and has



overlapping recognition features which eliminates its or-
thogonality. Additionally, screening of synthetic sup-
pressor tRNAs from FE. coli has revealed that the
tRNAT™ is the most efficient tRNA for incorporating
large unnatural amino acids such as fluorophores into
proteins in E. coli in vitro (55,56). Therefore, we sought
to develop an orthogonal tryptophanyl pair for use in the
E. coli genetic background.

We anticipated that the yeast tryptophanyl tRNA
would be orthogonal to E. coli WRS based upon known
differences relative to the E. coli tRNAT™P (22,23). The
conversion of the CCA anticodon sequence to CUA to
make an amber nonsense suppressor was also expected
to further enhance the anti-discrimination of the E. coli
WRS for the 1yeast tRNAT™P, . as this mutation in the
E. coli tRNA "™ changes its identity from trypl_tophan to
glutamine (24). However, when the yeast tRNA "'P ., was
initially expressed in E. coli, it was shown to be functional
but not orthogonal to the E. coli translational system
(Figure 2). Further analysis revealed that EcKRS was
responsible for the misacylation of the original
Sc-tRNAT™, . suppressor in the absence of the SCWRS
(Figure 3C). The misacylation of amber suppressor
tRNAs by the EcKRS is a widely reported phenomenon,
so much so that nearly a third of the amber suppressors
derived from different E. coli tRNAs (Ile, Arg, Met
(elongation), Asp, Val) all encode lysine in vivo (57).
Other amber suppressors including those derived from
the yeast tRNAs for phenylalanine (7), isoleucine (50)
and tyrosine (43) have also been shown to be misacylated
by the EcKRS in vivo.

The major identity elements of the Ec-tRNA™* have
been previously determined to be the anticodon nucleo-
tides mnm>s’U34, U35, U36 and the discriminator nucleo-
tide A73 (38,39). Since EcKRS can bind the mnm’s*U34
modified nucleotide or cytosine equally well this means
that three of the four major identity elements are shared
between the yeast tRNAT™P, . suppressor and
Ec-tRNA™"* (Figure 4). Making mutations in the anti-
codon stems of amber suppressor tRNAs derived from
the yeast phenylalanine, tyrosine and isoleucine, tRNAs
has been previously reported to reduce the mischarging of
the suppressor tRNAs by the EcKRS (7,43,50). Fukunaga
et al. (43) reported that G-C enrichment of the anticodon
stem of Sc-tRNA™", . led to significant reduction in
misacylation by EcKRS. Based on these findings, these
authors hypothesized that the interaction between
EcKRS and Ec-tRNAM"® requires a structural element in
the anticodon stem which provides flexibility during the
aaRS/tRNA recognition process (44). G-C enrichment of
the anticodon stem presumably reduces its flexibility and
thereby reduces its interaction with EcCKRS. This hypoth-
esis is anecdotally supported by comparison of the
anti-codon stems of all of the known E. coli orthogonal
tRNAs (Supplementary Figure S3), all of which have rela-
tively G-C rich anticodon stems. In comparison, the
tRNAT™®, . contains an A-U rich anticodon stem,
much like the Ec-tRNA™®,

Building on these findings, we made a series of anti-
codon stem mutations in Sc-tRNA™", . aimed at dis-
rupting the structural plasticity of this stem and thus the

Nucleic Acids Research, 2010, Vol. 38, No. 19 6827

aberrant interaction with ECKRS. In order to better parse
out the individual effects of G-C substitutions, 16 different
Sc-tRNADT, . anticodon stem mutants were made and
screened via a B-galactosidase suppression assay. Of these
16 mutants, one variant, AS3.4, demonstrated a complete-
ly orthogonal phenotype. This variant contained a highly
G-C enriched anticodon stem (G28-C42, C31-G39 and
G27-C43). The G28-C42 and G27-C43 base pairs at the
top of the anticodon stem were found to enhance suppres-
sion activity in the presence of the ScWRS, while the
C31-G39 base pair at the bottom of the anticodon stem
led to the greatest reduction in background suppression by
EcKRS (Figure 9). In agreement with these results, this
latter mutation has also been shown to reduce the
mischarging of the yeast tRNA™" by ECKRS (44).

