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Abstract: C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the
Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G
regulates several cellular functions. It is expressed at relatively high levels in specific brain areas,
playing important roles during embryonic development. Recent studies have uncovered different
roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However,
its role in brain tumours remained unknown until very recently. We found that C3G expression
is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype,
enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by
FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor
Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains
undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote
proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other
RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information
available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised
treatment of patients in combination with other GBM molecular markers. The quantification of C3G
levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might
be a useful tool to improve GBM patient treatment and survival.

Keywords: C3G; glioblastoma; Rap

1. Introduction
1.1. Glioblastoma: Generalities

GBMs (glioblastomas), or grade IV astrocytoma/gliomas [1], are the most frequent
and aggressive type of cancer originated in the CNS (central nervous system) (four new
diagnoses per 100,000 population and 12–14 months of median survival rate in patients) [2].
Females present a lower incidence and slightly better prognosis than males [3]. First-line
treatment includes surgical resection of the main tumour mass followed by adjuvant radio-
therapy, combined with the alkylating agent, TMZ (temozolomide) [4]. In 2016, the WHO
subclassified GBMs in two main subtypes: GBM-IDH (isocitrate dehydrogenase)-wildtype
(almost 90% of cases) and GBM-IDH-mutant (around 10%) [5]. Recently, a novel WHO
classification considered GBMs as adult-type diffuse gliomas, distinguishing GBM-IDH-
wildtype from the astrocytoma-IDH-mutant [6]. At the molecular level, GBMs have also
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been categorised into different subtypes, being the four subtypes, neural, proneural, classi-
cal, and mesenchymal, the most widely used. This classification reflects altered signalling
pathways, microenvironment composition, treatment responses, and prognosis [7–11].

Despite GBM intra- and inter-patient heterogeneity, a number of alterations are di-
rectly associated with this type of tumour, leading to the definition of diverse molecular
signatures. RTKs (receptor tyrosine-kinases) and their downstream pathways are altered
in almost 90% GBMs. The most commonly altered RTK is EGFR (mutated or amplified in
50–60% of cases), followed by PDGFRα (amplified in 13% of cases), ErbB2 (mutated in 8%
of cases), MET (amplified in 2–4% of cases), and FGFR1 (amplified in 3.2% of cases) [12,13].
In addition, intracellular signalling pathways are frequently altered in GBM. For example,
the Ras pathway is usually over-activated through mutation or deletion of NF1 (a Ras GAP
(GTPase activating protein)). Other components of intracellular signalling cascades such as
PTEN, PI3K, p53, or pRB are also recurrently altered in GBM [12,13].

GBM patients have poor prognosis due to therapy resistance, secondary foci forma-
tion, and tumour regrowth/recurrence. Two tightly controlled cell capacities have been
associated with them: stemness [14,15] and dissemination [16].

Regarding the first one, CSCs (cancer stem cells) are defined as a small subpopulation
of cancer cells with stem and initiating capabilities, responsible for tumour onset and
therapy resistance. CSCs present in GBM, known as GSCs (GBM stem cells), display self-
renewal capacity, ability to differentiate, and tumour initiating properties [15]. They express
stem-related markers (SOX2, Mushashi, Bmi, Nestin, CD133, or CD44) and maintain
basal proliferation and anti-apoptotic mechanisms without decreasing their stem-like
phenotype [14].

Concerning dissemination, it is important to point out that GBMs rarely generate
extra-neural metastases, but they have a high capacity to infiltrate the surrounding areas
and generate secondary foci [17]. Although GBM cells present a pro-mesenchymal pheno-
type [18,19], different EMT (epithelial to mesenchymal transition)-like processes occur in
GBM, which facilitate the acquisition of a more invasive phenotype. The most relevant is
“glial to mesenchymal transition”, which correlates with the upregulation of mesenchymal
markers and downregulation of astrocytic/glial markers such as GFAP, Olig2, FOXO1,
or PDGFR [20–22]. GBM aggressiveness correlates with its infiltrative and disseminative
capacity, since the tumour easily mixes with normal tissue, being even considered as a
“whole-brain disease” [16]. Invasion is mainly performed along nerve tracts and meninges,
but also through cerebrospinal fluid and brain blood vessels [16,23]. Disseminative cells
hide in brain tumour-distant areas, where they cannot be detected or removed by surgery,
rather than in perivascular areas, as seen on brain metastatic disseminated tumour cells.

