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Abstract

This article is one of ten reviews selected from the
Annual Update in Intensive Care and Emergency
Medicine 2019. Other selected articles can be found
online at https://www.biomedcentral.com/collections/
annualupdate2019. Further information about the
Annual Update in Intensive Care and Emergency
Medicine is available from http://www.springer.com/
series/8901.

Introduction
Iron is required for erythropoiesis and is also essential
for many other life-sustaining functions including deoxy-
ribonucleic acid (DNA) and neurotransmitter synthesis,
mitochondrial function and the innate immune re-
sponse. Despite its importance in maintaining health,
iron deficiency is the most common nutritional defi-
ciency worldwide and many of the risk factors for iron
deficiency are also risk factors for developing critical ill-
ness. The result is that iron deficiency is likely to be
over-represented in critically ill patients, with an esti-
mated incidence of up to 40% at the time of intensive
care unit (ICU) admission [1].
Critical illness results in profound and characteristic

changes to iron metabolism that are highly conserved
from an evolutionary perspective. These changes are me-
diated predominantly by the polypeptide hepcidin, which
acts to decrease the absorption and availability of iron,
despite acute phase increases in iron-binding proteins,
such as ferritin, which may suggest normal or increased
iron stores. The result is a state of functional iron defi-
ciency. This may be protective in the short term, provid-
ing a form of ‘nutritional immunity’ against invading
microbes by diminishing access to free iron in response
to infection. However, by reducing the capacity of the
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body to access iron for vital processes, persistent func-
tional iron deficiency can become harmful. For patients
with prolonged ICU admission, this may contribute to
critical illness-associated cognitive, neuromuscular and
cardiopulmonary dysfunction.
Historically, the possibility of iron deficiency was

largely unexplored in critically ill patients due to the
confounding effects of acute inflammation on commonly
available iron measures, the lack of safe and effective
treatments and uncertainty as to the clinical significance
of deranged iron metabolism. However, assays, including
hepcidin, offer the potential to identify iron restriction
despite the presence of inflammation and may be
coupled with promising therapeutic options to address
issues including nosocomial infection and functional re-
covery for patients admitted to the ICU.
These advances are timely as emerging data suggest

that disordered iron metabolism is of substantial prog-
nostic significance in critical illness. High serum trans-
ferrin saturation and iron concentration are independent
predictors of mortality in patients admitted to the ICU
[2]. These data are consistent with findings of increased
infection risk and organ failure associated with deranged
iron metabolism in studies of patients undergoing
hematopoietic stem cell and renal transplantation [3, 4].
Failure to maintain iron homeostasis early after a pro-
found insult may result in an accumulation of highly re-
active free iron, or non-transferrin bound iron, inflicting
further oxidative stress on vulnerable organs or scav-
enged by invading microorganisms. The requirement for
tight homeostatic control of iron metabolism is further
demonstrated by population data from Norway, suggest-
ing an association between severe iron deficiency and
risk of bloodstream infection [5].
In summary, the available evidence suggests that both

iron deficiency and iron excess may be harmful for crit-
ically ill patients and that clinical assessment of iron sta-
tus in the ICU is important and should include
consideration of both possibilities. The risks related to
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different iron states and associated iron study patterns
are provided in Fig. 1.
The advent of safe and effective intravenous iron prep-

arations provides an opportunity to explore the potential
benefits of treating patients diagnosed with functional
iron deficiency in the ICU, when enteral iron is ineffect-
ive due to the actions of hepcidin. Intravenous iron ther-
apies have largely been investigated in the context of
erythropoiesis. There are high quality data that intraven-
ous iron, compared to either oral iron or no iron, signifi-
cantly decreases anemia and red blood cell (RBC)
transfusion requirement in hospitalized patients, albeit
with a potential increased risk of infection [6]. The evi-
dence for patients admitted to the ICU is less clear. To
date few randomized controlled trials (RCTs) have been
conducted in critically ill patients, although a recent
multicenter study suggested that intravenous iron is bio-
logically active in this population, increasing hemoglobin
without any signal of harm [7].
Whilst much of the focus of iron has been as a treat-