Interestingly, the C31-G39 base pair in yeast
tRNAT", v also led to an increase in misacylation by
E. coli glutamine tRNA synthetase. This result was
similar to the results reported by Normanly et al. (57)
two decades ago for amber suppressors derived from
two isoacceptors for E. coli tRNA. In this case, when
tRNA", was made into an amber suppressor it was
aminoacylated with glutamine, whereas the tRNA'S,
amber suppressor was charged with lysine. One of the
sequence differences between these two tRNA'™
isoacceptors was the 31-39 base pair which was
C31-G39 in tRNA™, and A31-¥39 for tRNA",, confirm-
ing the importance of the C31-G39 base pair for
anti-discrimination by the EcKRS. These results suggest
that the EcKRS could utilize a tRNA recognition and
catalysis mechanism similar to the arginyl-tRNA
synthetase which requires some flexibility in its cognate
tRNA to undergo its induced-fit mode of catalysis (58).
The reduction in the flexibility of the anticodon stem in
mutant AS3.4 may have abolished recognition by the
EcKRS.

Unfortunately, the previous attempts to rationally
design an orthogonal suppressor tRNA based on the
yeast tRNA™" were ultimately unsuccessful, even
though the methodology was similar to that reported
herein. This could be due to subtle structural differences
between the engineered yeast tRNA™" anticodon stem
relative to the engineered yeast tRNAT™ anticodon
stem, as none of the mutants assayed were identical.
That said, the most orthogonal tRNA™" suppressor that
was reported had an anticodon stem sequence that was
very similar to our AS3.5 tRNAT™ varjant, differing at
only a single base pair (G29-C41 for the tRNA™" variant
versus C29-G41 for AS3.5).

It is especially interesting that the impact of individual
G-C substitutions on both charging by the SCWRS and
mischarging by the Ec-LysRS appeared to be modular and
additive (Figure 9). This was not necessarily to have been
expected, since many protein:RNA interactions require
precise conformational fits in which any perturbation
will significantly decrease affinity and activity. The
apparent additivity of the interactions implies that it
may be possible in the future to rationally engineer the
flexibility of tRNAs to achieve novel specificities. More
intriguingly, these results suggest how changes in the
genetic code may have evolved. Changes in tRNA
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anticodons are thought to yield quantized changes in the
genetic code, with new amino acids being lost or acquired
at particular codons. However, additional mutations in
tRNAs that lead to ambiguous charging specificities
could modulate the adoption of a new code, moving
through an intermediate state in which more than one
amino acid was proportionately introduced across from
a given codon (59-61). The fact that changes in stem flexi-
bility can gradually and additively lead to alterations in
this ambiguity (in ‘mischarging’) implies that evolutionary
routes to new codes could lead gradually through ambigu-
ously recoded proteomes.

Previously reported refinements of orthogonal suppres-
sor tRNAs were largely done by directed evolution from a
library of mutations that tended to focus any mutations
made from a proposed suppressor in the acceptor stem (4),
or the loop regions of the tRNA sequence (62) to screen
for mutations that enhanced the orthogonal character of a
mutant tRNA. These regions of the tRNA are logical
starting points for incorporating additional discrimination
elements into tRNAs as these regions are commonly
accessed by aaRSs. However, in light of the results pre-
sented herein, modification of the structural features of
tRNAs should also be considered when designing/
evolving aaRS interactions. Due to tRNA’s central role
in the translation system, tRNA molecules have to interact
with multiple proteins (aaRSs, EFTu) and the ribosome
itself. The evolved flexibility of the tRNA molecule
enables it to interact with multiple binding partners
making this feature of tRNAs one of the most essential
for translation (63). While interactions between tRNA
identity elements and aaRSs (64), and between the
tRNA acceptor stem and EFTu (65) have been extensively
explored, the role of structural flexibility in fine-tuning
these interactions is still largely unknown. Recent and
future molecular dynamic simulations of tRNAs during
translation will hopefully help to illuminate this largely
overlooked property of tRNAs (63). In this regard,
mutant tRNAs such as those reported herein could be
useful for studying the structural dynamics of tRNA inter-
actions between cognate and non-cognate aaRSs, much as
the Hirsh suppressor tRNA' (66) was useful for
decoding the dynamics of codon—anticodon interactions
on the ribosome 1(67).