Understanding the molecular mechanisms and signalling pathways that drive dissem-
ination and tumorigenesis in GBM may lead not only to find better biomarkers of tumour
status, but also novel therapeutic targets for its treatment.

1.2. C3G: Generalities and Its Role in the Nervous System

C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor), encoded by the
RAPGEF1 gene, is a GEF (guanine nucleotide exchange factor) for small GTPases, mainly
Rap1. It also performs GEF-independent functions based on protein–protein interactions,
involving its central polyproline (SH3-binding) and N-terminal regions (Figure 1). For ex-
ample, C3G interacts with p130Cas, Cbl, and Abl to regulate leukemic cell adhesion [24].
However, all the mechanisms used by C3G to exert GEF-independent roles remain to
be fully understood. C3G regulates proliferation, apoptosis/survival, actin remodelling,
adhesion, migration, differentiation, and exocytosis [25,26]. C3G also plays an essential role
during mouse embryogenesis [27], affecting, at least, the differentiation of skeletal muscle,
the monocyte/macrophage and megakaryocyte/platelet lineages, the maturation of the
vascular system, and different aspects of the nervous system development [25,28–30].
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Figure 1. C3G structure and isoforms. C3G domains from N-terminal to C-terminal: E-cadherin-binding domain and
REM-interacting region; SH3-binding proline-riche domains (P0–P4) and autoinhibitory region (AIR); REM and CDC25H,
both responsible for C3G GEF activity. The asterisk indicates Tyr504, the most well-established residue susceptible of
phosphorylation. In isoforms with more amino acids than isoform A, inserts are included in purple.

RAPGEF1 is a ubiquitous, low-expressing gene that encodes a major isoform of 120 kDa,
although multiple variants are expressed in a tissue-specific manner (Figure 1) [25]. C3G
protein levels are higher in the brain compared to other tissues [31]. Embryonic brain is
enriched in C3G isoforms containing non-catalytic regions [32] and a novel 175 kDa isoform,
harbouring a 414 bp insert in the SH3-binding domain, and plays important roles in both
embryonic and post-natal brain [33]. However, in adult brain, only the presence of the 120
kDa and 175 KDa isoforms has been confirmed [33], while it remains unknown whether other
isoforms are also present.

Throughout mouse embryonic development, elevated levels of C3G are detected in
the neural tube and cerebrocortical neuroepithelium [34]. In adult mouse brain, C3G is
predominantly expressed in pyramidal neurons from the cerebral cortex, mitral cells of
olfactory bulb, and hippocampal CA3 (Cornu Ammonis area 3) region [33]. It is known that
C3G controls the size of the cerebral precursor population via Rap1-mediated inhibition
of proliferative pathways such as β-catenin, Akt, and Ras-ERKs [34]. Moreover, C3G
regulates neural precursor migration and differentiation. In particular, C3G participates in
the control of precursor migration from the ventricular zone to form the cortical plate, in
the multi-to-bipolar transition of neurons, in the formation of cortical axons and dendrites,
and in the proper orientation of radial glial processes and their attachment to the pial
surface [35,36]. Additionally, C3G is required for polarisation of hippocampal neurons [36]
and contributes to sympathetic preganglionic neuron migration in the spinal cord [37].

Most of these actions of C3G are triggered by Reelin, an extracellular glycoprotein
involved in cerebral cortex development [38]. It activates integrin α5β1 via ApoER2
(Apolipoprotein E Receptor 2) through an inside-out pathway involving Dab1-Crk/CrkL-
C3G-Rap1. This pathway contributes to the proper neuronal positioning in the mature
cortex [39,40]. Apart from the Reelin pathway, C3G participates in neural growth factor
(NGF)-mediated sustained ERKs activation via Rap1, which is linked to differentiation
of PC12 cells [41]. Interestingly, C3G is also involved in epidermal growth factor (EGF)-
mediated transient ERKs activation in PC12 cells, inducing proliferation [41,42]. C3G
also participates in pathways activated by different RTKs such as TrkA/B or Alk through
diverse mediator proteins [43–48].

Despite the abundant literature on the role of C3G in the CNS, little is known about
its involvement in nervous system pathologies including cancer.
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2. Actions of C3G in GBM: What Is Different Compared to Other Tumours?

