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Abstract In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use

milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated.

We demonstrate that under the control of PPARa, the genes required for lipid catabolism are

transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from

milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARa axis in

which GR directly regulates the transcriptional activation of PPARa by binding to its promoter.

Certain PPARa target genes such as Fgf21 remain repressed in the fetal liver and become PPARa

responsive after birth following an epigenetic switch triggered by b-hydroxybutyrate-mediated

inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes

the activity of PPARa in anticipation of the sudden shifts in postnatal nutrient source and metabolic

demands.

DOI: 10.7554/eLife.11853.001

Introduction
In mammals, embryonic and postnatal development depends on nutrition from placentation and lac-

tation, respectively (Brawand et al., 2008).Before birth, hepatic energy metabolism relies mainly on

glucose catabolism. Metabolic fluxes change abruptly at birth when milk, which has a higher lipid

but relatively lower glucose content, becomes the exclusive nutrient (Girard et al., 1992). At the first

few hours after birth, liver expresses the rate-limiting enzymes responsible for extracting energy

from milk (Krahling et al., 1979; Huyghe et al., 2001). However, whether lipid catabolism at birth is

developmentally programmed or an adaptive response requiring an external stimulus remains

unknown. Failure to adapt to this catabolic switch results in life-threatening errors of metabolism,

with serious energy imbalances that are recapitulated in mouse models of neonatal liver steatosis

(Ibdah et al., 2001; Cherkaoui-Malki et al., 2012).

Peroxisome proliferator-activated receptor a (PPARa) is a key transcriptional regulator of lipid

metabolism owing to its activation by a lipid surge to induce lipid catabolism (Desvergne et al.,

2006; Montagner et al., 2011, 2016). However,the role of PPARa in the perinatal liver is not fully

understood. Certain PPARa target genes (e.g., acyl-CoA oxidase 1 [Acox1]) are highly expressed in

fetal liver at the end of gestation, whereas the expression of others (e.g., fibroblast growth factor 21

[Fgf21]) strictly depends on postnatal milk uptake (Hondares et al., 2010; Yubero et al., 2004).

Based on these contrasting observations, we hypothesized the presence of a PPARa-triggering
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program before birth that does not require milk suckling for activation. Given that fetal liver metabo-

lism mostly relies on glycolysis rather than lipid oxidation, we postulated that the liver phenotype of

PPARa-deficient fetuses may not be obvious due to the absence of a lipid-rich diet challenge.

By measuring gene expression in prenatal and postnatal livers, we show that PPARa activation

has already occurred a few days before birth, and that glucocorticoid receptor (GR)-mediated con-

trol of PPARa in late gestation prepares its physiological role in the pups for harnessing milk lipids

immediately after birth. However, before birth we could barely detect the expression of certain

PPARa target genes such as Fgf21, which is exclusively involved in adaptive metabolism. Therefore,

we explored the mechanistic basis for the temporal regulation of PPARa target genes. We found

that certain PPARa target genes, including Fgf21 and Angptl4 (Angiopoietin-like 4), are epigeneti-

cally controlled by histone deacetylase 3 (HDAC3) and de-repressed in response to b-hydroxybuty-

rate, a by-product of fatty acid oxidation (FAO). Taken together, our data provide the evidence of a

major role of glucocorticoid signaling in direct hepatic regulation of PPARa and indirect HDAC3-

mediated regulation of FGF21, which controls important metabolic and thermogenic events in the

early days of life (Hondares et al., 2010).

Results

GR controls PPARa expression in the late fetus
Stress at labor is associated with high glucocorticoid signaling (Barlow et al., 1974). We previously

reported that glucocorticoids stimulate PPARa expression in the adult liver, but the mechanism was

not elucidated (Lemberger et al., 1994). Interestingly, the mRNA expression of GR (Nr3c1) in the

eLife digest Birth is a highly stressful and critical event. In the womb, babies rely on the supply

of oxygen and nutrients provided by the placenta. However, once they are born they need to

breathe for themselves and gain all their nutrients from suckling milk. The placenta provides a sugar-

rich diet, while milk is richer in fat. Failing to cope with this change in diet leads to serious

complications and sometimes death. Therefore, a better understanding of how the body adapts to

these changes may shed light on pathways that are important for good health in later life.

The liver plays a central role in processing the nutrients absorbed by the gut. It uses fats to

produce molecules called ketone bodies, such as b-hydroxybutyrate, which are then used as fuel by

other tissues and organs including the heart, muscle and the brain. A protein called PPARa controls

the production of ketone bodies primarily by regulating genes that are involved in the uptake and

breakdown of fat in the liver. However, little is known about how this protein affects the

development of the liver.

Here, Rando, Tan et al. report that mice start to produce more PPARa in the liver shortly before

birth. This ultimately activates several genes that encode enzymes that break down fats. The

experiments show that during labor, stress hormones called glucocorticoids directly stimulate the

production of PPARa in the liver of the fetus to prepare newborn mice for harnessing energy from

fat-rich milk.

In the absence of PPARa, mouse liver cells are less able to break down fats after birth and so

start to accumulate fat, resulting in fewer ketone bodies being produced. Rando, Tan et al. show

that b-hydroxybutyrate regulates some PPARa target genes, including one called Fgf21. The activity

of this gene increases only after milk suckling starts and it encodes a protein that enhances the

breakdown of fats in the liver. Without PPARa, the expression levels of its target genes, including

Fgf21, do not increase after birth, which promotes the build up of fats in liver cells, a condition

known as liver steatosis.

Overall, the results reported by Rando, Tan et al. highlight how stress during labor plays an

important role in priming the body to cope with a fat-rich diet after birth. Future studies will need to

determine if stress hormones and ketone bodies could be used as therapies for babies born by

caesarean section with liver steatosis.

DOI: 10.7554/eLife.11853.002
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fetal liver is the highest just before birth (Speirs et al., 2004).Because GR plays a role in the prepara-

tion for birth (Cole et al., 1995), we further tested GR implication in the regulation of fetal PPARa

expression. We confirmed that Nr3c1 mRNA levels in the fetal liver peak at embryonic day E19.5,

similar to Ppara mRNA expression (Figure 1A,B). Notably, Ppara mRNA levels were low in the liver

at E13 and E15, but markedly increased at E17, peaking just before birth at E19.5 (Figure 1B). This

observation coincides with a maximal RNA polymerase 2 (Pol2) recruitment to the PPARa transcrip-

tional start site (TSS) (Figure 1C) and enhanced nuclear accumulation of PPARa protein similar to
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Figure 1. GR directly controls fetal PPARa expression. (A, B) Ontogenic expression of Nr3c1 (A) and Ppara (B) mRNA in the developing mouse liver.

*p<0.05, **p<0.01 vs. E13 samples; #p<0.05, ##p<0.01 vs. WT counterparts. (C) Enrichment of the DNA fragments containing the PPARa TSS using anti-

Pol2 antibodies or pre-immune control IgG with or without PPARa agonist (WY-14643) treatment in pregnant dams. **p<0.01, ***p<0.001 vs. respective

WT counterparts without WY-14643 treatment. (D) Ppara mRNA levels in the E15 Ppara+/+ liver explants with or without dexamethasone (Dex) treatment

for 24 hr. Dex concentrations of 0.1 mM, 1 mM, and 10 mM were used. The vehicle control group was treated with 0.1% ethanol. *p<0.05 vs. vehicle

control. (E,F) mRNA expression of PPARa and its target genes in the fetal livers of GR models at E17. *p<0.05, ** p<0.01, ***p<0.001 vs. Nr3c1+/+ liver.

(G) Alignment of the GRE consensus sequence with the three putative GRE sequences located upstream of the PPARa promoter. (H) Enrichment of the

DNA fragment containing the three putative GRE found within the PPARa promoter at regions spanning �1007 to �993, �2080 to �2066, and �2953

to �2939 in fetal liver at E17 using anti-GR antibody or pre-immune control IgG. Enrichment levels were expressed as the percentage input. GR-

targeting siRNA was used to knockdown Nr3c1 expression and to determine the specificity of GR binding to this putative GRE. *p<0.05 vs. non-

targeting siRNA treatment group. (I) Enrichment of GRE spanning -1007 to �993 of the PPARa promoter in Ppara+/+ liver during development. *p<0.05,

**p<0.01 vs. E13 samples. Data are presented as mean ± SEM; n = 4–6. Statistical analyses were performed using two-tailed Mann-Whitney tests.
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Figure 2. PPARa is a functional transcription factor in the term fetus. (A) Heat map of genes significantly altered at E19.5 (left panel) or P2 (right panel)

in Ppara-/- livers (red: up-regulation; blue: down-regulation). Genes were grouped by fetal (E19.5) or postnatal (P2) expression and ordered by strength

Figure 2 continued on next page
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the levels in the postnatal pups (Figure 5A). Interestingly, we also observed a significant reduction in

the expression of Nr3c1 in Ppara-/- livers during development when compared with Ppara+/+ controls

(Figure 1A), suggesting that PPARa may also reciprocally regulate Nr3c1 expression. To investigate

the regulation of PPARa expression by GR, we treated E15 fetal liver explants, when Ppara expres-

sion is relatively low, with GR agonist dexamethasone, which induced Ppara mRNA expression in a

dose-dependent manner (Figure 1D). We also examined the expression of Ppara in GR-null fetuses

at E17 (Figure 1E), when Ppara mRNA levels just begin to increase in the wild-type fetal liver

(Figure 1B). GR exerted a gene dosage effect on the expression of both Ppara and its target genes,

including Cpt1a, Hadha, Hadhb, and Cyp4a14 (Figure 1E,F).