The Sc-tRNA'P-AS3.4 and ScWRS orthogonal pair
reported herein is to our knowledge the only reported
tryptophanyl-based orthogonal pair available for use in
prokaryotes and should be of great use in expanding
efforts to evolve proteins that contain unnatural amino
acids. In addition to potentially being used for changing
the genetic code of a cell, this orthogonal suppressor
system could also be used for recoding in vitro. For
example, recombinant translation systems [similar to the
PURE system (68)] have been used by Forster and col-
leagues (69,70) to introduce chemically acylated tRNAs
containing unnatural amino acids into peptides.
Similarly, Szostak and colleagues (71,72) have made
peptides containing multiple unnatural amino acid
analogs by taking advantage of the natural substrate flexi-
bility of aaRSs. In either instance, the new orthogonal pair
could be introduced in place of tRNA synthetase and its

cognate tRNA, or in addition to the standard complement
of synthetases and tRNAs in order to more efficiently
generate proteins with altered compositions.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

FUNDING

Funding for open access charge: National Science
Foundation (grant number MCB-0943383); National
Institutes of Health/National Institute of General
Medical Sciences (grant number RO1GMO084703); The
Welch Foundation (grant number F-1654).

Conflict of interest statement. None declared.

REFERENCES

. Kiga,D., Sakamoto,K., Kodama,K., Kigawa,T., Matsuda,T.,
Yabuki,T., Shirouzu,M., Harada,Y., Nakayama,H., Takio,K.
et al. (2002) An engineered Escherichia coli tyrosyl-tRNA
synthetase for site-specific incorporation of an unnatural amino
acid into proteins in eukaryotic translation and its application in
a wheat germ cell-free system. Proc. Natl Acad. Sci. USA, 99,
9715-9720.

2. Xie,J. and Schultz,P.G. (2006) A chemical toolkit for proteins—an
expanded genetic code. Nat. Rev. Mol. Cell Biol., 7, 775-782.

. Wang,L., Brock,A., Herberich,B. and Schultz,P.G. (2001)
Expanding the genetic code of Escherichia coli. Science, 292,
498-500.

4. Anderson,J.C., Wu,N., Santoro,S.W., Lakshman,V., King,D.S.
and Schultz,P.G. (2004) An expanded genetic code with a
functional quadruplet. Proc. Natl Acad. Sci. USA, 101,
7566-7571.

. Pastrnak,M., Mageliery,T.M. and Schultz,P.G. (2000) A new
orthogonal suppressor tRNA/Aminoacyl-tRNA synthetase pair
for evolving an organism with an expanded genetic code.

Helv. Chim. Acta, 83, 2277-2286.

6. Liu,D.R. and Schultz,P.G. (1999) Progress toward the evolution
of an organism with an expanded genetic code. Proc. Natl Acad.
Sci. USA, 96, 4780-4785.

. Kwon,I., Wang,P. and Tirrell,D.A. (2006) Design of a bacterial
host for site-specific incorporation of p-bromophenylalanine into
recombinant proteins. J. Am. Chem. Soc., 128, 11778-11783.

