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Fungal diseases largely affect human and animal health and dramatically diminish food crop

yields [1]. Among fungi, systemic Candida infections are the second or third most common

pathogens isolated from blood cultures in the USA [2]. Candida albicans is still the predomi-

nant Candida species, causing up to 50% of candidemia despite an increase in diversity of Can-
dida species isolated from clinical samples [3]. In healthy individuals, C. albicans is a harmless

inhabitant of mucosal surfaces throughout the body. However, in immune-compromised indi-

viduals, C. albicans can become a dangerous pathogen, causing severe or even fatal infections.

In this review, we summarize recent data linking the reduced susceptibility of C. albicans cells

to mainline echinocandin (ECN) drugs to aneuploidies of chromosomes 5 (Ch5) and Ch2.

Evolution of ECN resistance and mechanisms influencing

susceptibility

The ECN drugs caspofungin, anidulafungin, and micafungin that are recommended as front-

line therapy for candidiasis have few adverse actions and drug–drug interactions [4]. ECN

drugs kill C. albicans cells by inhibiting glucan synthase, thus interfering with biosynthesis of

the cell wall. Unlike well-studied multiple resistance mechanisms to fluconazole, another com-

mon anticandidal from the azole class, there is only one generally recognized mechanism of

clinical resistance to drugs from the ECN class. This mechanism involves point mutations in

the essential FKS1 gene (orf19.2929) encoding a catalytic subunit of the 1,3-β-glucan synthase

complex. Mutations are clustered in two “hotspot” regions, HS1 and HS2, encompassing resi-

dues from 641 to 649, and from 1,345 to 1,365, respectively [5]. Mutations in these regions

cause dramatic elevation of C. albicans minimum inhibitory concentration (MIC) values to

ECNs and reduce the sensitivity of the glucan synthase to up to 3,000-fold, the concentration

of caspofungin inhibiting 50% of enzymatic activity (IC50) [6].

However, it has now become obvious that C. albicans possesses mechanisms independent

of FKS1 mutations that can decrease susceptibility to ECNs, although these “alternative” mech-

anisms do not confer clinical resistance. These “alternative” mechanisms have been brought to

light by dozens of clinical isolates of Candida species that display a wide range of increased

MIC values for ECNs, including some at or below the MIC breakpoints, but, importantly,

without canonical FKS1 mutations [7–10]. Consistent with these observations, several labora-

tories found that mutants lacking FKS1 mutations, but displaying (albeit relatively modest) 2

to 8 fold increases of MIC, can be easily generated in vitro on agar plates supplemented with

caspofungin. While FKS1 mutations leading to resistance can also arise in vitro, these are typi-

cally rare [11–13]. Furthermore, while Cowen and colleagues observed evolution of ECN
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resistance in a series of isogenic clinical isolates of the related species Candida glabrata, they

demonstrated that mutation to resistance was preceded by a mutation in a different gene that

conferred a relatively small increase in MIC [14]. Indeed, quickly arising mutations conferring

decreased susceptibility to ECNs are currently viewed as a means to provide a window of

opportunity for temporary survival and subsequent formation of resistant FKS1 mutations.

Based on such observations, Healey and Perlin [15] proposed a multistep model in which

spontaneously acquired mutations lead to some decrease of drug susceptibility prior to acqui-

sition of FKS1 resistance mutations and thus play an important role in the evolution of ECN

resistance (Fig 1).

Subsequently, given their importance, some of the genes that confer decreased susceptibility

have been identified by screening C. albicans deletion libraries against the ECN caspofungin

[16]. In addition, such genes were also identified in mutants that were caspofungin-generated

in vitro [17]. Clearly, understanding mechanisms that promote ECN resistance by influencing

ECN susceptibility is of high importance. Although currently the incidence of clinical resis-

tance to ECN drugs is relatively low, it is persistent, and the number of resistant cases is grow-

ing, primarily due to the increased use of ECNs for disease and prophylactic treatment.