Next, we addressed the mechanisms involved in priming the high expression and activity of

PPARa just before birth. We identified three putative GR response elements (GRE) in the promoter/

regulatory region of Ppara and analyzed their occupancy by GR in the fetal liver at E17 (Figure 1G).

Chromatin immunoprecipitation (ChIP) using an antibody against GR revealed that the element

spanning -1007 to -993 was preferentially occupied while the other two sites were not (Figure 1H).

Upon treatment of primary hepatocytes with GR-targeting siRNA, the occupancy of GR at this puta-

tive site was significantly decreased as compared to treatment with non-targeting siRNA, thereby

indicating the specificity of GR binding to this site (Figure 1H). Binding of GR to this putative GRE

also followed the ontogenic pattern of Ppara expression in the fetal liver (Compare Figure 1I with

Figure 1B). Therefore, PPARa is a direct target of GR in the fetal liver and its expression parallels

that of GR in later stages of fetal development. These findings reveal a novel endocrine GR-PPARa

axis in the regulation of the fatty acid (FA) catabolic machinery just before birth.

PPARa controls the prenatal lipid catabolic machinery
We next performed microarray analysis on gene expression in the fetal and neonatal Ppara+/+ and

Ppara-/- livers. PPARa-dependent fold changes in gene expression were higher in the term fetuses

than in suckling pups, revealing major transcriptional PPARa activities just before delivery

(Figure 2A; Figure 2— figure supplement 1A,B). We found 915 and 425 down-regulated genes in

Ppara-/- liver at E19.5 and postnatal day 2 (P2), respectively (Figure 2A). Many of the differentially

expressed genes were preferentially regulated in either the prenatal or postnatal liver, suggesting

the involvement of distinct metabolic pathways at these two time points (Figure 2A,B; Figure 2—

figure supplement 1B; Figure 2—source data 1, SD12). Genes preferentially controlled by PPARa

in fetal liver (e.g., Pex19, Slc25a20, Cpt2, and Fabp1) relate to peroxisome biogenesis and FA shut-

tling�two upstream steps essential for FA catabolism (Figure 2B,C). Genes encoding the peroxi-

somal and mitochondrial enzymatic core of b- and w-FAO, such as Acox1, Acaa2, Acadl, Acadvl,

Acsl1, and Cyp4a14, were prenatally and/or postnatally controlled by PPARa (Figure 2B,C). In con-

trast, genes encoding the liver-secreted adaptive effectors of lipid catabolism (e.g., Fgf21) and xeno-

biotic-detoxifying enzymes (e.g., Ugt3a1, Ces1g, Adh4, Ces3a, Sult2a1) were only stimulated by

Figure 2 continued

of regulation based on the logarithmic fold change (log2FC). (B) Gene ontology summarizing prenatal and postnatal PPARa-mediated regulation of

metabolic pathways. (C) mRNA levels of representative PPARa target genes with differential fetal (E19.5) and postnatal (P2) regulation in Ppara-/- and

Ppara+/+ livers. Slc25a20: carnitine translocase; Cpt2: carnitine palmitoyltransferase 2; Fabp1: fatty acid binding protein 1; Pex19: peroxisome

biogenesis factor 19; Acox1: peroxisomal acyl-CoA oxidase 1; Cyp4a14: cytochrome P450 4A14; Fgf21: fibroblast growth factor 21; Angptl4:

angiopoietin-like protein 4; Acaa2: acetyl-CoA acyltransferase 2; Acadl: acyl-CoA dehydrogenase, long chain; Acadvl: acyl-CoA dehydrogenase, very

long chain; Acsl1: acyl-CoA synthetase, long-chain family member 1. Data are presented as mean ± SEM; n = 6, *p<0.05, **p<0.01, ***p<0.001 vs. wild-

type controls; #p<0.05, ##p<0.01, ###p<0.001 vs. respective E19.5 samples. (D) Flow cytometric analyses of hepatoblasts (DLK+) and hepatocytes (CK18+)

in fetal livers at E19.5. (E) mRNA expression levels of Nr3c1, Ppara, and PPARa target genes involved in peroxisome biogenesis (Pex19), peroxisomal

and mitochondrial FAO (Acox1, Acaa2, Acadl, Acadvl, and Acsl1) in sorted fetal hepatoblast and hepatocyte fractions. Glycolytic genes (e.g., Gck and

Hk1) were also investigated in parallel with oxidative genes. Nr3c1: glucocorticoid receptor; Ppara: peroxisome proliferator-activated receptor a; ud:

undetermined; Gck: glucokinase; Hk1: hexokinase 1. Data are presented as mean ± SEM; n = 4, *p <0.05, **p<0.01, ***p<0.001 vs. wild-type controls.

DOI: 10.7554/eLife.11853.004

The following source data and figure supplement are available for figure 2:

Source data 1. A list of PPARa-regulated genes and pathways in prenatal and neonatal livers.

DOI: 10.7554/eLife.11853.005

Figure supplement 1. PPARa deficiency leads to compensatory up-regulation of genes.

DOI: 10.7554/eLife.11853.006
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PPARa postnatally (Figure 2B,C). Focused gene expression profiling further confirmed that genes

encoding the rate-limiting enzymes involved in FA shuttling, mitochondrial and peroxisomal FA b-

oxidation, and microsomal FA w-oxidation were concomitantly down-regulated in Ppara-/- liver

before and/or after birth (Figure 2C). Lack of PPARa also resulted in fetal liver in an up-regulation of
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Figure 3. Defective mitochondrial function, fatty acid oxidation and energy production in Ppara-/- hepatocytes. (A,B) Flow cytometric analyses of

intracellular peroxisomes and mitochondria in primary hepatocytes isolated from Ppara-/- and Ppara+/+ livers at E19.5 (A) and P2 (B) using Alexa Fluor

488-labeled antibodies against peroxisome membrane protein 70 and Mitotracker Red, respectively. (C,D) Flow cytometric analyses of mitochondrial

membrane potential (D	M) (C) and intracellular ROS (D) in primary hepatocytes isolated from Ppara-/- and Ppara+/+ livers at E19.5 and P2 using

tetramethylrhodamine, ethyl ester (TMRE) and 2’,7’-dichlorofluorescin diacetate (DCFDA), respectively. (E) ATP production in primary hepatocytes

isolated from Ppara-/- and Ppara+/+ livers (n = 4 per group) in the presence of glucose (+Glu), galactose (+Gal), or rotenone (+Rot, a mitochondrial

electron transport chain complex I inhibitor) as a negative control. Values represent arbitrary bioluminescence units normalized to the number of viable

cells. (F,G) Oxygen consumption rates (OCRs) in primary hepatocytes isolated from Ppara-/- and Ppara+/+ livers in the presence or absence of palmitate

and etomoxir, a mitochondrial b-oxidation inhibitor. Data are presented in time-lapse (F) and treatment end points (G) at 15 min for basal respiration,

50 min for palmitate treatment, and 80 min for palmitate cum etomoxir treatment. Data represent mean ± SEM; n = 3–9 unless otherwise stated,

**p<0.01, ***p<0.001 vs. wild-type controls; ###p<0.001 vs. no treatment group; §§§p<0.001 vs. palmitate treatment group (two-tailed Mann-Whitney

test).
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other nuclear receptors and their target genes involved in lipid metabolism (Figure 2—figure sup-

plement 1C,D).

Since there is a heterogeneous population of undifferentiated hepatoblasts and differentiated

hepatocytes in the liver at E19.5, we next determined whether one of these two cell populations was

predominantly affected by the PPARa-dependent changes in gene expression. Using antibodies

against hepatoblast- and hepatocyte-specific markers (i.e., Delta-Like Homolog 1 (DLK) and cytoker-

atin 18 (CK18), respectively), we performed flow cytometric analyses on the cells extracted from

Ppara+/+ and Ppara-/- livers at E19.5. Upon cell sorting, we specifically recovered the DLK+ and

CK18+ fractions. Firstly, we showed that PPARa deficiency only led to marginal changes in these two

hepatic cell populations (Figure 2D). Secondly, we determined the mRNA expression of Nr3c1,

Ppara and the target genes of PPARa in these cells. Our results indicated that both Ppara+/+ hepato-

blasts and hepatocytes similarly contributed to the expression of these genes (Figure 2E). Notably,

we observed a modest but not significant upward trend in the expression of oxidative genes (e.g.,

Acox1, Acaa2, Acadl, and Acadvl) and a downward trend in the expression of glycolytic genes (e.g.,

Gck and Hk1) in the Ppara+/+ hepatocytes compared to hepatoblasts, possibly suggesting a more

pronounced oxidative program in hepatocytes (Figure 2E). In contrast, the expression of these

genes was concomitantly down-regulated in Ppara-/- hepatoblasts and hepatocytes, thereby

highlighting the pivotal role of PPARa in glycolytic and oxidative metabolism in both cell types.