. Santoro,S.W., Anderson,J.C., Lakshman,V. and Schultz,P.G.
(2003) An archaebacteria-derived glutamyl-tRNA synthetase and
tRNA pair for unnatural amino acid mutagenesis of proteins in
Escherichia coli. Nucleic Acids Res., 31, 6700-6709.

. Anderson,J.C. and Schultz,P.G. (2003) Adaptation of an
orthogonal archaeal leucyl-tRNA and synthetase pair for
four-base, amber, and opal suppression. Biochemistry, 42,
9598-9608.

10. Nguyen,D.P., Garcia Alai,M.M., Kapadnis,P.B., Neumann,H. and
Chin,J.W. (2009) Genetically encoding N(epsilon)-methyl-L-lysine
in recombinant histones. J. Am. Chem. Soc., 131, 14194-14195.

. Landes,C., Perona,J.J., Brunie,S., Rould,M.A., Zelwer,C.,
Steitz,T.A. and Risler,J.L. (1995) A structure-based multiple
sequence alignment of all class I aminoacyl-tRNA synthetases.
Biochimie, 77, 194-203.

12. Yang,X.L., Otero,F.J., Skene,R.J., McRee,D.E., Schimmel,P. and
Ribas de Pouplana,L. (2003) Crystal structures that suggest late
development of genetic code components for differentiating
aromatic side chains. Proc. Natl Acad. Sci. USA, 100,
15376-15380.

13. Praetorius-Ibba,M., Stange-Thomann,N., Kitabatake,M., Ali,K.,

SolL,I., Carter,C.W. Jr, Ibba,M. and Soll,D. (2000) Ancient

(55

i

-

o]

Nel

—_



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

adaptation of the active site of tryptophanyl-tRNA synthetase for
tryptophan binding. Biochemistry, 39, 13136-13143.

. Ribas de Pouplana,L., Frugier,M., Quinn,C.L. and Schimmel,P.

(1996) Evidence that two present-day components needed for the
genetic code appeared after nucleated cells separated from
eubacteria. Proc. Natl Acad. Sci. USA, 93, 166-170.

. Doublie,S., Bricogne,G., Gilmore,C. and Carter,C.W. Jr (1995)

Tryptophanyl-tRNA synthetase crystal structure reveals an
unexpected homology to tyrosyl-tRNA synthetase. Structure, 3,
17-31.

. Budisa,N. (2006) Engineering the Genetic Code. Wiley-VCH,

Weinheim.

. Budisa,N., Rubini,M., Bae,J.H., Weyher,E., Wenger,W.,

Golbik,R., Huber,R. and Moroder,L. (2002) Global replacement
of tryptophan with aminotryptophans generates non-invasive
protein-based optical pH sensors. Angew. Chem. Int. Ed. Engl.,
41, 4066-4069.

. Wong,J.T. (1983) Membership mutation of the genetic code: loss

of fitness by tryptophan. Proc. Natl Acad. Sci. USA, 80,
6303-6306.

. Bacher,J.M., BullJ.J. and Ellington,A.D. (2003) Evolution of

phage with chemically ambiguous proteomes. BMC Evol. Biol., 3,
24.

Bacher,J.M. and Ellington,A.D. (2001) Selection and
characterization of Escherichia coli variants capable of growth on
an otherwise toxic tryptophan analogue. J. Bacteriol., 183,
5414-5425.

Zhang,Z., Alfonta,L., Tian,F., Bursulaya,B., Uryu,S., King,D.S.
and Schultz,P.G. (2004) Selective incorporation of
S-hydroxytryptophan into proteins in mammalian cells.

Proc. Natl Acad. Sci. USA, 101, 8882-8887.

Himeno,H., Hasegawa,T., Asahara,H., Tamura,K. and
Shimizu,M. (1991) Identity determinants of E. coli tryptophan
tRNA. Nucleic Acids Res., 19, 6379-6382.