During the last few years, different studies have uncovered a function for C3G in
cancer. However, it seems to play different roles depending on cell context, tumour type,
and stage (Table 1 and Figures 2–4). C3G inhibits malignant transformation of mouse
fibroblasts induced by several oncogenes [31,49,50]. According to this function of C3G
as a tumour suppressor, its expression is downregulated by promoter methylation in
cervical-squamous cancer [51]. In contrast, the C3G-Rap pathway may contribute to the
RET-induced transformed phenotype of thyroid cells [52]. In this line, C3G levels are upreg-
ulated in non-small cell lung cancer [53]. In addition, the RAPGEF1 gene presents a somatic
demethylation in colon, gastric, and ovarian cancer patients, which could be associated
with an increased expression [54]. However, C3G plays a dual role in CRC (colorectal
carcinoma) cells as demonstrated by in vitro and in vivo approaches [55]. C3G promotes
tumour growth, while it inhibits invasion (Table 1). In HCC (hepatocellular carcinoma),
the analyses of public databases indicate that RAPGEF1 mRNA levels gradually increase in
HCC patient samples during HCC progression up to stage III, which is associated with a
reduced overall patient survival [56,57]. C3G protein levels are also increased in human
HCC cell lines and mouse HCC models, promoting tumour growth through the activation
of survival and proliferation, although it inhibits invasion [57] (Table 1). C3G overexpres-
sion also reduces the migration of breast carcinoma cells [58], while it seems to promote
metastatic spread of serous ovarian cancer via Rap1 [59]. p87C3G, an isoform lacking the
N-terminal region (Figure 1) is overexpressed in CML (chronic myeloid leukaemia) cell
lines and patient samples and is associated with CML development [60]. Moreover, C3G
downregulation enhances the STI-571 (imatinib mesylate) pro-apoptotic effect in CML
cells [61]. In non-Hodgkin’s lymphoma patients, two missense mutations have been found
in the C3G N-terminal region that causes Rap1 hyperactivation [62], which might lead to
lymphoma progression (Table 1).

Figure 2. Role of C3G in GBM cells dissemination as compared to other tumour types. (1) C3G
levels are high in healthy brain and they decrease along GBM progression [63]. (2) C3G knock-
down enhances migration/invasion of GBM cells in a similar way that it does in other tumours [63].
Nevertheless, the mechanisms governing this pro-invasive effect are diverse. In GBM, ERKs are
overactivated when C3G is downregulated, likely induced by the increased activation of FGF2-
FGFR1 and other RTKs, which enhances invasion (left panel). (3) C3G is also a negative regulator of
migration/invasion in other tumours, but not in all cancer types (right panel) [55,57,58]. In GBM,
C3G is downregulated and this plays an important role enhancing tumour aggressiveness [63]. GBM:
glioblastoma; CRC: colorectal carcinoma; HCC: hepatocellular carcinoma.
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Figure 3. RAPGEF1 mRNA levels in GBM patient tumour samples compared with healthy brain.
Analysis of RAPGEF1 expression in control (n = 5) and GBM patient samples (n = 166) using data
from the TCGA database. RAPGEF1 mRNA levels normalised with ACTB (left panel) or GUSB (right
panel). U-Mann–Whitney test was used to compare the data and p values are shown.

Figure 4. Role played by C3G in GBM tumour growth compared to other tumourigenic pro-
cesses. In GBM, C3G knock-down increases the number of foci, cell scattering, tumour size, stroma
infiltration, and angiogenesis, while decreases cell density, proliferation, and the number of tu-
mour cells within the tumour (left panel). This differs from its actions in other tumours (right
panel) [31,49,50,55,57,60]. GBM: glioblastoma; α-SMA: α-smooth muscle actin; CRC: colorectal
carcinoma; HCC: hepatocellular carcinoma; CML: chronic myeloid leukaemia.

Based on the above comments, C3G is upregulated in a number of cancers, leading to
tumour growth. In contrast, a reduction in C3G levels enhances migration and invasion,
likely facilitating the dissemination of tumour cells (Figure 2).

According to public databases, and as previously described by Manzano et al. (2021),
RAPGEF1 mRNA levels are decreased in GBM patients compared to healthy brain tissue
(Figure 3), although this is not associated with changes in overall survival [63], as occurs
in other tumours. This could be due to the very low survival rate of GBM patients upon
diagnosis. In agreement with the reduced RAPGEF1 mRNA levels in GBM patient samples,
protein levels of the main C3G isoform are also downregulated in several GBM cell lines
compared to non-tumourigenic human astrocytes [63]. The 175 kDa novel brain-specific
C3G isoform [33] was not detected as it is mainly expressed in postnatal and adult neurons,
but not in astrocytes [33].