Consistent with our gene expression studies, Ppara-/- fetal livers had reduced numbers of peroxi-

somes and mitochondria compared to wild-type littermates at E19.5 (Figure 3A). However, only the

mitochondria numbers but not the peroxisome numbers varied between the two groups at P2

(Figure 3B), underscoring the crucial role of mitochondrial FAO in PPARa-mediated lipid catabolism

after birth. We next measured mitochondrial membrane potential (D	m) and intracellular reactive

oxygen species (ROS) production levels which are two common parameters used in assessing mito-

chondria health and functions (Suski et al., 2012). Interestingly, we observed a much lower D	m and

a markedly increased intracellular ROS level in Ppara-/- primary hepatocytes at P2 (Figure 3C,D),

indicative of mitochondria dysfunction at this stage. However, there was no discernible difference in

D	m between Ppara+/+ and Ppara-/- hepatocytes at E19.5 despite that a slight increase in the intra-

cellular ROS level was observed in the latter. These findings suggest that an increased ROS produc-

tion in cells likely precedes the loss of D	m and mitochondria dysfunction, consistent with a previous

report of a similar mitochondrial disorder associated with the dysfunctions of the respiratory chain

components (Lebiedzinska et al., 2010). Indeed, respiratory chain-mediated ATP production in

Ppara-/- hepatocytes was approximately 35–50% of the levels measured in both prenatal and postna-

tal wild-type livers (Figure 3C). Substantiating these findings, a reduction of ~2.3-fold was observed

in the basal oxygen consumption rate in Ppara-/- primary hepatocytes from both E19 and P2 livers

(Figure 3D,E). In the presence of FA (i.e., palmitate), the oxygen consumption rate significantly

increased in Ppara+/+ hepatocytes but remained very similar in Ppara-/- hepatocytes, indicating a

deficiency in the activation of FAO in the latter (Figure 3D,E). The addition of etomoxir, an inhibitor

of carnitine palmitoyltransferase 1, resulted in significant inhibition of mitochondrial b-FAO in

Ppara+/+ but not in Ppara-/- hepatocytes. Ppara+/+ hepatocytes exhibited a robust mitochondrial

respiratory capacity of ~40% at both time points (Figure 3E). In contrast, only ~25% and ~11% of

the total oxygen consumption rate were attributed to mitochondrial b-FAO in Ppara-/- hepatocytes

from E19 and P2 livers, respectively. Thus, these results provide evidence that PPARa-dependent

respiration occurs in the term fetus. The higher expression of FA catabolic genes in fetal liver just

before birth may prime the liver for the upcoming postnatal energy demand or point to an unknown

role of fetal FAO. Therefore, we investigated whether the above defects in Ppara-/- hepatocytes con-

tribute to any phenotype in the fetal and neonatal liver.

PPARa is required for protection against neonatal hepatic steatosis
Gross examination and histological analysis of the fetal Ppara-/- livers at E19.5 did not reveal any dis-

cernible differences when compared with Ppara+/+ controls. However, after birth, steatosis devel-

oped in Ppara-/- livers at P2 but not in Ppara+/+ livers (Figure 4A,B). Compared to Ppara+/+

littermates, Ppara-/- pups displayed an enlarged and pallid liver with neutral lipid accumulation dem-

onstrated by Oil Red O staining (Figure 4A,B). Ppara-/- livers contained significantly higher levels of

triglycerides and cholesterol ester at P2 with a concomitant increase in blood triglycerides

(Figure 4D–F). In contrast, Ppara-/- pups also exhibited markedly reduced serum b-hydroxybutyrate
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levels (i.e., hypoketonemia) and impaired essential FA profiles (Figure 4G, Figure 4—figure supple-

ment 1A,B). All of these anomalies were absent in Ppara-/- fetuses at E19.5. Interestingly, the post-

natal phenotype of liver steatosis observed in Ppara-/- pups spontaneously and gradually resolved at

P15, coinciding with the suckling-to-weaning transition period when carbohydrate-rich food gradu-

ally replaces the lipid-rich milk (Figure 4—figure supplement 1C,D). These findings suggest that

the neonatal steatosis observed in Ppara-/- pups may be attributed to the ingestion of milk lipids.

Pups begin to nibble solid food in their second week, before weaning. To test whether the

change in food composition that occurs at weaning is responsible for the reduction in the fatty liver

phenotype as observed in Ppara-/-pups after P5-6, we performed a 10-day high-fat, low-carbohy-

drate diet challenge starting just before P5 and continuing into the suckling-to-weaning transition

period. After the high-fat diet (HFD) challenge, the occurrence of liver steatosis was reenacted at

P15 in Ppara-/- mice which consistently exhibited significantly higher liver weight, hepatic and serum

triglyceride levels (Figure 4—figure supplement 1E–H). In contrast, liver steatosis was absent in the

Ppara+/+ counterparts fed the same diet as well as in mice fed the control diet (Figure 4—figure

supplement 1E– H). Furthermore, we also demonstrated in hepatocyte-specific Ppara-/- mice (i.e.,

Pparafl/flAlbCre/+) the presence of liver steatosis at P3, thereby confirming that the phenotypes

observed in Ppara-/- mice is most likely due to the hepatocyte-specific effects (Figure 4— figure

supplement 1I) (Montagner et al., 2016). Taken together, PPARa deficiency leads to lower mito-

chondria numbers, defective FA oxidative metabolism, and aberrant mitochondria functions which

collectively contribute to the development of liver steatosis and hypoketonemia in Ppara-/- neonates

as a result of their inability to metabolize milk lipids.
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Figure 4. PPARa deficiency leads to congenital hepatic steatosis after birth. (A) Photographs showing dissected Ppara-/- and Ppara+/+ pups (left) and

livers (right). The pallid liver of a Ppara-/- pup is indicated by an arrow. The white content of the stomach indicates milk ingestion. (B) Representative Oil

Red O-stained liver sections counterstained with methylene blue. Scale bars = 100 mm. (C–G) The Mean body weight (C), triglyceride (D) and

cholesterol ester (E) contents of the liver, and serum levels of triglyceride (F) and b-hydroxybutyrate (b-OHB) (G). Data are presented as mean ± SEM; n

= 6, *p<0.05, **p<0.01, ***p<0.001 vs. wild-type controls; #p<0.05 vs. respective E19.5; ns, not significant (two-way ANOVA with Bonferroni post-hoc

analysis).

DOI: 10.7554/eLife.11853.008

The following figure supplements are available for figure 4:

Figure supplement 1. Postnatal lipid catabolic derangements in Ppara-/- pups.

DOI: 10.7554/eLife.11853.009

Figure supplement 2. Anaplerotic compensation for defective oxidative metabolism and ketogenesis in suckling Ppara-/- pups.

DOI: 10.7554/eLife.11853.010
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An effective hepatic FAO is necessary to support hepatic de novo ketogenesis and gluconeogen-

esis by providing essential co-factors such as acetyl-CoA and/or NADH (Girard, 1986). This notion is

consistent with the presence of hypoketonemia in Ppara-/- neonates with defective hepatic FAO.