Yesland,K.D. and Johnson,J.D. (1993) Anticodon bases C34 and
C35 are major, positive, identity elements in Saccharomyces
cerevisiae tRNA(Trp). Nucleic Acids Res., 21, 5079-5084.
Yaniv,M., Folk,W.R., Berg,P. and Soll,L. (1974) A single
mutational modification of a tryptophan-specific transfer RNA
permits aminoacylation by glutamine and translation of the
codon UAG. J. Mol. Biol., 86, 245-260.

Yesland,K.D., Nelson,A.W., Six Feathers,D.M. and Johnson,J.D.
(1993) Identity of Saccharomyces cerevisiae tRNA(Trp) is not
changed by an anticodon mutation that creates an amber
suppressor. J. Biol. Chem., 268, 217-220.

Atkin,A.L., Riazi,M.A., Greer,C.L., Roy,K.L. and Bell,J.B.
(1993) The functional analysis of nonsense suppressors derived
from in vitro engineered Saccharomyces cerevisiae tRNA(Trp)
genes. Gene, 134, 57-65.

John,T.R., Ghosh,M. and Johnson,J.D. (1997) Identification and
expression of the Saccharomyces cerevisiae cytoplasmic
tryptophanyl-tRNA synthetase gene. Yeast, 13, 37-41.

de Boer,H.A., Comstock,L.J. and Vasser,M. (1983) The tac
promoter: a functional hybrid derived from the trp and lac
promoters. Proc. Natl Acad. Sci. USA, 80, 21-25.

Balbas,P., Soberon,X., Merino,E., Zurita,M., Lomeli,H., Valle,F.,
Flores,N. and Bolivar,F. (1986) Plasmid vector pBR322 and its
special-purpose derivatives—a review. Gene, 50, 3-40.

Duester,G., Campen,R.K. and Holmes,W.M. (1981) Nucleotide
sequence of an Escherichia coli tRNA (Leu 1) operon and
identification of the transcription promoter signal. Nucleic Acids
Res., 9, 2121-2139.

Bauer,B.F., Kar,E.G., Elford,R.M. and Holmes,W.M. (1988)
Sequence determinants for promoter strength in the leuV operon
of Escherichia coli. Gene, 63, 123-134.

Ross,W., Salomon,J., Holmes,W.M. and Gourse,R.L. (1999)
Activation of Escherichia coli leuV transcription by FIS.

J. Bacteriol., 181, 3864-3868.

Hsu,L.M., Klee,H.J., Zagorski,J. and Fournier,M.J. (1984)
Structure of an Escherichia coli tRNA operon containing linked
genes for arginine, histidine, leucine, and proline tRNAs.

J. Bacteriol., 158, 934-942.

Smith,M.C., Furman,T.C., Ingolia,T.D. and Pidgeon,C. (1988)
Chelating peptide-immobilized metal ion affinity chromatography.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

Nucleic Acids Research, 2010, Vol. 38, No. 19 6829

A new concept in affinity chromatography for recombinant
proteins. J. Biol. Chem., 263, 7211-7215.

Stemmer,W.P., Crameri,A., Ha,K.D., Brennan,T.M. and
Heyneker,H.L. (1995) Single-step assembly of a gene and entire
plasmid from large numbers of oligodeoxyribonucleotides. Gene,
164, 49-53.

Hoover,D.M. and Lubkowski,J. (2002) DNAWorks: an
automated method for designing oligonucleotides for PCR-based
gene synthesis. Nucleic Acids Res., 30, e43.

Reim,D.F. and Speicher,D.W. (2001) N-terminal sequence
analysis of proteins and peptides. Curr. Protoc. Protein Sci.,
Chapter 11, Unit 11 10.

McClain,W.H., Foss,K., Jenkins,R.A. and Schneider,J. (1990)
Nucleotides that determine Escherichia coli tRNA(Arg) and
tRNA(Lys) acceptor identities revealed by analyses of mutant
opal and amber suppressor tRNAs. Proc. Natl Acad. Sci. USA,
87, 9260-9264.