ment for anemia, a risk factor for adverse outcomes in
patients admitted to the ICU, non-anemic iron defi-
ciency impairs aerobic metabolism and is associated with
reduced maximal oxygen consumption (VO2max), muscle
endurance and cognitive performance [8–10]. It is plaus-
ible that interventions to address disrupted iron metab-
olism may have much wider benefit for reducing
complications and improving functional recovery after
critical illness, independent of erythropoiesis.
The similarities are striking between the pathological

consequences of the alterations in iron metabolism dur-
ing critical illness and many common and characteristic
complications, particularly those associated with func-
tional impairment, in patients requiring prolonged ICU
admission. Exploring the role of iron dysmetabolism in
nosocomial infection and cognitive, neuromuscular and

cardiopulmonary dysfunction may uncover novel thera-
peutic targets to help to address the substantial public
health burden of these conditions in survivors of critical
illness.

Iron metabolism and critical illness
Critical illness precipitates an inflammatory response
that results in early and profound changes in iron me-
tabolism. An acquired form of iron dysmetabolism can
be said to occur when these changes are persistent and
contribute to impaired end-organ function. Ferritin, a
major repository of intracellular iron, and the
iron-binding glycoprotein, lactoferrin, are acute phase
reactants and are upregulated in proportion to the sever-
ity of the inflammatory response [11]. The higher affinity
of ferritin and lactoferrin to bind iron relative to trans-
ferrin, the circulating iron transporter and a negative
acute phase reactant, results in hypoferremia [11]. This
pattern of low serum iron, low transferrin and high fer-
ritin occurs in more than 75% of critically ill patients
within 3 days of ICU admission [12, 13]. Akin to the par-
tial uncoupling of intravascular volume status from total
body water as a common consequence of ICU treatment
in critical illness, total body iron stores may become
uncoupled from available and circulating iron.
Although the immediate changes in ferritin and trans-

ferrin are initiated directly by cytokines, it is the effect of
hepcidin, described as the master regulator of iron, that
determines the severity and duration of an
iron-restricted state. Hepcidin, a 25-amino acid peptide
hormone synthesized predominantly by hepatocytes, is
secreted in response to a variety of stimuli including in-
flammatory cytokines and iron excess. Hepcidin acts by
binding to and degrading ferroportin, a cellular iron ex-
porter found in duodenal cells, macrophages and hepa-
tocytes. Increasing hepcidin secretion decreases the

Fig. 1 Diagnostic patterns and risk of adverse effects related to different iron states. TSAT transferrin saturation
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intestinal absorption of dietary iron, decreases the re-
lease of recycled heme iron by macrophages, increases
the sequestration of iron stores in hepatocytes and re-
duces circulating free iron [14].
There are two key clinical consequences of the

changes in iron metabolism associated with critical ill-
ness. The first is that diagnosis of functional iron defi-
ciency is problematic and cannot be reliably excluded on
the basis of standard iron study parameters. The second
is that a persistent state of dysmetabolism predisposes a
vulnerable population to the consequences of
iron-restricted metabolism, a state most commonly con-
sidered in the context of erythropoiesis but with import-
ant implications for the risk and severity of nosocomial
infection and critical illness-associated cognitive, neuro-
muscular and cardiopulmonary dysfunction.