Interestingly, we found that Ppara-/- pups were able to maintain a body weight increase similar to

their Ppara+/+ littermates (Figure 4—figure supplement 2A), suggesting that Ppara-/- neonates har-

nessed energy required for normal growth from fuels other than ketone bodies and lipids. Further-

more, we did not detect any differences in the plasma glucose levels between the two genotypes

during the suckling period from P2 to P15 (Figure 4—figure supplement 2B). This was rather sur-

prising since Ppara-/- neonates were previously reported to exhibit hypoglycemia at P1 due to

impaired gluconeogenesis from glycerol (Cotter et al., 2014). This finding prompted us to check

whether the gluconeogenesis pathway is modified in the Ppara-/- liver at P2. Based on our microarray

data, we found that most of the genes (e.g., Gpt, Pck1, and G6pc) encoding the rate-liming enzymes
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Figure 5. A temporal dichotomy in the regulation of PPARa target genes before and after birth. (A) Immunoblots showing the ontogenic expression of

cytoplasmic and nuclear GR, HDAC3, PPARa, and its target genes, including ACOX1, Cyp4A14, FGF21, and full-length (FL)-ANGPTL4, in Ppara-/- and

Ppara+/+ livers. U2AF65 and b-tubulin were used as loading controls for nuclear and cytoplasmic proteins, respectively. (B–D) Enrichment of the DNA

fragment containing the PPAR response element (PPRE) (left panels) on the ACOX1 (B), Cyp4A14 (C), and FGF21 (D) promoters or their respective TSS

(right panels) using anti-PPARa and anti-Pol2 antibodies or pre-immune IgG. Data are presented as mean ± SEM; n = 4–6, *p<0.05, **p<0.01,

***p<0.001 vs. untreated wild-type controls (two-tailed Mann-Whitney test).
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involved in this pathway were up-regulated in parallel with a down-regulation of the rate-limiting

genes involved in glycolysis (e.g., Gck, Hk1, and Gpd2) (Figure 4—figure supplement 2D). We also

detected in the Ppara-/- liver a significantly elevated level of alanine aminotransferase (ALT), which is

encoded by Gpt (Figure 4—figure supplement 2C). ALT is an enzyme that catalyzes the transfer of

amino groups to form the hepatic metabolite oxaloacetate, an intermediate substrate in the tricar-

boxylic acid (TCA)/Krebs cycle, which can be used for gluconeogenesis. Thus, we postulated that an

increased anaplerotic oxidation of amino acids may be an alternative pathway engaged to maintain

gluconeogenesis and to supply glucose as an energy source for normal growth in Ppara-/- neonates

when the FAO capacity was impeded in the absence of PPARa. Indeed, most of the rate-limiting

enzymes involved in amino acid oxidation (except for valine, leucine, and isoleucine) were concomi-

tantly up-regulated in Ppara-/- liver at P2 (Figure 4—figure supplement 2E). Up-regulation of these

genes would provide some of the intermediate substrates of the TCA cycle, such as a-ketoglutarate,

fumarate, and oxaloacetate, which could be used for gluconeogenesis (Figure 4—figure supple-

ment 2E). Importantly, selective inhibition of ALT by intraperitoneal injection of L-cycloserine led to

decoupling of amino acid oxidation from gluconeogenesis and ultimately resulted in stunted postna-

tal growth and hypoglycemia in Ppara-/- pups (Figure 4—figure supplement 2F,G). In short, we con-

clude that PPARa functions both as a prenatally anticipatory and postnatally adaptive regulator of

lipid catabolism, ultimately protecting the postnatal liver against a rapid insurgence of steatosis by

promoting the use of milk lipids as an energy source.

An epigenetic switch controls a subset of PPARa target genes
How PPARa target genes are controlled at different stages of metabolic ontogenesis remains

unclear. For instance, the genes (e.g., Acox1) involved in the anticipatory functions of PPARa (i.e.,

FAO) are stimulated in the fetus, but the adaptive regulators of lipid catabolism, such as the liver-

secreted FGF21, were markedly stimulated by PPARa only after birth (Figures 2C,5A). The binding

of PPARa to the peroxisome proliferator response element (PPRE) in the promoter of Acox1 and

Cyp4a14 (both genes are indicators for PPARa activation) (Tugwood et al., 1992; Anderson et al.,

2002), as well as Pol2 recruitment to their respective TSS, occurs before birth and results in

increased expression of these genes (Figure 5C,D). This stimulation correlates with higher Ppara TSS

activity and mRNA levels during hepatic ontogenesis (Figure 1B,C). Despite having comparable

PPARa occupancy in the Fgf21, Acox1, and Cyp4a14 promoters before birth, the recruitment of

Pol2 to the Fgf21 TSS was markedly delayed until after birth at P2, and then gradually increased

thereafter (Figure 5D).

Based on these observations, we postulated that other mechanisms may be involved in the differ-

ential Pol2 recruitment and promoter transactivation of these PPARa target genes. At E19.5, we

found increased active histone marks (i.e., AcH4 and H3K4me3) near the TSS of Acox1 and

Cyp4a14, which correlated with a reduced enrichment of repressive histone marks (i.e., H3K9me3

and H3K27me3) (Figure 6A,B). At P2, the enrichment of active histone marks at the TSS of Acox1

and Cyp4a14 decreased with a concomitant increase in repressive histone marks, but this was not

observed for Fgf21 (Figure 6A–C). HDAC3 has been reported to repress hepatic Fgf21 expression

(Hondares et al., 2010; Estall et al., 2009; Archer et al., 2012; Feng et al., 2011).In line with these

reports, we observed a higher occupancy of HDAC3 at the Fgf21 TSS at E19.5 compared to P2

(Figure 6D). We also found that the expression of Angptl4 was also controlled by HDAC3

(Figure 6E). Interestingly, the lack of PPARa correlated with a ~10-fold increase in the HDAC3 occu-

pancy at the Fgf21 and Angptl4 TSS (Figure 6D,E). In contrast, we detected negligible levels of

HDAC3 recruitment to the Cyp4a14 TSS (Figure 6F). Taken together, our results suggest that

HDAC3-mediated histone modifications represent an additional mechanism by which certain PPARa

target genes are temporally regulated.

b-hydroxybutyrate induces Fgf21 expression via HDAC3 inhibition
Previous studies indicate that milk lipids and hydroxymethylglutaryl-coenzyme A synthase 2

(HMGCS2) activity are required for Fgf21 expression (Hondares et al., 2010; Vilà-Brau et al., 2011).

We hypothesized that PPARa-dependent production of ketone bodies, particularly b-hydroxybuty-

rate, which was ~seven-fold higher in neonates than fetuses (Figure 4G), may activate postnatal

gene expression by alleviating the repressive role of class I HDACs (Shimazu et al., 2013).To test
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Figure 6. PPARa-mediated regulation of Fgf21 expression is dictated by the occupancy of HDAC3 on its promoter. (A–C) Enrichment of the DNA

fragment containing the ACOX1 (A), Cyp4A14 (B), or FGF21 (C) TSS in primary hepatocytes isolated from Ppara+/+ pups using antibodies against
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this possibility, we treated Ppara+/+liver explants from E19.5 pups with b-hydroxybutyrate, sodium

butyrate (a known HDAC3 inhibitor), and trichostatin A, a selective inhibitor of class I and class II

HDACs. Activation of the Fgf21 transcriptional activity was dependent on both the activation of

PPARa and HDAC3 inhibition through butyrate or b-hydroxybutyrate treatment (Figure 7A). In par-

ticular, HDAC3 inhibition or PPARa activation alone did not cause a significant change in Fgf21

induction. However, trichostatin A alone, regardless of PPARa activation, led to significantly higher

expression of Fgf21, suggesting the involvement of a PPARa-independent pathway and other class I

or class II HDACs in the regulation of Fgf21 expression in addition to PPARa (Figure 7A). In contrast,
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Figure 7. b-hydroxybutyrate acts as an endogenous inhibitor of HDAC3 to activate Fgf21 expression upon milk suckling. (A–C) Ex vivo liver explants

isolated from Ppara+/+ fetuses at E19.5 were used to study the effects of butyrate, b-hydroxybutyrate, and trichostatin in the presence or absence of
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containing the FGF21 (A), Cyp4A14 (B), or ACOX1 (C) TSS after chromatin immunoprecipitation (ChIP) using antibody against acetyl-histone 4 (AcH4).

Data are presented as mean ± SEM; n = 6, *p<0.05, **p<0.01, ***p<0.001 vs. E19.5 samples without WY-14643 treatment (two-tailed Mann-Whitney

test).
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the activity of AcH4 at the TSS of Cyp4a14 and Acox1 and the expression of these genes were not

influenced by any of the treatments except the PPARa ligand WY-14643, thereby excluding the

involvement of HDAC3 or other class I and class II HDACs in the regulation of their transcriptional

activity (Figure 7B,C). These results suggest that milk lipids can affect the epigenetic status of the

postnatal liver in which hepatic production of b-hydroxybutyrate acts as an inhibitor of HDAC3 that

regulates Fgf21.

Discussion
In mammals, the transition to extra-uterine life represents a sudden shift in the source of energy (i.e.,

from a carbohydrate-laden fetal diet to a high-fat, low-carbohydrate diet). The neonatal liver must

coordinate hepatic FAO, gluconeogenesis, and ketogenesis in order to maintain bioenergetic

homeostasis and to meet the metabolic demands associated with extra-uterine life which depends

exclusively on milk (Cotter et al., 2013). In contrast to the carbohydrate-replete nutrient state expe-

rienced in utero, neonatal energy is dominated by PPARa-dependent transcriptional regulation of

lipid catabolism. We found that this anticipatory regulation of PPARa activity and lipid metabolism is

directly controlled by GR before birth.