Tamura,K., Himeno,H., Asahara,H., Hasegawa,T. and
Shimizu,M. (1992) In vitro study of E.coli tRNA(Arg) and
tRNA(Lys) identity elements. Nucleic Acids Res., 20, 2335-2339.
Xu,F., Chen,X., Xin,L., Chen,L., Jin,Y. and Wang,D. (2001)
Species-specific differences in the operational RNA code for
aminoacylation of tRNA(Trp). Nucleic Acids Res., 29, 4125-4133.
Cusack,S., Yaremchuk,A. and Tukalo,M. (1996) The crystal
structures of T. thermophilus lysyl-tRNA synthetase complexed
with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys)
transcript: anticodon recognition and conformational changes
upon binding of a lysyl-adenylate analogue. EMBO J., 15,
6321-6334.

Furter,R. (1998) Expansion of the genetic code: site-directed
p-fluoro-phenylalanine incorporation in Escherichia coli.

Protein Sci., 7, 419-426.

Fukunaga,J., Yokogawa,T., Ohno,S. and Nishikawa,K. (2006)
Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli
lysyl-tRNA synthetase and its effective repression by genetic
engineering of the tRNA sequence. J. Biochem., 139, 689-696.
Fukunaga,J., Ohno,S., Nishikawa,K. and Yokogawa,T. (2006)
A base pair at the bottom of the anticodon stem is reciprocally
preferred for discrimination of cognate tRNAs by Escherichia coli
lysyl- and glutaminyl-tRNA synthetases. Nucleic Acids Res., 34,
3181-3188.

Brevet,A., Chen,J., Commans,S., Lazennec,C., Blanquet,S. and
Plateau,P. (2003) Anticodon recognition in evolution: switching
tRNA specificity of an aminoacyl-tRNA synthetase by
site-directed peptide transplantation. J. Biol. Chem., 278,
30927-30935.

Commans,S., Lazard,M., Delort,F., Blanquet,S. and Plateau,P.
(1998) tRNA anticodon recognition and specification within
subclass 1Ib aminoacyl-tRNA synthetases. J. Mol. Biol., 278,
801-813.

Commans,S., Plateau,P., Blanquet,S. and Dardel,F. (1995)
Solution structure of the anticodon-binding domain of Escherichia
coli lysyl-tRNA synthetase and studies of its interaction with
tRNA(Lys). J. Mol. Biol., 253, 100-113.

Onesti,S., Desogus,G., Brevet,A., Chen,J., Plateau,P., Blanquet,S.
and Brick,P. (2000) Structural studies of lysyl-tRNA synthetase:
conformational changes induced by substrate binding.
Biochemistry, 39, 12853-12861.

Saruwatari,Y., Wada,T., Takita,T. and Inouye,K. (2008)
Substrate-induced conformational changes of the truncated
catalytic domain of Geobacillus stearothermophilus lysyl-tRNA
synthetase as examined by fluorescence. Biochim. Biophys. Acta,
1784, 1633-1640.

Buttcher,V., Senger,B., Schumacher,S., Reinbolt,J. and Fasiolo,F.
(1994) Modulation of the suppression efficiency and amino acid
identity of an artificial yeast amber isoleucine transfer RNA in
Escherichia coli by a G-U pair in the anticodon stem. Biochem.
Biophys. Res. Commun., 200, 370-377.

Guo,Q., Gong,Q., Tong,K.L., Vestergaard,B., Costa,A.,
Desgres,J., Wong,M., Grosjean,H., Zhu,G., Wong,J.T. et al.
(2002) Recognition by tryptophanyl-tRNA synthetases of
discriminator base on tRNATrp from three biological domains.
J. Biol. Chem., 277, 14343-14349.