Diagnosing Iron deficiency
The inflammatory response that occurs in critical illness
confounds the interpretation of commonly available as-
says to diagnose iron deficiency, including ferritin and
transferrin. To address this, one approach has been to
alter the threshold values of these markers to account
for the acute phase response [15]. In patients with
anemia requiring long term dialysis, a serum ferritin of
< 200 μg/L is highly suggestive of iron deficiency and
predicts a good response to intravenous iron, whereas
patients with a ferritin of between 500 and 1200 μg/L
and a transferrin saturation < 25% may also show an in-
crease in hemoglobin in response to intravenous iron
[15]. By applying similar criteria in critical illness,
iron-restricted erythropoiesis has been reported to occur
in more than a fourth of patients on admission to ICU
[16]. However, validation studies against a gold standard
of iron deficiency in critically ill patients are lacking and
the accuracy of these criteria in predicting response to
intravenous iron in this setting remains uncertain. Given
the association between high transferrin saturation and
adverse outcomes in critically ill patients, it may be that
standard measures of iron metabolism are of greater use
in identifying patients with potential iron overload, in
whom intravenous iron therapy may pose greater risks,
than in diagnosing functional iron deficiency per se.
In contrast, serum hepcidin concentration appears to

provide a more reliable signal of iron-restricted erythro-
poiesis, decreasing in concentration with the onset of
iron deficiency in patients admitted to the ICU even in
the presence of inflammation [17]. In a recent study in
critically ill patients with anemia, serum hepcidin con-
centration, but not ferritin or transferrin saturation, was
able to identify patients in whom intravenous iron ther-
apy was effective in reducing RBC transfusion require-
ment [18]. These findings require validation in further
studies but are similar to findings in oncology, where

hepcidin concentration appears to predict response to
intravenous iron therapy in patients with
chemotherapy-induced anemia [19]. In order for large
validation studies to occur, accurate, clinically-available
hepcidin assays are required.
A two-stage process may be of value, in which stand-

ard iron assays are first used to exclude patients at risk
of iron excess and identify clear cases of iron deficiency.
For patients not clearly overloaded or deficient, hepcidin
concentration is then measured. As the evidence base
grows and the role of hepcidin becomes more clearly de-
fined, studies investigating its association with functional
outcomes after ICU may also be of substantial interest.

Anemia
Anemia is associated with adverse outcomes and re-
mains the most common indication for RBC transfusion
in patients admitted to the ICU, even when adherence
to a conservative transfusion threshold is high [20]. Pre-
venting the onset and progression of anemia requires a
multifaceted approach adapted to the specific clinical
context. Major surgery requiring elective ICU admission
represents a large patient cohort where a pre-emptive
approach is preferable [21]. Approximately one in three
patients scheduled to undergo major surgery is anemic,
a potentially modifiable risk for perioperative adverse
events, including myocardial infarction, stroke and mor-
tality [22]. A recent international consensus statement
recommends routine screening of all patients undergo-
ing surgery with an expected blood loss > 500 mL and
consideration of intravenous iron for patients with
anemia and evidence of iron deficiency when oral iron is
inefficacious, not tolerated or surgery is planned to
occur in less than 6 weeks [23]. In contrast, a Cochrane
review on the use of preoperative iron therapy to correct
anemia identified only three small RCTs and found no
significant reduction in allogeneic RBC transfusion re-
quirements [24]. The safety and efficacy of preoperative
intravenous iron therapy is now the focus of several on-
going large scale RCTs in cardiac, abdominal and ortho-
pedic surgery. A summary of major completed and
ongoing RCTs of preoperative intravenous iron is pro-
vided in Table 1.
For patients admitted to the ICU there is some evi-

dence to guide decisions on the use of intravenous iron
therapy. A systematic review and meta-analysis on the
efficacy of intravenous iron in the treatment of anemia
in ICU patients did not demonstrate a significant de-
crease in anemia or RBC transfusion requirements but
only included five relatively small studies [25]. More re-
cently, a multicenter RCT including 140 patients dem-
onstrated that intravenous iron administered within 48 h
of ICU admission resulted in a significant increase in
hemoglobin concentration at hospital discharge (107 g/L
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vs. 100 g/L, p = 0.02) without any infusion-related ad-
verse event, but no difference in RBC transfusion rates,
hospital length of stay or mortality [7]. Although these
data suggest biological activity, the available evidence is
currently insufficient to assess the effect of early intra-
venous iron administration on patient outcomes, or to
exclude increased infection risk.
The timing of intravenous iron administration in pa-