Spontaneous aneuploidies of C. albicans control vital functions

C. albicans has a diploid genome, which is organized into eight pairs of chromosomes that are

known for their instability (reviewed in [18]). Aneuploidy, defined as a change in the number

of chromosome(s) or large portion of a chromosome, is well tolerated in fungi, including C.

albicans. Spontaneous aneuploidy can be found in populations of C. albicans cells at high fre-

quencies, between c. 10−4 and 10−2, with a clear tendency to increase under external stresses,

and seems to be a basic property of this microbe [19]. It has been demonstrated that any chro-

mosome of C. albicans can become aneuploid [18]. Various aneuploidies introduce diversity

Fig 1. Model presenting multistep evolution of ECN resistance. The CBP of a species is the MIC measured prior to

the formation of canonical FKS1 escape mutations. Increase of MIC is usually observed during drug adaptation.

Adapted from [15]. CBP, clinical breakpoint; ECN, echinocandin; HSP90, heat shock protein 90; MIC, minimum

inhibitory concentration; PKC, protein kinase C.

https://doi.org/10.1371/journal.ppat.1009564.g001
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in a population of cells by controlling vital physiological functions, such as, for example, utili-

zation of different carbon and nitrogen sources [20].

Specific aneuploidies of C. albicans Ch5 or Ch2 control adaptation

to ECNs

In earlier work, the Rustchenko group demonstrated that C. albicans employs reversible alter-

ations of specific chromosomes to adapt for growth in the presence of toxic agents that kill

cells or prevent cell propagation, including fluconazole, 5-fluoro-orotic acid, and the toxic

sugar L-sorbose (Table 1) (reviewed in [18]). Interestingly, adaptation to utilize the secondary

sugar D-arabinose also relied on specific alterations of two specific chromosomes [18,21].

Recently, similar experiments demonstrated that reversible aneuploidies of Ch5 or Ch2 can

control adaptation to the ECN caspofungin (Table 1) [13,22].

Loss of one Ch5 results in reduced susceptibility to caspofungin (denoted Cas+). In the

absence of caspofungin, spontaneous duplication of the remaining Ch5 reverts Cas+ cells to

the original (parental strain) susceptibility [13] (Table 1). Loss and reduplication of Ch5 also

controls resistance to the toxic sugar sorbose (denoted Sou+) [24], which kills fungi via a mech-

anism similar to ECN drugs by inhibiting glucan synthase [25,26]. Interestingly, Ch5 mono-

somy also confers adaptation to the antifungal pyrimidine analog 5-fluorocytosin (denoted

5-Fl+), as well as increased susceptibility to the azole antifungal fluconazole and the polyene

antifungal amphotericin B (denoted FluS and AmBS, respectively) [23] (Table 1). Another

aneuploid state conferring a Cas+ phenotype involves duplication of the right arm of Ch5 to

create an isochromosome with two right arms (iso-Ch5R) (Fig 2). Note that these cells carry

one iso-Ch5R and one normal Ch5, resulting in three right arms and one left arm of Ch5.

Importantly, spontaneous duplication of the remaining normal Ch5 reverts cells to caspofun-

gin susceptibility [13]. In contrast, duplication of the left arm of Ch5 resulting in iso-Ch5L

with two left arms confers decreased susceptibility to fluconazole, FluR (Fig 2), and is found in

resistant isolates, as well as in vitro generated mutants [27]. Also, trisomy of Ch2 confers Cas+

combined with adaptation to hydroxyurea, Hu+ [22]. Of note, genes residing on Ch2 responsi-

ble for Cas+ phenotype have not yet been identified. However, it is clear that the reversible

duplication of Ch2, in contrast to reversible loss of one Ch5, implies that genes for positive reg-

ulation of the Cas+ phenotype exist on Ch2. It is of interest to this review that exposure of C.

albicans cells to chemotherapeutic drug hydroxyurea results in an Hu+ phenotype due to Ch2

trisomy, similarly to exposure to caspofungin [22], the effect, which might contribute to devel-

opment of Candida infection in chemotherapy-treated patient [28]. It is worth mentioning

that occasionally a mutant adapts to sorbose via a large deletion within the right arm of Ch5,

Table 1. Specific aneuploidies of Ch5 or Ch2 and corresponding phenotypes.