Even though C3G levels are reduced in GBM, a stronger downregulation of C3G in
GBM cells by silencing using shRNAs promotes the acquisition of an enhanced mesenchy-
mal phenotype. Hence, Vimentin levels are increased in C3G silenced GBM cells as well as
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their migratory and invasive capacity [63] (Figure 2). In this regard, it is important to men-
tion that Vimentin upregulation is a well-established mesenchymal marker associated with
poor prognosis in GBM [64–67]. Therefore, the reduction in C3G levels might represent a
new biomarker of poor prognosis in GBM.

Table 1. Common and specific actions of C3G in different tumours and their mechanisms.

Common C3G
Effects and

Mechanisms

Tumour C3G Level
mutations Effect Mechanism Reference

Breast, CRC,
HCC, and

GBM
High/Medium Decreases

motility

Regulation of
actin

cytoskeleton
[55,57,58,63]

CRC, HCC,
and GBM High/Medium

Inhibits
migration and

invasion

Blocking EMT
like processes [55,57,63]

CRC, HCC,
GBM, and

CML
High/Medium Promotes cell

adhesion

Regulation of
actin

cytoskeleton
[55,57,60,63]

CRC and HCC Upregulated
Tumour
growth

promotion

Increase of cell
proliferation
and survival

[55–57]

Specific
C3G Effects

and
Mechanisms

GBM Downregulated
Migration and

invasion
enhancement

Activation of
ERKs and

FGFR1
[68,69]

GBM Downregulated

EGF/EGFR
activation
signalling

impairment

Reduction of
cell surface
EGFR levels

[63]

HCC Upregulated

MET and
HGF/MET

signalling full
activation

Contribution
to the

formation of
MET

signalling
complexes

[57]

CRC High levels
Migration and

invasion
inhibition

Downregulation
of p38α MAPK

activity
[55]

Serum ovarian
cancer cells High levels

Metastatic
spread

promotion
Via Rap1 [59]

CML
p87C3G
isoform

upregulation

Disease
development

Contribution
to Bcr-Abl
aberrant

signalling

[60]

Non-
Hodgkin’s
lymphoma

Y554H and
M555K

missense
mutations

in C3G AIR
region

Rap1 hyperac-
tivation

C3G
auto-inhibitory

mechanism
disruption

[62]

CRC (colorectal cancer); HCC (hepatocellular carcinoma); GBM (glioblastoma); CML (chronic myeloid leukaemia);
EMT (epithelial to mesenchymal transition).

This pro-migratory effect of C3G silencing is in agreement with the enhanced migration
observed in C3G-silenced CRC cells [55] and HCC cells [57] and with the inhibitory effect
of C3G overexpression on breast carcinoma cell migration [58] (Figure 2 and Table 1).
Moreover, similarly to GBM cells, HCC cells showed a more pronounced mesenchymal
phenotype upon C3G downregulation [57] and C3G-silenced CRC cells present MMP-2/9
activity upregulation, E-cadherin decrease, and ZO-1 internalisation [55]. However, it is
still unclear whether reduced levels of C3G are enough for tumour cells to spread into
their surroundings or to disseminate to distant tissues generating metastases in vivo. For
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instance, in HCC, C3G downregulation promotes cell dissemination and the generation
of lung metastases, but the growth of these secondary tumours was associated to an
upregulation of C3G [57].

The effect of C3G in GBM tumour growth is more complex than in other tumours.
C3G silencing in GBM cells leads to the generation of larger tumours in xenograft assays
and upon injection into the chick chorioallantoic membrane (CAM). However, proliferation
is reduced and the number of tumour cells within the tumour is decreased [63] (Figure 4).
This is also supported by in vitro anchorage-dependent and independent growth assays,
but differs from the reduction in tumour size of CRC or HCC tumours generated by cells
with C3G downregulation [55,57] (Figure 4). The enhanced migration of C3G-silenced
GBM cells that favours cell scattering and the increased infiltration of endothelial cells and
activated fibroblasts into the tumours would contribute to GBM tumour enlargement [63].
Novel future studies based on the generation of orthotopic xenografts will allow for further
characterisation of the C3G contribution to GBM tumourigenesis.