tients admitted to the ICU may also be a strong deter-
minant of whether the benefits outweigh the risks. The
period of greatest physiological stress generally occurs
early after ICU admission. The effects of critical illness
and related treatments, such as RBC transfusion and cat-
echolamine infusions, increase the risks and also exacer-
bate the consequences of iron dysmetabolism and excess
free iron. A diminished capacity to process exogenous
parenteral iron may worsen this situation. In vitro data
suggest dose-dependent and formulation-dependent ef-
fects of intravenous iron compounds on macrophage
handling and the extent of oxidative stress [26]. Early
initiation of intravenous iron provides time to develop
an erythropoietic response. However, this neglects a
wider therapeutic window after the most acute period of
critical illness has abated when the risk benefit ratio may
be more favorable and addressing the functional out-
comes of prolonged ICU admission can be prioritized.
The temporal changes in iron metabolism and response

to intravenous iron therapy in critical illness are summa-
rized in Fig. 2.

Cognitive dysfunction
Cognitive dysfunction is common in survivors of critical
illness, affecting more than one in four patients and
often persisting after physical recovery [27]. The patho-
physiology is multifactorial and characterized by new
deficits or deterioration of pre-existing mild deficits in
global cognition or executive function. However, the
underlying causes remain poorly understood and there
are no established treatments [27].
Iron is essential for neurotransmitter synthesis, uptake

and degradation and is necessary for mitochondrial
function in metabolically active brain tissue [28]. Iron
deficiency has cerebral and behavioral effects consistent
with dopaminergic dysfunction, manifesting as poor in-
hibitory control and diminished executive and motor
function [29]. In both children and pre-menopausal
women with non-anemic iron deficiency, iron supple-
mentation is associated with improved mental
quality-of-life and cognitive function [9, 30]. Studies on
the effects of intravenous iron on cognitive outcomes in
patients recovering from critical illness are currently
lacking and will need to consider the optimal timing,
dose and duration of therapy.

Table 1 Randomized controlled trials of intravenous (i.v.) iron in major surgery

Study, year [ref], number (n) of patients Population Intervention Outcomes

Kim, 2017 (FAIRY trial) [48]
n = 454

Anemia post-radical
gastrectomy

500–1000 mg i.v. FCM Significantly more Hb responders No
significant differences in QoL

Johansson, 2015 (PROTECT trial) [49]
n = 60

Non-anemic patients
undergoing cardiac
surgery

100 mg i.v. iron
isomaltoside

More non-anemic patients in i.v. iron group
Higher Hb 1 month postoperative in i.v. iron
group

Bernabeu-Wittel, 2016 [50]
n = 306

Hip fracture surgery 1 g i.v. FCM+ 40,000 IU
s.c. EPO

Higher Hb at discharge and 60-days post-
discharge
No significant differences in ABT, mortality,
HRQoL, adverse events.

Froessler, 2016 [51]
n = 72

Abdominal surgery
with IDA

500–1000 mg i.v. FCM Reduced ABT
Improved preoperative Hb
Improved postoperative Hb
Reduced LOS

Intravenous iron for Treatment of Anemia before
Cardiac Surgery (ITACS; ClincialTrials.gov Identifier:
NCT02632760)

Anemic patients before
elective cardiac surgery

1 g i.v. FCM (or similar
product)

Primary outcome: Number of days alive and
out of hospital from surgery to 30 days post-
surgery

Preoperative Intravenous Iron to Treat Anemia in
Major Surgery (PREVENTT; ClinicalTrials.gov
Identifier: NCT01692418)

Anemic patients before
major open abdominal
surgery

1 g i.v. FCM Primary outcome: ABT requirement

Intravenous Iron, Functional Recovery and Delirium
in Patients with Hip Fracture (FEDEREF; EudraCT:
2014–001923-53)