Chromosome Alteration Phenotype Refs

Ch5 Monosomy Cas+, Sou+, 5-Fl+, FluS, AmBS [13,23]

Approximately 395 kb truncation of the right arm adjacent to telomere Cas+, Sou+ [17]

Iso-Ch5R Cas+ [13]

Ch2 Trisomy Cas+, Hu+ [22]

The table indicates phenotypes compared to parental diploid strains. Cas+, 5-Fl+, and Hu+ designate reduced susceptibility to caspofungin, 5-fluorocytosin, and

hydroxyurea, respectively. FluS or AmBS designate increased susceptibility to fluconazole or amphotericin B, respectively. Sou+ designates resistance to and utilization of

toxic sugar L-sorbose.

https://doi.org/10.1371/journal.ppat.1009564.t001
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instead of the loss of an entire chromosome. Consistently, large truncations of the right arm of

Ch5 confer both, Sou+ and Cas+, phenotypes [17,29] (Table 1, Fig 2).

Complexity of regulation by aneuploidy

Long-term studies of reversible aneuploidy in response to challenge by caspofungin or the

toxic sugar sorbose as a model system for C. albicans adaptation to ECNs have unraveled an

astonishingly complex and multilayered regulation of the genes responsible for these pheno-

types. These studies show that the rate of formation of (predominantly Ch5 monosomic) Sou+

mutants per viable cell per day increased from 10−6 at the initial time of detection to 10−2 after

four days of incubation on selective media [24]. These data suggest that nondisjunction of a

Ch5 homologue can occur by different mechanisms and that preexisting and adaptive mutants

occur by different processes; the latter ones possibly involving a nonmitotic mechanism. At

least nine spatially separated, functionally redundant regions that negatively control resistance

to sorbose were identified on Ch5 (Fig 2). These regions, which fall into two functionally

redundant pathways I and II (Fig 2), bear no sequence similarity among themselves and four

of them bear no similarity to any known sequence. The regions are thought to encompass CSU
(Control of Sorbose Utilization) genes for negative control of sorbose resistance, three of

which CSU51, CSU53, and CSU57 were identified in three corresponding regions (Fig 2)

[29,31,32]. Most importantly, CSU51, a putative transcription factor, negatively controls both

ECN susceptibilities and sorbose resistance [17]. It remains to be determined whether the two

other known CSUs are also implicated with ECNs. The fact that CSU51 performs this dual

function is remarkable, as it opens the possibility that many of the unique CSU regulators pre-

dicted to reside in different regions of Ch5 also have dual function. Furthermore, two genes,

PGA4 and CHT2, which participate in cell wall construction and encode negative regulators of

only ECN susceptibilities, have also been identified (Fig 2) [17]. However, the final number of

either CSUs or genes involved only in ECN susceptibility remains elusive.

It is tempting to explain the Cas+ phenotype resulting from Ch5 monosomy as due to

diminished gene dose of multiple negative regulators scattered across this chromosome.

Fig 2. Schematic presentation of Ch5 showing alterations and features that are responsible for different

phenotypes. Indicated are: (A) The length (1,295 kb); centromere (C); and telomeres (T). Also shown is the

approximately 395 kb truncation of the right arm, and PGA4, CHT2, CNB1, and MID1 on the right arm, as well as

TAC1 and ERG11 on the left arm. Note that duplication of the right arm resulting in iso-Ch5R with two right arms

confers adaptation to caspofungin, Cas+ [13]. While, duplication of left arm resulting in iso-Ch5L with two left arms

confers adaptation to fluconazole, FluR [30]; (B) various regions of Ch5, 133–135, and 137–142 that were cloned from

Ch5 library and regions A, B, and C that were identified by their function. Also shown are CSU51, CSU53, CSU57
identified in three of the regions and antisense elements ASU51 and ASU53 [29,31,32]. Note that genes in red encode

negative regulators of ECN susceptibility [17], while genes in blue encode positive regulators of fluconazole

susceptibility [33]. Ch5, chromosome 5; ECN, echinocandin.

https://doi.org/10.1371/journal.ppat.1009564.g002
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However, the fact that the formation of iso-Ch5R, resulting in three right arms versus one left

arm of Ch5, also results in diminished ECN susceptibility in corresponding cells implies that

an additional or more complicated scenario can be in play. The right arm of Ch5 carries two

genes, MID1 and CNB1, which encode positive regulators of ECN susceptibility [34,35]. There-

fore, it is possible that the effects of various Ch5 ploidies are due to a balance between negative

and positive factors expressed from this chromosome. From this point of view, the loss of one

Ch5 diminishes the action of both negative and positive regulators expressed from this chro-

mosome; negative regulators overriding positive regulators. Whereas, in the condition of iso-

Ch5R, the amplified positive regulators on the right arm of Ch5 override the action of negative

regulators on this arm.