Glucocorticoid hormones are crucial in the functional maturation of many key tissues, notably in

preparation for birth (Cottrell and Seckl, 2009). The initiation of parturition is marked by short

bursts of stress hormones (Barlow et al., 1974). We demonstrate that this short burst of glucocorti-

coids at the initiation of birth directly stimulate the GR-dependent transcription of PPARa and its

lipid catabolic target genes, which in turn prepare neonates for the sudden shift to fat-rich milk diet

as the primary source of energy (Figure 8A,B). Indeed, we previously demonstrated the GR-medi-

ated hormonal induction of PPARa in adult hepatocytes (Lemberger et al., 1994), while others

showed that ligand-activated PPARa interferes with the recruitment of GR and Pol2 to the promoter

of classical GRE-driven genes, inhibiting their transcription (Bougarne et al., 2009). This is also con-

sistent with our observation of a reduced expression of Nr3c1 in Ppara-/- livers, implicating a recipro-

cal regulatory relationship between GR and PPARa.

We indicate that lipid catabolic target genes of PPARa, particularly those involved in mitochon-

drial, peroxisomal, and microsomal oxidation, are switched on just before birth in anticipation of a

postpartum lipid-rich meal. In the neonatal liver, however, we show that mitochondrial b-oxidation

prevails as the major contributor to the neonatal oxidative capacity and protects against hepatic

steatosis when faced with a sudden surge in dietary fat. Our findings are consistent with the notion

that mitochondrial FAO represents the dominant metabolic pathway whereas peroxisomal FAO

assumes a relatively minor role (Hashimoto et al., 1999). Accordingly, long-chain FAs constitute

more than 60% of the total FAs in animals and milk (Smith et al., 1968), and their abundance makes

them the only significant source of metabolic fuel for the mitochondrial, but not peroxisomal, b-oxi-

dation system (Reddy and Mannaerts, 1994). Moreover, decreased mitochondrial FAO has been

considered one of the major contributing factors leading to liver steatosis (Ockner et al., 1993).

Thus, we conclude that the concomitant presence of lipid content of milk, a lower number of mito-

chondria and overt mitochondrial dysfunctions jointly contributes to the development of liver steato-

sis in Ppara-/-neonates. Notably, mitochondrial dysfunctions were evident in Ppara-/- hepatocytes

due to reduced D	M and increased intracellular ROS levels. We postulate that an increased intracel-

lular ROS level likely precedes the loss of D	M and mitochondria dysfunction. As this oxidative stress

condition continues to worsen after birth, perhaps induced by nutritional lipid as previously indicated

(Tirosh et al., 2009), reduced D	M and ATP production ultimately ensue. This is in agreement with a

previous report of a similar mitochondrial disorder associated with the dysfunctional respiratory

chain components (Lebiedzinska et al., 2010). Particularly, the increased intracellular ROS levels

observed in Ppara-/- hepatocytes may be due to the reduced clearance of ROS as evidenced by the

down-regulation of genes coding for mitochondrial superoxide dismutase 2 (SOD2) and copper

chaperone for SOD1 (a metalloprotein responsible for delivering copper as a co-factor to SOD1)

before and/or after birth (Figure 2—source data 1). This observation is consistent with the report

that PPARa activation by agonist clofibrate stimulates SOD1 and catalase activities as part of the

defense mechanisms against oxidative stress in the heart (Ibarra-Lara et al., 2016).

Many of the PPARa-regulated genes involved in FAO have previously been shown to contain a

PPRE in their promoter region and hence, recognized as direct PPARa target genes
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(Rakhshandehroo et al., 2010). This implicates that the reduced oxidative capacity observed in

Ppara-/- mice was due to the lack of direct PPARa-mediated stimulatory effects rather than a cellu-

lar-autonomous metabolic adaptation in response to lower mitochondria numbers. As discovered by

Semenkovich andRakhshandehroo et al., 2010 co-workers (Chakravarthy et al., 2005, 2009), newly

synthesized FA by fatty acid synthase may also regulate glucose, lipid, and cholesterol metabolism

by serving as endogenous activators of a distinct physiological pool of PPARa ligands in adult liver.

However, we doubt that de novo synthesis of FA plays a predominant role in the regulation of

PPARa activity during early postnatal period since insulin/glucagon ratio is low, which promotes

FAO rather than de novo synthesis of FA (Girard et al., 1977). Our recent work indicates that

PPARa has little impact on the expression of lipogenic genes in normal conditions

(Montagner et al., 2016). Moreover, an effective hepatic FAO is essential for the provision of ace-

tyl-CoA and NADH to support hepatic de novo ketogenesis and gluconeogenesis (Girard, 1986).

This notion is consistent with the hypoketonemia and hypoglycemia in Ppara-/-neonates reported in

this work and by Crawford and co-workers (Cotter et al., 2014). Notably, the hypoglycemic pheno-

type previously reported in Ppara-/-neonates by Cotter et al. happened at P1 due to a decreased

hepatic gluconeogenesis from glycerol. However, we did not detect any sign of hypoglycemia in

these mice starting from P2. This apparent discrepancy is likely attributable to the rapid (~1 day) and

dynamic adaptive functions of Ppara-/- neonatal liver in providing glucose as the primary source of

energy required for postnatal growth and in maintaining glucose homeostasis. Our finding also sup-

ports the work of others indicating a preserved gluconeogenesis from glycerol in adult Ppara-/- mice

(Xu et al., 2002). We elucidated that this cell-autonomous metabolic adaptation was enhanced in

the absence of PPARa and mediated through the up-regulation of hepatic ALT and anaplerotic

amino acid oxidation. Thus far, the mechanism behind the increased production and secretion of

ALT in Ppara-/- neonatal liver still remains unclear. It is notable that ALT2 expression is up-regulated

under metabolic stress and that plasma and tissue ALT levels are elevated in response to endoplas-

mic reticulum (ER) stress (Salgado et al., 2014; Josekutty et al., 2013). Interestingly, defective

PPARa signaling has been reported to cause hepatic mitochondrial and ER stress in the pathogene-

sis of hepatic steatosis through reduced mRNA expression of the sarco/endoplasmic reticulum cal-

cium ATPase (SERCA) (Su et al., 2014). In addition, our transcriptome analysis revealed a consistent

reduction by ~1.2-fold in the expression of Atp2a2, which encodes SERCA, in Ppara-/- liver at E19.5

and P2 (Figure 2—source data 1). Moreover, we also delineated that most of the rate-limiting

enzymes involved in amino acid oxidation were concomitantly up-regulated in Ppara-/- neonatal liver

to provide essential intermediate substrates in TCA/Krebs cycle required for gluconeogenesis.

Hence, we speculate that de novo synthesis of glucose becomes the primary energy source in sus-

taining normal postnatal growth in Ppara-/- neonates as evidenced by the observed growth retarda-

tion upon decoupling of amino acid oxidation from gluconeogenesis. This is in conjunction with the

failure of Ppara-/- neonatal liver in harnessing energy from ketone bodies and lipids due to defective

mitochondrial functions. In parallel, the compensatory up-regulation of pyruvate carboxylase (Pcx)

and other gluconeogenic genes in Ppara-/-neonates at P2 probably corresponds with a lower hepatic

acetyl-CoA level, as supported by a recent report that hepatic acetyl-CoA acts as an allosteric regu-

lator of Pcx (Perry et al., 2015). Importantly, these findings in Ppara-/-mice illustrate the tremendous

flexibility of the neonatal liver in coordinating ketogenesis, FAO, and gluconeogenesis so as to meet

the energy demand required for normal growth especially when faced with an energy crisis caused

by defective oxidative metabolism and hypoketonemia.

Figure 8 continued

response element (GRE) spanning -1007 to -993 within the PPARa promoter region to directly activate the transcription of Ppara. NTD: N-terminal

domain, LBD: ligand-binding domain, DBD: DNA-binding domain. (B) At E19.5, direct binding of HDAC3 near the TSS of Fgf21 leads to the repression

of Fgf21 transcriptional activity. Upon milk suckling, PPARa-dependent production of b-hydroxybutyrate from the neonatal liver alleviates the HDAC3-

mediated repression of Fgf21 by directly inhibiting the activity of HDAC3, permitting PPARa-dependent Fgf21 expression. Activated GR leads to the

stimulation of PPARa and its target genes in fetal liver, such as those involved in mitochondrial and peroxisomal fatty acid oxidation (FAO). After birth,

the expression of PPARa target genes involved in mitochondrial FAO predominates the expression of genes involved in peroxisomal FAO, probably

due to the higher long-chain fatty acid (LCFA) content than very-long-chain fatty acid (VLCFA) content in the milk. (C) Schematic illustration depicting

the affected processes of hepatic metabolism in the presence and absence of PPARa. Green boxes/arrows indicate increments; reds indicate

decrements.
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Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) is one of the rate-liming

enzymes involved in ketogenesis. Hmgcs2 contains a PPRE in its promoter region and is under the

direct transcriptional control of PPARa (Rodrı́guez et al., 1994). HMGCS2 has been shown to

induce mitochondrial FAO and FGF21 expression, possibly via a SIRT1-dependent mechanism (Vilà-