Another interesting issue is the specific regulation of signalling pathways by C3G
in GBM cells. The upregulation of ERK activity induced by C3G silencing is responsible
for its main functional effects [63] (Figure 2), enhancing migration and invasion of GBM
cells, as previously explained. This differs from the key role played by p38α MAPK in
C3G knock-down CRC cells, mediating the enhanced migration and invasion [55]. The
increased activation of several RTKs, and, in particular, FGFR1, a receptor associated
with invasiveness in GBM [68,69], seems to play an important role in promoting invasion
through ERK activation [63]. In contrast, the activity of EGFR and other RTKs is impaired
when C3G is downregulated in GBM cells. Hence, C3G knock-down decreases EGFR
signalling and functionality by reducing cell surface EGFR levels through inhibition of its
recycling [63]. This represents a new mechanism used for C3G to regulate EGFR signalling
in GBM cells, which might be a more general mechanism involved in the control of the
trafficking of other proteins. In any case, this defective EGFR signalling might contribute
to the resistance to anti-EGFR therapy in patients with low levels of C3G. In HCC cells,
C3G is also required for the full activation of MET, but through the regulation of signalling
complex formation [57].

The role of C3G controlling RTK activation in GBM cells is a novel mechanism that
should be further studied. It is known that the C3G-Rap1 axis promotes survival and
differentiation of human IMR-32 neuroblastoma cells in response to NGF, while inhibiting
their proliferation [45,47]. Moreover, oncogenic forms of the ALK receptor tyrosine kinase
engage the CrkL-C3G-Rap1 pathway to induce proliferation of SK-N-SH and SH-SY5Y
neuroblastoma cell lines, although ALK also induces neurite outgrowth of PC12 cells [46].
In addition, while normal brain tissue shows cytoplasmic expression of C3G, IMR-32
neuroblastoma cells show significantly higher levels of nuclear C3G [33]. Considering
these results and those recently published by Manzano et al. (2021), C3G may act as a
wide-range regulator of RTK activation and functionality in tumours from the nervous
system, affecting tumour proliferation, expression, and dissemination. Nevertheless, more
studies are needed to confirm this hypothesis.

Another important issue that remains undetermined is whether C3G acts through
GEF dependent or independent mechanisms to regulate GBM and Rap1 activation status
in these tumours.

3. Functions of the Main C3G Target, Rap, in GBM

The Rap (Ras-related protein) subfamily belongs to the Ras superfamily of small
G proteins and includes two subtypes, Rap1 and Rap2 (with a 60% homology), and five
isoforms: Rap1A, Rap1B, Rap2A, Rap2B, and Rap2C [70]. As a small GTPase, Rap activation
is induced by a conformational change that allows for GTP binding, facilitating GDP release.
This is catalysed by GEFs such as C3G, while GAPs increase endogenous Rap GTPase
activity, leading to the hydrolysis of bound GTP to GDP. Thus, specific GEFs and GAPs
modulate Rap activation, signal duration, and localisation in response to different stimuli.
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The function of Rap proteins as tumour promoters or suppressors is controversial, with
different studies describing paradoxical results. This may be dependent on cell type and/or
activation insights and different Rap isoforms may lead to opposite outcomes. Depending
on the cellular context, Rap1 can regulate cell–cell and/or cell–ECM (extracellular matrix)
adhesion. These functions of Rap1 depend on its ability to achieve an intracellular control
of integrin signalling [71].

High-grade astrocytomas frequently overexpress Rap1 [72] and the expression of
Rap1B was reported to be increased with pathological progression [73]. Moreover, GBM
tumours show higher Rap1 activity than lower grade astrocytomas or healthy brain [72].
In addition, Rap1A expression is elevated in GBM and correlates with higher tumour
grade [74]. Moreover, higher levels of Rap2B are associated with a poorer survival of
patients with low grade gliomas [75]. Despite all of this, the role of Rap proteins in GBM is
still unclear, with different members of the family associated with diverse, even opposite,
functions.

On one hand, Rap1 has been shown to promote proliferation in GBM cells [76,77].
In response to thrombin, RhoA activates Rap1 and promotes integrin signalling and cell
proliferation [77]. Dopamine Receptor D2 (DRD2) induces GBM proliferation through
a GNAI2/Rap1/Ras/ERK signalling axis [76]. Moreover, Rap1 regulates GSC tumour
initiating capacity and stemness by controlling their anchorage to the perivascular niche of
malignant glioma through activation of integrin signalling [78]. In agreement with this,
a recent report has shown that Rap2B also induces glioma cell proliferation [75]. On the
other hand, the Epac1/Rap1 axis, in combination with PKA, has been shown to promote
GBM cell death in response to Rolipram, which upregulates intracellular cAMP levels [79].
Nevertheless, miR-128, miR-149, and miR-181 increase GBM chemosensitivity to TMZ by
inhibiting Rap1B-mediated cytoskeletal remodelling [80,81]. Hence, Rap protein’s role in
GBM proliferation and survival seems to depend on the stimuli and the isoform involved.