As an example, Ch5 contains two key genes of interest, TAC1, a positive regulator of CDR1
and CDR2 genes encoding fluconazole efflux pumps on Ch3, and ERG11, a target gene for flu-

conazole (Fig 2A) [27]. Thus, loss of one Ch5, diminishing the copy number of TAC1 and

ERG11, likely leads to increased sensitivity to fluconazole via loss of activity of these efflux

pumps and the fluconazole target. In addition, as loss of one Ch5 also increases sensitivity to

amphotericin B (see Table 1), it may be expected that Ch5 also carries genes for positive regula-

tion of susceptibility to this drug. On a contrary, negative regulator(s) of antifungal 5-fluorocy-

tosin could be also expected to reside on Ch5, as cells with monosomic Ch5 acquire 5-Fl+

phenotype (see Table 1).

An additional level of regulation includes regulatory elements denoted ASU (Antisense reg-

ulators of Sorbose Utilization) that are embedded within CSUs in an antisense configuration

(Fig 2). In respect to the CSU transcripts, the ASU long noncoding transcripts are completely

overlapped by CSU transcripts, are in lesser amounts, and are inversely related. Presumably,

ASU transcripts modulate CSU transcripts [31]. Some genes residing on aneuploid chromo-

somes are also controlled by transcriptional compensation for gene dosage, which keeps

expression of select genes at or near the diploid level, irrespectively of chromosome ploidy

[36,37]; MID1 and CNB1 exemplifying such genes (Fig 2) [13]. Indeed, widespread dosage

compensation occurs across monosomic Ch5 and correlates with increased chromosome-wide

acetylation of histone H4 [38]. This epigenetic feature involves the histone acetyltransferase

complex NuA4, which could be a novel drug target to reduce the viability of resistant cells. On

the other hand, decreased expression of some genes to the diploid level has been shown to

occur within the trisomic Ch4/7 and correlates with increased acetylation of histone H3, but

the histone acetyltransferases involved have not been identified [38].

Last, but not least, the C. albicans genome contains two genes, FKS2 and FKS3, which have

considerable sequence identity with the key ECN resistance gene FKS1 but act as negative reg-

ulators of FKS1 [39]. While heterozygous deletion of the essential FKS1 gene results in

increased ECN susceptibility, complete removal of either FKS2 or FKS3 results, in contrast, in

decreased ECN susceptibility due to resultant overexpression of FKS1, leading to an increase

in cell wall glucan. Other indications of the involvement of FKS2 and FKS3 in ECN susceptibil-

ity include wide variations in the expression levels of these genes relative to FKS1 in clinical

resistant isolates, down-regulation in spontaneous laboratory mutants harboring FKS1 resis-

tance mutations [40], as well as down-regulation in model mutants bearing monosomic Ch5

or iso-Ch5R but lacking FKS1 resistance mutations [13].

ECN susceptibility in C. albicans can be diminished by a limited number of distinct aneu-

ploidies of Ch5 and Ch2, which is consistent with an earlier assumption that genes of C. albi-
cans are distributed over chromosomes nonrandomly [29,41]. A number of genes and

processes relevant to this control already have been elucidated and inform about much-needed

potential drug targets. However, we are clearly at the beginning of an exciting journey into

understanding the regulation of ECN drug susceptibility by chromosome aneuploidy, which
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involves a complex interplay between ratio of negative and positive regulators on Ch5 and

Ch2, the regulation of FKS genes residing outside Ch5 and Ch2, additional factors involved in

the complex regulation of genes on aneuploid chromosomes, and still unidentified genes and

features. A better understanding of the control exerted by aneuploidies will help to better

understand evolution of ECN drug resistance and will facilitate the identification of new drug

targets.
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