Brau et al., 2011). Furthermore, Hmgcs2 mRNA expression peaks 16 hr after birth and coincides

with a decline in Acox1 mRNA expression thereafter (Yubero et al., 2004; Serra et al., 1993,

1996). These reports substantiate our findings of preferential activation of mitochondrial FAO at

birth. Our results also support the in vivo finding that b-hydroxybutyrate is a potent physiological

inhibitor of HDAC3 (Shimazu et al., 2013), suggesting that PPARa-mediated activation of HMGCS2

and b-hydroxybutyrate production precedes the PPARa-regulated production of FGF21. Similar to

other PPARa target genes, we detected PPARa occupancy in the Fgf21 promoter before birth, but

its transcription is ultimately determined by the alleviation of HDAC3-mediated inhibition

(Figure 8B). Thus, fatty acid catabolism provides b-hydroxybutyrate, which acts as a secondary signal

to initiate the de-repression of the Fgf21 promoter by HDAC3, allowing it to become PPARa

responsive. It was previously indicated that HDAC-mediated histone deacetylation may inhibit tran-

scription at the initiation and/or elongation step (Wang et al., 2009). If the genes are loaded by

Pol2 at the TSS, similar to what we observed at the Fgf21 TSS upon PPARa agonistic activation,

HDAC-mediated inhibition of transcription most likely happens at the elongation step although

abortive initiation of the TSS bound Pol2 cannot be excluded. Our results suggest that PPARa acti-

vation induces the recruitment and assembly of a transcription initiation complex at the Fgf21 TSS.

However, the elongation of Fgf21 mRNA transcript only ensues after alleviation of HDAC3 inhibition

by b-hydroxybutyrate. Therefore, it is consistent with our findings that PPARa agonist has no effect

on Fgf21 mRNA or transcriptional activation in the absence of b-hydroxybutyrate.

Both human and mouse neonates exhibit mild ketogenic conditions during early postpartum

period (0–1 day, 0.2–0.5 mmol/L), which further exacerbates after 5–10 days (0.5–1.1 mmol/L)

(Hamosh, 2004). We believe that it could be due to the use of lipids as preferred fuel for growth

while the carbohydrate parts of milk (e.g., lactose and oligosaccharide�two main carbohydrates in

milk) mainly contribute to brain growth (i.e., myelin synthesis) and gut microbiota nourishment

(Edmond, 1992; Chichlowski et al., 2011). Further, the observed ketogenic condition may also be

explained by the low insulin/glucagon ratio in early postpartum life (Girard et al., 1977; Ferré et al.,

1979; Girard et al., 1992). We found that ketone bodies act as a hit that is important to prime

PPARa-dependent expressions of Fgf21 and Angptl4 by modulating HDAC3 activity on their pro-

moter. Both FGF21 and ANGPTL4 function as secreted systemic effectors of PPARa (Badman et al.,

2007; Dijk and Kersten, 2014). However, unlike Fgf21, the expression of Angptl4 has already

begun in the fetal liver. This finding is congruent with the report that ANGPTL4 functions as a gluco-

corticoid-dependent gatekeeper of FA flux by inhibiting the activity of adipose tissue lipoprotein

lipase during fasting (Koliwad et al., 2012; Dijk and Kersten, 2014). In fact, significant overlap

exists between the bioenergetic challenges experienced during fasting and at birth. Liver-derived

FGF21 acts as an endocrine regulator of ketogenesis, which links the phenotypes observed during

fasting and in newborns (Badman et al., 2007; Hondares et al., 2010). This concept is evident in

Ppara-/- mice, which have reduced plasma FGF21 levels. During fasting, the switch to a lipid-domi-

nated nutrient supply provokes hypoketonemia, hypoglycemia, and hepatic steatosis in adult Ppara-/-

mice (Kersten et al., 1999; Montagner et al., 2016). In concordance with a recent report

(Cotter et al., 2014), the shift to a high-fat, low-carbohydrate ketogenic diet in Ppara-/- neonates

results in steatosis similar to that observed in fasted adult Ppara-/- mice. Notably, FGF21 has previ-

ously been shown to stimulate hepatic FAO and to prevent hepatic steatosis following ingestion of

lipid-laden milk (Xu et al., 2009). Hence, we believe that the physiological relevance of FGF21

induction in neonates after milk suckling relates to its role in metabolic regulation by stimulating lipid

catabolism rather than a response to starvation or a low calorie condition which no longer exists

upon milk ingestion. It is also important to note that the early human breast milk is not initially keto-

genic due to the relatively high lactose content, which gradually decreases while the fat content

increases as the milk matures over time (Jenness, 1979). In contrast, mouse milk is likely a ketogenic

diet as evidenced by a previous report that early mouse milk comprises ~17% of fat and ~1.7% of

lactose at P3 (Görs et al., 2004). Therefore, direct translation of our findings to human situations

needs to be cautioned for such differences in milk composition.
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Table 1. Standard chow diet formulation.

Manufacturer: SPECIALITY FEEDS
Product ID: AIN93M

Standard AIN93M rodent diet

A semi-pure diet formulation for laboratory rats and mice based on AIN-93M. This formulation satisfies the maintenance nutritional requirements of rats
and mice. Some modifications have been made to the original formulation to suit locally available raw materials.

. We have evidence that vitamin losses and other changes to the diet can occur when irradiated at 25KGy. The diet SF08-020 has

been formulated for irradiation. Please contact us for more information if the diet is to be irradiated.

Calculated nutritional parameters Ingredients

Protein 13.6% Casein (acid) 140 g/kg

Total fat 4.0% Sucrose 100 g/kg

Total digestible carbohydrate as defined by FSANZ Standard 1.2.8 64.8% Canola oil 40 g/kg

Cellulose 50 g/kg

Crude fiber 4.7% Wheat starch 472 g/kg

AD fiber 4.7% Dextrinised starch 155 g/kg

Digestible energy 15.1 MJ/kg DL methionine 1.8 g/kg

% Total calculated digestible energy from lipids 9.0% Calcium carbonate 13.1 g/kg

% Total calculated digestible energy from protein 15.0% Sodium chloride 2.6 g/kg

AIN93 trace minerals 1.4 g/kg

Diet form and features Potassium citrate 1.0 g/kg

. Semi pure diet. 12 mm diameter pellets.

. Pack size 5 kg. Vacuum packed in oxygen impermeable plastic bags,

under nitrogen. Bags are packed into cardboard cartons for protection

during transit. Smaller pack quantity on request.
. Diet suitable for irradiation but not suitable for autoclave.
. Lead time 2 weeks for non-irradiation or 4 weeks for irradiation.

Potassium dihydrogen phosphate 8.8 g/kg

Potassium sulphate 1.6 g/kg

Choline chloride (75%) 2.5 g/kg

AIN93 vitamins 10 g/kg

Calculated amino acids Calculated total vitamins

Valine 0.90% Vitamin A (retinol) 4000 IU/kg

Leucine 1.30% Vitamin D (cholecalciferol) 1000 IU/kg

Isoleucine 0.60% Vitamin E (a-tocopherol acetate) 75 mg/kg

Threonine 0.60% Vitamin K (menadione) 1 mg/kg

Methionine 0.60% Vitamin C (ascorbic acid) None added

Cystine 0.05% Vitamin B1 (thiamine) 6.1 mg/kg

Lysine 1.00% Vitamin B2 (riboflavin) 6.3 mg/kg

Phenylanine 0.70% Niacin (nicotinic acid) 30 mg/kg

Tyrosine 0.70% Vitamin B6 (pryridoxine) 7 mg/kg

Tryptophan 0.20% Pantothenic acid 16.5 mg/kg

Histidine 0.42% Biotin 200 mg/kg

Calculated total minerals Folic acid 2 mg/kg

Calcium 0.47% Inositol None added

Phosphorus 0.35% Vitamin B12 (cyancobalamin) 103 mg/kg

Magnesium 0.09% Choline 1670 mg/kg

Sodium 0.15% Calculated fatty acid composition

Chloride 0.16% Myristic acid 14:0 No data

Potassium 0.40% Palmitic acid 16:0 0.20%

Sulphur 0.17% Stearic acid 18:0 0.10%

Iron 75 mg/kg Palmitoleic acid 16:1 No data

Table 1 continued on next page
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In summary, we provide evidence that prenatal expression of PPARa is under the direct control

of GR. The GR-dependent PPARa activity is pivotal for the induction of hepatic FA catabolic genes,

pointing to a novel anticipatory role of PPARa in the fetal liver in preparation for the efficient use of

milk fat as an energy source. In addition, hepatic FA catabolism provides essential co-factors for the

synthesis of ketone bodies such as b-hydroxybutyrate. Interestingly, ketone bodies act as a second-

ary signal that further activates PPARa-dependent regulation of the hepatokine FGF21. Therefore

GR-PPARa axis may represent a critical signaling pathway in late gestation for the ability of mamma-

lian newborns to use nutrients and maintain whole-body homeostasis. We conclude that in the

absence of PPARa, a vicious cycle pertaining to the (i) lower mitochondria numbers, (ii) mitochon-

drial dysfunctions, (iii) impaired mitochondrial FA b-oxidation, (iii) hypoketonemia either due to a

lack of direct PPARa stimulation of Hmgcs2 or a lack of essential co-factors provided by functional

FAO, (iv) lack of epigenetic activation of FGF21 by ketone bodies (e.g., b-hydroxybutyrate), and (v) a

surge in nutritional lipids upon milk suckling, exists to concomitantly contribute to the development

of hepatic steatosis in neonates (Figure 8C).