Rap1 has also been shown to mediate glioma invasion and migration in response
to PDGF-BB downstream of kinase 1 (DOK1) and p130Cas activation [82]. Overexpres-
sion of RasGRP3, a GEF common for Ras and Rap subfamilies, also promotes migration
and invasion of glioma cells [83]. Furthermore, Rap1A has recently been shown to pro-
mote GSCs migration [74]. Rap2B has also been described to induce metalloprotease
activation, promoting glioma cell invasion and migration through regulation of the ERKs’
pathway [75]. In agreement with this, Rap1B was identified in a competitive endogenous
RNA (ceRNA) network as one of the six genes that act as a marker of GBM mesenchymal
subtype and positively regulate invasiveness [84]. Previous reports have also shown that
Rap1B regulates the GBM cytoskeleton [80,81]. In contrast, Rap1B can also cooperate
with PTEN to negatively regulate GBM invasion through inhibition of Rac in response to
isoproterenol [85]. Hence, the role of Rap1B in GBM cell invasion and migration might
depend on cell context and/or GBM subtype. Rap2A can also act as an inhibitor of glioma
cell invasion and migration in response to deregulated microRNA editing [86]. In a recent
report, BM-MSCs (Bone Marrow-Derived Mesenchymal Stem Cells)-conditioned media
was shown to promote glioma cell migration and invasion. Rap2C was identified as one
of the proteins downregulated in glioma cells treated with BM-MSC-conditioned media,
suggesting it might negatively regulate glioma cell invasion [87].

In summary, the roles played by the different Rap subfamily members in GBM are
not clear, so further studies should be performed to clarify them. Epac2, one of the most
predominant RapGEFs in the brain, has recently been proposed as a negative regulator of
glioma invasion and MMP-2 activity [88], similarly to what we observed for C3G [63]. This
suggests that Rap regulators might play a relevant role in GBM, and that C3G and Epac2
RapGEFs could collaborate to inhibit GBM dissemination acting through Rap, although
C3G GEF independent functions could also be relevant in GBM.
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4. C3G in Clinics: Present and Future Perspectives

Throughout this review, it has been shown that C3G regulates diverse functions all
along the life span from embryonic development until adulthood, acting through GEF-
dependent and -independent mechanisms. As described in the introduction, C3G plays
specific key roles in tissue differentiation and remodelling [25,28–30] as well as in cell
proliferation, apoptosis/survival, or cytoskeleton organisation involved in adhesion and
migration processes [25,26].

It is important to highlight the relevance of a fine tune regulation of C3G levels across
tissues [25] and how their dysregulation is associated with different tumour types, as
observed in multiple studies: non-small lung carcinoma [53], CML [60], neuroblastoma and
pheochromocytoma [46], breast carcinoma [58], ovarian cancer [59], CRC [55], HCC [56,57],
non-Hodgkins lymphoma [62], and GBM [63].

Despite its probed role in some of the most aggressive carcinomas, up to now, C3G
has not been included as a target for cancer therapy in any clinical trial. This can be
explained by different factors: (i) C3G seems to play different roles depending on cell
context, tumour type, and stage, so C3G should be specifically over- or downregulated in a
unique way depending on the affected organ; and (ii) C3G is a ubiquitous low-expressed
protein [25], suggesting a fine tune regulation of C3G expression that makes it very difficult
to develop efficient, safe, and highly controlled therapies for targeting or regulating C3G
levels. In addition, due to the existence of different isoforms, some of them are still not well
characterised, it is even more complex to use C3G as a good target for therapy. However,
C3G could represent a new biomarker for GBM diagnosis and prognosis. In addition, the
quantification of C3G levels might be a useful tool for a personalised treatment of GBM
patients. It would be expected that GBM patients with lower levels of C3G do not respond
to anti-EGFR therapy. In contrast, both FGFR1, and ERKs might represent alternative
therapeutic targets for GBM patients with low levels of C3G based on the upregulation of
their activities. Future studies aimed to further explore C3G function in RTK regulation
will be of great interest for the design of novel and personalised therapeutic strategies.
It will also be important to determine how C3G levels affect the response to TMZ or
other chemotherapeutic agents. In addition, the characterisation of C3G actions on the
stemness capacity of GBM cells and the underlying mechanisms will also contribute to the
identification of new targets.