Hip fracture patients 200 mg iron sucrose on
days 1, 3 and 5 from
admission

Primary outcome: Functional variables,
including ability to perform activities of daily
living and walking.
Cognitive variables, including cognitive
status and incidence of delirium ABT
requirement

ABT allogeneic blood transfusion, EPO erythropoietin, FCM ferric carboxymaltose, Hb hemoglobin, HRQoL health-related quality of life, IDA iron-deficiency anemia,
LOS length of stay, QoL quality of life, s.c. subcutaneous
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Neuromuscular dysfunction
Critical illness myopathy is a frequent complication of
prolonged acute illness, affecting a substantial propor-
tion of patients admitted to ICU. Weakness is often pro-
longed with many patients experiencing decreased
exercise capacity and compromised quality of life years
after the acute event [31]. Even in healthy non-anemic
subjects, adequate iron status is essential for efficient
aerobic capacity [10]. Fatigue is also a significant factor
in recovery after critical illness, influencing a patient’s
ability to engage with rehabilitation. Iron deficiency per-
sisted in more than one in three patients at 6 months
after prolonged ICU admission and is associated with in-
creased fatigue independent of anemia [32]. Given the
catabolic state conferred by critical illness and role of
iron in myoglobin and muscle oxidative metabolism, fur-
ther evaluation of the relationship between iron defi-
ciency and critical illness myopathy may provide insight
into the role of iron supplementation in improving phys-
ical recovery after acute severe illness.

Cardiopulmonary dysfunction
Iron is an essential component of structural proteins in
cardiomyocytes and an obligate co-factor for
hypoxia-inducible factor (HIF), a mediator of the sys-
temic cardiovascular response to hypoxia. As a conse-
quence, iron plays an important role in systolic heart
function and hypoxic pulmonary vasoconstriction.
Independent of anemia, iron deficiency is associated

with increased risk of death in patients with heart failure
[33]. High quality evidence suggests that intravenous
iron for patients with systolic heart failure improves ex-
ercise capacity, survival and quality of life [34]. Critical
illness may impair myocardial iron use through a num-
ber of mechanisms including catecholamine-induced
downregulation of myocardial transferrin receptor 1

(TfR1) and upregulation of hepcidin [35]. Emerging data
also suggest disrupted iron metabolism may be import-
ant in various subtypes of pulmonary artery hyperten-
sion and that altitude-associated pulmonary artery
hypertension is improved by intravenous iron therapy
[36]. Pulmonary artery hypertension, and associated
right ventricular dysfunction, is common in patients ad-
mitted to the ICU with severe acute respiratory distress
syndrome (ARDS) and is a poor prognostic indicator
[37]. Whether the beneficial effects of intravenous iron
for patients with isolated systolic heart failure and pul-
monary artery hypertension are translatable to patients
being treated in the ICU requires further investigation,
but assessment of iron status and potential initiation of
iron therapy in patients with severe cardiac failure and
markers of iron deficiency should be considered on an
individual patient basis.

Infection
The term ‘nutritional immunity’ describes the changes
in iron metabolism of the mammalian host during infec-
tion, in which the acute phase response acts to limit the
availability of free iron for microbes including invasive
fungi and avid iron-binding bacteria [38, 39]. Hereditary
iron overload disorders increase the risk and severity of
infection with siderophilic bacteria, such as Vibrio vulni-
ficus and Yersinia enterocolitica, although these bacteria
are only moderately pathogenic in other settings [39].
Iron overload not only predisposes to infection from
particular organisms, but also then impairs components
of the innate immune response including chemotaxis,
phagocytosis, lymphocyte and macrophage function [40].
Investigating a potential causal link between iron sup-

plementation and infection risk is complex. The rela-
tionship is likely to depend on a large range of factors,
including the setting, participant population and