Materials and methods

Animals
PPARa-null (Ppara-/-) and GR-null (Nr3c1-/-) mice were acquired from the Jackson Laboratory (Bar,

Harbor, ME) and Nuclear Receptor Zoo (MGI: 95824, Strasbourg, France), respectively. These mice

were given standard rodent chow diet (AIN93M, Specialty Feeds, Australia) (Table 1) and water ad

libitum, maintained in a C57BL/6 background, and bred in our specific pathogen-free facilities by

inter-crossing Ppara+/- mice to obtain experimental wild-type and knockout pups in the same litter.

This breeding strategy allowed the experimental mice to be exposed to the same gestational envi-

ronment and ensured that pups received milk of the same nutritional content from the heterozygous

dams. Pregnancy was timed based on vaginal plug formation. Pregnant dams approaching full-term

were closely monitored and cesarean section performed to obtain fetuses at E19.5 or earlier (E13,

E15, E17). Pups at P2 were timed based on the delivery day. Litters of 6–8 pups were used to

Table 1 continued

Manufacturer: SPECIALITY FEEDS
Product ID: AIN93M

Standard AIN93M rodent diet

Copper 6.9 mg/kg Oleic acid 18:1 2.40%

Iodine 0.2 mg/kg Gadoleic acid 20:1 trace

Manganese 19.5 mg/kg Linoleic acid 18:2 n6 0.80%

Cobalt No data a-Linolenic acid 18:3 n3 0.40%

Zinc 47 mg/kg Arachidonic acid 20:4 n6 No data

Molybdenum 0.15 mg/kg EPA 20:5 n3 No data

Selenium 0.3 mg/kg DHA 22:6 n3 No data

Cadmium No data Total n3 0.45%

Chromium 1.0 mg/kg Toal n6 0.76%

Fluoride 1.0 mg/kg Total mono-unsaturated fats 2.46%

Lithium 0.1 mg/kg Total polyunsaturated fats 1.21%

Boron 3.1 mg/kg Total saturated fats 0.28%

Nickel 0.5 mg/kg

Vanadium 0.1 mg/kg

Calculated data uses information from typical raw material composition. It could be expected that individual batches of diet will vary from this figure.

Diet post treatment by irradiation or autoclave could change these parameters. We are happy to provide full calculated nutritional information for all of

our products, however we would like to emphasise that these diets have been specifically designed for manufacture by Specialty Feeds.
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http://dx.doi.org/10.7554/eLife.11853.015Table%201.Standard%20chow%20diet%20formulation.%2010.7554/eLife.11853.015Manufacturer:%20SPECIALITY%20FEEDSProduct%20ID:%20AIN93MStandard%20AIN93M%20rodent%20dietA%20semi-pure%20diet%20formulation%20for%20laboratory%20rats%20and%20mice%20based%20on%20AIN-93M.%20This%20formulation%20satisfies%20the%20maintenance%20nutritional%20requirements%20of%20rats%20and%20mice.%20Some%20modifications%20have%20been%20made%20to%20the%20original%20formulation%20to%20suit%20locally%20available%20raw%20materials.We%20have%20evidence%20that%20vitamin%20losses%20and%20other%20changes%20to%20the%20diet%20can%20occur%20when%20irradiated%20at%2025KGy.%20The%20diet%20SF08-020%20has%20been%20formulated%20for%20irradiation.%20Please%20contact%20us%20for%20more%20information%20if%20the%20diet%20is%20to%20be%20irradiated.Calculated%20nutritional%20parametersIngredientsProtein13.6%Casein%20(acid)140%20g/kgTotal%20fat4.0%Sucrose100%20g/kgTotal%20digestible%20carbohydrate%20as%20defined%20by%20FSANZ%20Standard%201.2.864.8%Canola%20oil40%20g/kgCellulose50%20g/kgCrude%20fiber4.7%Wheat%20starch472%20g/kgAD%20fiber4.7%Dextrinised%20starch155%20g/kgDigestible%20energy15.1%20MJ/kgDL%20methionine1.8%20g/kg%%20Total%20calculated%20digestible%20energy%20from%20lipids9.0%Calcium%20carbonate13.1%20g/kg%%20Total%20calculated%20digestible%20energy%20from%20protein15.0%Sodium%20chloride2.6%20g/kgAIN93%20trace%20minerals1.4%20g/kgDiet%20form%20and%20featuresPotassium%20citrate1.0%20g/kgSemi%20pure%20diet.%2012%20mm%20diameter%20pellets.Pack%20size%205%20kg.%20Vacuum%20packed%20in%20oxygen%20impermeable%20plastic%20bags,%20under%20nitrogen.%20Bags%20are%20packed%20into%20cardboard%20cartons%20for%20protection%20during%20transit.%20Smaller%20pack%20quantity%20on%20request.Diet%20suitable%20for%20irradiation%20but%20not%20suitable%20for%20autoclave.Lead%20time%202%20weeks%20for%20non-irradiation%20or%204%20weeks%20for%20irradiation.Potassium%20dihydrogen%20phosphate8.8%20g/kgPotassium%20sulphate1.6%20g/kgCholine%20chloride%20(75%)2.5%20g/kgAIN93%20vitamins10%20g/kgCalculated%20amino%20acidsCalculated%20total%20vitaminsValine0.90%Vitamin%20A%20(retinol)4000%20IU/kgLeucine1.30%Vitamin%20D%20(cholecalciferol)1000%20IU/kgIsoleucine0.60%Vitamin%20E%20(&x03B1;-tocopherol%20acetate)75%20mg/kgThreonine0.60%Vitamin%20K%20(menadione)1%20mg/kgMethionine0.60%Vitamin%20C%20(ascorbic%20acid)None%20addedCystine0.05%Vitamin%20B1%20(thiamine)6.1%20mg/kgLysine1.00%Vitamin%20B2%20(riboflavin)6.3%20mg/kgPhenylanine0.70%Niacin%20(nicotinic%20acid)30%20mg/kgTyrosine0.70%Vitamin%20B6%20(pryridoxine)7%20mg/kgTryptophan0.20%Pantothenic%20acid16.5%20mg/kgHistidine0.42%Biotin200%20&x03BC;g/kgCalculated%20total%20mineralsFolic%20acid2%20mg/kgCalcium0.47%InositolNone%20addedPhosphorus0.35%Vitamin%20B12%20(cyancobalamin)103%20&x03BC;g/kgMagnesium0.09%Choline1670%20mg/kgSodium0.15%Calculated%20fatty%20acid%20compositionChloride0.16%Myristic%20acid%2014:0No%20dataPotassium0.40%Palmitic%20acid%2016:00.20%Sulphur0.17%Stearic%20acid%2018:00.10%Iron75%20mg/kgPalmitoleic%20acid%2016:1No%20dataCopper6.9%20mg/kgOleic%20acid%2018:12.40%Iodine0.2%20mg/kgGadoleic%20acid%2020:1traceManganese19.5%20mg/kgLinoleic%20acid%2018:2%20n60.80%CobaltNo%20data&x03B1;-Linolenic%20acid%2018:3%20n30.40%Zinc47%20mg/kgArachidonic&x00A0;acid%2020:4%20n6No%20dataMolybdenum0.15%20mg/kgEPA%2020:5%20n3No%20dataSelenium0.3%20mg/kgDHA%2022:6%20n3No%20dataCadmiumNo%20dataTotal%20n30.45%Chromium1.0%20mg/kgToal%20n60.76%Fluoride1.0%20mg/kgTotal%20mono-unsaturated%20fats2.46%Lithium0.1%20mg/kgTotal%20polyunsaturated%20fats1.21%Boron3.1%20mg/kgTotal%20saturated%20fats0.28%Nickel0.5%20mg/kgVanadium0.1%20mg/kgCalculated%20data%20uses%20information%20from%20typical%20raw%20material%20composition.%20It%20could%20be%20expected%20that%20individual%20batches%20of%20diet%20will%20vary%20from%20this%20figure.%20Diet%20post%20treatment%20by%20irradiation%20or%20autoclave%20could%20change%20these%20parameters.%20We%20are%20happy%20to%20provide%20full%20calculated%20nutritional%20information%20for%20all%20of%20our%20products,%20however%20we%20would%20like%20to%20emphasise%20that%20these%20diets%20have%20been%20specifically%20designed%20for%20manufacture%20by%20Specialty%20Feeds.
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Table 2. Primer sequences for mouse genes used in quantitative real-time PCR.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