Reviewing the literature and the African, Australian New Zealand, European, and
North American Clinical Trials Registries, we found a few trials that attempted to alter
molecules involved in C3G signalling pathways. However, none of them were focused
on GBM. Two trials analysed the Src pathway quantifying Crk-L, a protein that interacts
with C3G protein: (i) after a combinatorial therapy consisting on the tyrosine kinase
inhibitor (TKI) dasatinib, paclitaxel (microtubule inhibitor), and carboplatin (alkylating
antineoplastic agent) in patients with advanced or recurrent ovarian, peritoneal, or tubal
carcinoma (NCT00672295), and (ii) after the treatment of Philadelphia chromosome positive
CML patients with bosutinib, a Src tyrosine kinase inhibitor (NCT00261846).

The former assay has not provided information since “the SRC signature” could not
be applied directly as a predictive model in this dataset because of the limited sample
size [89]. However, the later study has shown promising data about Crk-L phosphorylation
(i.e., inhibition of tumour cell growth when the medium dose (500 mg bosutinib) was
administered) (Table 2).
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Table 2. Compilation of the interventional clinical trials registered studying molecules involved in C3G signalling pathways.

Clinical Trial ID Phase Title Disease Intervention Number
of Patients

Trial
design Outcome Start Date Status

NCT00261846 1/2

Study Evaluating SKI-606
(Bosutinib) In Philadelphia

Chromosome Positive
Leukaemias

Myeloid Leukaemia Bosutinib 571 Single-arm,
open-label

Number of
Participants with

Dose Limiting
Toxicity (DLT) (Time

Frame: Part 1
Baseline up to Day

28) and
pharmacokinetics

January 2006 Completed

NCT00672295 1

PH I SRC Kinase, Dasatinib
Combo Paclitaxel &
Carboplatin in Pts w

Ovarian, Peritoneal, &
Tubal Cancer

Ovarian Cancer;
Peritoneal Cancer;

Fallopian Tube
Cancer

Dasatinib, Paclitaxel,
and Carboplatin 11 Single-arm,

open-label

To determine
maximal tolerated

dose (MTD) of
dasatinib in

combination with
paclitaxel and

carboplatin during
the first cycle of
treatment (Time

Frame: 6 months)

August 2007 Completed

NCT02206035 2

Phase II Open-Label Trial of
Tacrolimus/Methotrexate
and Tocilizumab for the

Prevention of Acute
Graft-Versus-Host Disease

After Allogeneic
Hematopoietic Stem Cell

Transplantation

Hematopoietic Stem
Cell Transplantation

Tacrolimus,
Methotrexate,
Tocilizumab

35 Single-arm,
open-label

Grade II-IV
aGVHD-free

survival (Time
Frame: Day 180).
Comparison of
grade II-IV a

GVHD-free survival
at day 180 between

recipients of
Tac/MTX/Toc to

contemporary
CIBMTR controls.

December 2014 Completed

NCT02535182 2

Pilot Study Using
Propranolol to Promote
Prenylation of GTPase

Rap1b in Hematopoietic
Stem Cell Transplant

Recipients

Hematopoietic Stem
Cell Transplantation Propranolol 25

Two-arm,
randomised,
double-blind,

placebo-controlled

Prenylation levels in
response to

propranolol in a
population of

patients undergoing
autologous

hematopoietic stem
cell transplantation

(Time Frame: 1 year)

August 2015 Completed
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A couple of trials have been developed with Rap1 as a therapeutic target: (i) the
humanised monoclonal antibody against the interleukin-6 receptor (IL6R) tocilizumab,
which attempted to modulate Rap1 expression and, therefore, reduce the acute graft-
versus-host disease progression or cancer relapse after allogeneic hematopoietic stem cell
transplantation (NCT02206035), even though the trial has been completed, the results have
not been shared or published yet; (ii) in individuals undergoing autologous hematopoietic
cell transplant to treat multiple myeloma, the nonspecific beta-blocker propranolol, which
impairs adenylate cyclase activation and, hence, cAMP generation, was administered to
analyse whether membrane localisation and prenylation of Rap1 in PBMCs (peripheral
blood mononuclear cell) could be altered, and could therefore show a therapeutic response
(NCT02535182) (Table 2). Up to today, it is unclear what the effect of propranolol is on
Rap1.