6830 Nucleic Acids Research, 2010, Vol. 38, No. 19

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

Bacher,J.M., Hughes,R.A., Tze-Fei Wong,J. and Ellington,A.D.
(2004) Evolving new genetic codes. Trends Ecol. Evol., 19, 69-75.
Wang,Q., Parrish,A.R. and Wang,L. (2009) Expanding the genetic
code for biological studies. Chem. Biol., 16, 323-336.

Xie,J. and Schultz,P.G. (2005) An expanding genetic code.
Methods, 36, 227-238.

Taira,H., Matsushita,Y., Kojima,K. and Hohsaka,T. (2006)
Development of amber suppressor tRNAs appropriate for
incorporation of nonnatural amino acids. Nucleic Acids Symp.
Ser., 233-234.

Taira,H., Matsushita,Y., Kojima,K., Shiraga,K. and Hohsaka,T.
(2008) Comprehensive screening of amber suppressor tRNAs
suitable for incorporation of non-natural amino acids in a
cell-free translation system. Biochem. Biophys. Res. Commun., 374,
304-308.

Normanly,J., Kleina,L.G., Masson,J.M., Abelson,J. and
Miller,J.H. (1990) Construction of Escherichia coli amber
suppressor tRNA genes. III. Determination of tRNA specificity.
J. Mol. Biol., 213, 719-726.

Guigou,L. and Mirande,M. (2005) Determinants in tRNA for
activation of arginyl-tRNA synthetase: evidence that tRNA
flexibility is required for the induced-fit mechanism. Biochemistry,
44, 16540-16548.

Schultz,D.W. and Yarus,M. (1994) Transfer RNA mutation and
the malleability of the genetic code. J. Mol. Biol., 235, 1377-1380.
Schultz,D.W. and Yarus,M. (1996) On malleability in the genetic
code. J. Mol. Evol., 42, 597-601.

Yarus,M. and Schultz,D.W. (1997) Further comments on codon
reassignment. Response. J. Mol. Evol., 45, 3-6.

Wang,L. and Schultz,P.G. (2001) A general approach for the
generation of orthogonal tRNAs. Chem. Biol., 8, 883-890.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Alexander,R.W., Eargle,J. and Luthey-Schulten,Z. (2010)
Experimental and computational determination of tRNA
dynamics. FEBS Lett., 584, 376-386.

Giege,R., Sissler,M. and Florentz,C. (1998) Universal rules and
idiosyncratic features in tRNA identity. Nucleic Acids Res., 26,
5017-5035.

Sanderson,L.E. and Uhlenbeck,0.C. (2007) Exploring the
specificity of bacterial elongation factor Tu for different tRNAs.
Biochemistry, 46, 6194-6200.

Hirsh,D. (1971) Tryptophan transfer RNA as the UGA
suppressor. J. Mol. Biol., 58, 439-458.

Cochella,L. and Green,R. (2005) An active role for tRNA in
decoding beyond codon: anticodon pairing. Science, 308,
1178-1180.

Shimizu,Y., Inoue,A., Tomari,Y., Suzuki,T., Yokogawa,T.,
Nishikawa,K. and Ueda,T. (2001) Cell-free translation
reconstituted with purified components. Nat. Biotechnol., 19,
751-755.

Forster,A.C., Tan,Z., Nalam,M.N., Lin,H., Qu,H., Cornish,V.W.
and Blacklow,S.C. (2003) Programming peptidomimetic syntheses
by translating genetic codes designed de novo. Proc. Natl Acad.
Sci. USA, 100, 6353-6357.

Forster,A.C., Cornish,V.W. and Blacklow,S.C. (2004) Pure
translation display. Anal Biochem., 333, 358-364.

Josephson,K., Hartman,M.C. and Szostak,J.W. (2005) Ribosomal
synthesis of unnatural peptides. J. Am. Chem. Soc., 127,
11727-11735.

Hartman,M.C., Josephson,K., Lin,C.W. and Szostak,J.W. (2007)
An expanded set of amino acid analogs for the ribosomal
translation of unnatural peptides. PLoS ONE, 2, ¢972.