Fig. 2 Changes in iron storage and capacity to use iron over time in critical illness
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particular iron dosing strategy. For example, oral iron sup-
plementation for children in malaria endemic areas does
not appear to increase the risk of malaria overall, but may
increase the risk where malaria prevention strategies are
unavailable and decrease the risk where they are available
[41]. Although an increased risk of infection has been sug-
gested in a systematic review of RCTs investigating hospi-
talized patients treated with intravenous iron, infection was
only reported in a minority of trials and the risk, including
in critically ill patients, remains uncertain [6]. A RCT of
intravenous iron sucrose compared with oral iron in pa-
tients with chronic kidney disease was stopped early due to
increased serious adverse events, including infection requir-
ing hospitalization, in the intravenous iron group [42]. On
the other hand a RCT of intravenous ferric carboxymaltose
for patients with cardiac failure demonstrated improved
functional capacity and quality of life with no significant
between-group differences in serious adverse events, in-
cluding infection [43]. These contrasting findings demon-
strate the need for context-specific assessment of infection
risk and the potential for dose and formulation-dependent
differences [26]. For patients admitted to the ICU, it is
plausible that the risk of infection related to parenteral sup-
plementation is not uniform, but may vary between patients
and within a patient over time (see Fig. 2).
Whilst uncertainty regarding the risk of infection may

still limit widespread use of intravenous iron in the acute
phase of critical illness, the relationship between changes
in iron metabolism and infection also provides thera-
peutic opportunities. Nosocomial infection remains a
major source of morbidity in patients admitted to the
ICU. Oral supplementation with the iron-binding glyco-
protein, lactoferrin, appears to reduce nosocomial infec-
tion in preterm infants, although the results of large
studies are awaited; results have not been replicated in
the adult ICU setting [44, 45].
Other potential therapeutic targets of iron metabolism

exist or are in development that may also be of relevance
to reducing nosocomial infection. For example, the nu-
tritional immunity conferred by reducing iron availability
during infection is mediated by hepcidin, secreted in re-
sponse to inflammatory mediators. However, inhibitors
of hepcidin secretion, including anemia and hypoxia,
may exert a counterbalancing effect in critically ill pa-
tients resulting in relative hepcidin deficiency and in-
creased free iron available for invading microbes. For
critically ill patients with early sepsis and low hepcidin
concentrations, hepcidin agonists currently in devel-
opment may attenuate the severity of the infective in-
sult [46]. Likewise, iron chelators are known to be
synergistic with some antifungal therapies in man-
aging a range of fungal infections and may be benefi-
cial in the prevention and treatment of nosocomial
infections [47].

Conclusion
Iron deficiency is common in the general population
and likely to be over-represented in patients admitted to
the ICU. Critical illness exacerbates this situation by ini-
tiating a form of functional iron deficiency in which iron
absorption and recycling is diminished and stored iron is
less accessible for use. Although there may be beneficial
short-term effects from this process by conferring a form
of nutritional immunity against invading microbes, there
are also risks. Homeostatic control of iron may be lost
leading to the risk of iron excess, as suggested by emer-
ging evidence that high transferrin saturation is a poor
prognostic marker early after ICU admission. Perhaps
most importantly, whether or not critical illness is initi-
ated by an infection, it is often prolonged. Persistent
functional iron deficiency may lead to iron dysmetabo-
lism in which reduced iron availability contributes to im-
paired end-organ function.
The reduced availability of iron in critical illness is

often considered in the context of anemia, but the con-
sequences are much broader than this and overlap ex-
tensively with many of the issues faced by ICU survivors.
Correction of non-anemic iron deficiency improves cog-
nitive and cardiopulmonary dysfunction and aerobic per-
formance and reduces fatigue. Recent data suggest that
hepcidin measurement may be useful in targeting intra-
venous iron therapy at those most likely to benefit. For
patients requiring prolonged ICU admission, considering
iron dysmetabolism may be of substantial therapeutic
benefit in improving functional recovery after critical
illness.
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