So, is there a future possibility for C3G to be included in a clinical trial? We think that
with the exception of a highly controlled/regulated tissue specific gene therapy/edition
approach, C3G could be used as a biomarker for GBM diagnosis and prognosis. The
quantification of C3G levels might be a useful tool for a personalised treatment of GBM
patients. Then, the question immediately arises, how to detect and quantify this protein
in a cancer like GBM? The liquid-biopsy technique is the pole-sitter. In GBM, liquid-
biopsy offers some clear advantages in comparison with tumour tissue extraction or
MR imaging techniques and biopsy, since it is less invasive, allowing a more frequent
follow-up, and can offer a whole picture rather than a tumour localised region. GBM, as
other solid tumours, drop diverse contents to the cellular and humoral microenvironment
that can be widely distributed via the vascular system or CSF (cerebrospinal fluid) [90].
Therefore, tumour markers could be detected in these fluids as well as in urine or saliva
samples [91,92]. In GBM, liquid-biopsy has been able to detect CTCs (circulating tumour
cells), extracellular vesicles, cell-free nucleic acids, metabolites, proteins, and TEPs (tumour-
educated platelets) [91] and some of these samples could potentially contain C3G. Manzano
et al. (2021) [63] showed that C3G expression decreased along with the evolution of GBM
malignancy. Moreover, C3G-silenced GBM cells demonstrated a more invasive and less
adhesive phenotype. Thus, GBM-derived CTCs should present lower levels of C3G and
its differential expression levels along the time would have a prognosis value for GBM
tumours. In contrast, higher levels of C3G in mouse TEPs are associated with the promotion
of angiogenic processes in tumours by inhibiting the secretion of the antiangiogenic factor
thrombospondin-1 (TSP-1) [26]. This would correlate with tumour progression and, hence,
prognosis. It would be interesting to test whether this also operates in GBM and if platelet
C3G represents a new potential biomarker and/or therapeutic target in GBM.

5. Concluding Remarks

As explained above, a downregulation of RAPGEF1 mRNA levels in human GBM tu-
mours and a decrease in C3G protein levels in GBM cells have recently been discovered [63].
Moreover, C3G silencing enhances invasiveness and a pro-mesenchymal phenotype. This
role of C3G as a negative regulator of invasiveness of GBM cells is a common effect of C3G
in several cancer types [55,57,58] and in cells from the nervous system [34,35].

However, the function of C3G in GBM tumourigenesis is more complex. C3G downreg-
ulation leads to the generation of bigger tumours, even though proliferation is reduced [63].
This differs from other tumours such as CRC or HCC, in which C3G downregulation
reduces tumour size [55,57] and might be caused by GBM cell scattering and the infiltration
of cells from the stroma.

It remains undetermined whether C3G GEF activity could be involved in its actions on GBM
and whether Rap proteins are C3G mediators. As widely reviewed above, published studies
have revealed different and even opposite functions for Rap proteins in GBM [75–77,79,82,84],
showing its dependency on cell context. Nevertheless, Epac2 and C3G, two important RapGEFs
in the brain, seem to play similar roles in GBM [63,88]. This establishes a connection between
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these GEFs and their target GTPases and highlights the importance of the regulation of the
activity of Rap proteins and their regulators in these tumours.

All the above referred effects of C3G downregulation in GBM indicate that C3G levels
could be used in clinic. Nowadays, the use of C3G as a target for GBM treatment remains
discouraged. However, a novel prognostic GBM signature could be generated to evaluate
its progression and to select effective therapies, which would include the quantification
of C3G and Vimentin levels, ERK activation, and/or the evaluation of the switching from
EGFR to FGFR signalling, among others.

Compilation of the interventional clinical trials registered at the Pan African Clinical Trials
Registry. Available online: https://pactr.samrc.ac.za/Default.aspx (accessed on 8 July 2021),
Australian New Zealand Clinical Trials Reg-istry. Available online: http://www.anzctr.org.au/
Default.aspx (accessed on 8 July 2021), EU Clinical Trials Register. Available online: https://
www.clinicaltrialsregister.eu (accessed on 8 July 2021), and the U.S. National Library of Medicine.
Available online: https://clinicaltrials.gov (accessed on 8 July 2021). Only interventional trials in
which a therapeutic drug was tested are listed.
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