Acaa2 ATGTGCGCTTCGGAACCAAA CAAGGCGTATCTGTCACAGTC

Acetyl-coenzyme A acyltransferase 2/short chain-specific 3-ketoacyl-CoA thiolase (mitochondrial)

Acadl TGCCCTATATTGCGAATTACGG CTATGGCACCGATACACTTGC

Acyl-coenzyme A dehydrogenase, long chain

Acadvl TGACCTTGGTGTTAGCGTTAC CTGGGCCTTTGTGCCATAGAG

Acyl-coenzyme A dehydrogenase, very long chain

Acox1 TCGAAGCCAGCGTTACGAG ATCTCCGTCTGGGCGTAGG

Acyl-CoA oxidase 1, palmitoyl

Acsl1 ACCAGCCCTATGAGTGGATTT CAAGGCTTGAACCCCTTCTG

Acyl-CoA synthetase, long chain family member 1

Angptl4 TCCAACGCCACCCACTTAC TGAAGTCATCTCACAGTTGACCA

Angiopoietin-like 4

Cpt1a CTATGCGCTACTCGCTGAAGG GGCTTTCGACCCGAGAAGA

Carnitine palmitoyltransferase 1a (liver)

Cpt2 CAAAAGACTCATCCGCTTTGTTC CATCACGACTGGGTTTGGGTA

Carnitine palmitoyltransferase 2

Cyp4a14 TCATGGCGGACTCTGTCAATA GCAGGCGAAAGAAAGTCAGG

Cytochrome P450, family 4, subfamily a, polypeptide 14

Ehhadh ACAGCGATACCAGAAGCCAG TGGCAATCCGATAGTGACAGC

Enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase

Fabp1 AAGGCAGTCGTCAAGCTGG CATTGAGTTCAGTCACGGACTT

Fatty acid bind protein 1 (liver)

Fgf21 CTGCTGGGGGTCTACCAAG CTGCGCCTACCACTGTTCC

Fibroblast growth factor 21

Gck AGACGAAACACCAGATGTATTCC GAAGCCCTTGGTCCAGTTGAG

Glucokinase

Nr3c1 CCGGGTCCCCAGGTAAAGA TGTCCGGTAAAATAAGAGGCTTG

Glucocorticoid receptor

Hadha AGCAACACGAATATCACAGGAAG AGGCACACCCACCATTTTGG

Hydroxyacyl-coenzyme A dehydrogenase, alpha subunit

Hadhb TGAATATGCACTGCGTTCTCAT CCTTTCCTGGTACTTTGAAGGG

Hydroxyacyl-coenzyme A dehydrogenase, beta subunit

Hk1 CGGAATGGGGAGCCTTTGG GCCTTCCTTATCCGTTTCAATGG

Hexokinase 1

Fkbp51 TTTGAAGATTCAGGCGTTATCCG GGTGGACTTTTACCGTTGCTC

FK506 binding protein 51

Pex19 GACAGCGAGGCTACTCAGAG GCCCGACAGATTGAGAGCA

Peroxisomal biogenesis factor 19

Ppara TCGGCGAACTATTCGGCTG GCACTTGTGAAAACGGCAGT

Peroxisome proliferator activated receptor alpha

Slc25a20 GCGCCCATCATTGGAGTCA CACACCAGATAACATCCCAGC

Solute carrier family 25 (mitochondrial carnitine/acylcarnitine translocase), member 20

36B4/RplP0 CGAGGACCGCCTGGTTCTC GTCACTGGGGAGAGAGAGG

Ribosomal protein P0
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minimize differences in milk availability verified by stomach inspection. All experimental protocols

involving animals were reviewed and approved by the Veterinary Office of the Canton Vaud (SCA–

EXPANIM, Service de la Consommation et des Affaires Vétérinaires, Epalinges, Switzerland) in accor-

dance with the Federal Swiss Veterinary Office Guidelines and by the Institutional Animal Care and

Use Committee (#2013/SHS/866) in Singapore. The animal handling procedures were compliant with

the NIH Guide for the Care and Use of Laboratory Animals.

Tissue RNA isolation and quantitative real-time PCR
Total RNA was extracted from liver samples using TRIzol reagent (Life Technologies, Carlsbad, CA)

and purified using RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. The purified RNA was spectrophotometrically quantified and its quality assessed by

measuring the absorbance ratios at 260 nm/280 nm and 260 nm/230 nm using Nanodrop Spectro-

photometer (Thermo Fisher Scientific, Wilmington, DE). One microgram of mRNA was reverse-tran-

scribed to cDNA using Superscript II Reverse Transcriptase (Life Technologies, Carlsbad, CA). The

cDNA template was amplified by real-time PCR using iTaq SYBR Green Supermix (Bio-Rad, Hercules,

CA). Relative mRNA levels were calculated using the comparative 2-DDCT method after normalization

to 36B4/RplP0 expression, which was used as an invariant control. The primer sequences used for

real-time PCR were obtained from the Harvard PrimerBank (http://pga.mgh.harvard.edu/primer-

bank) and are provided in Table 2.

ChIP assays
Eight to ten livers were pooled, homogenized, and cross-linked with 1% formalin at room tempera-

ture for 5 min. The reaction was stopped with the addition of glycine and nuclei isolated by sucrose-

density ultracentrifugation. The nuclei were sonicated to produce DNA fragments of ~500–1000

base pairs. Total chromatin was incubated with 10 mg of antibody overnight at 4˚C and precipitated

with 10 ml of blocked protein A-agarose beads (Life Technologies, Carlsbad, CA) at 4˚C for 2 hr.

After de-crosslinking, the DNA was purified and the enrichment quantified by quantitative real-time

PCR, expressing the results as the percentage of input. Antibodies against RNA polymerase II (Pol2,

#sc-67318X), GR (#sc-1004X), and pre-immune rabbit antibodies (#sc-2027X) were purchased from

Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies against PPARa (#AB2779), histone deacety-

lase 3 (HDAC3, #AB7030), acetyl-histone 4 (AcH4), and trimethylated lysine 4 (H3K4me3, #AB8580),

lysine 9 (H3K9me3, #AB8898), and lysine 27 (H3K27me3, #AB6002) of histone 3 were from Abcam

(Cambridge, MA). The primer sequences used for chromatin immunoprecipitation were provided in

Table 3.

Table 3. Primer sequences for mouse genes used in chromatin immunoprecipitation.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

ACOX1_TSS TCCCGGAAAGATCACGTGAACC TCCCCGAGCGGCTCCTCGCCA

ACOX1_PPRE TAGCCAACGACAATGAACC CGGAAACCAGAAGGGAATG

ANGPTL4_TSS CCAGCAAGTTCATCTCGTCC TCCCTCCCACTCCCACACC

CYP4A14_TSS ATTCCCCCTCCCACAAGTAG CCCATGGTTAGTAGTTTCTGGA

CYP4A14_PPRE AAGGAAAAGGCCACCGTCTA TCCATCTCACTGAACTTTACCC

FGF21_TSS ATATCACGCGTCAGGAGTGG TCCCCAGCTGAGAAGACACT

FGF21_PPRE AGGGCCCGAATGCTAAGC AGCCAAGCAGGTGGAAGTCT

PPARa_TSS GTTGTCATCACAGCTTAGCG CAGATAAGGGACTTTCCAGGTC

PPARa_GRE
(�1007 to �993)

GGGACTCGGGGAACAAGCTGTGCGATCTAG GGAAGGGTGCGCCTTGGCGCGCACTCC

PPARa_GRE
(�2080 to �2066)

CTTTCCTCTCAATACAGTCTGTCAAACAAAA GTTTTGTTTGTTTTGACTCTCTGTCCAG

PPARa_GRE
(�2953 to �2939)

AAGGGTGAACACACTTTGTTTCCTGGATG TCCACCAGGGCAGGGGAAGTAGGTATT

DOI: 10.7554/eLife.11853.017
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Dexamethasone treatment
E15 fetal liver explants were used for treatment with dexamethasone due to their relatively low

PPARa activation status. Fresh liver sections (n = 6 per treatment group) were cultured in the pres-

ence of dexamethasone (0.1 mM, 1 mM, or 10 mM) for 24 hr. After treatment, total RNA was isolated

and purified, and PPARa mRNA levels were measured by quantitative real-time PCR.

Primary hepatocyte isolation and culture
Fetuses or pups were sacrificed by decapitation. The liver was removed, minced into fine consistency

with a pair of scissors, and digested at 37˚C with agitation at 115 rpm for 1 hr in 10 ml of sterile-fil-

tered 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES):collagenase solution containing

0.1 M HEPES, 0.12 M NaCl, 50 mM KCl, 5 mM D-glucose, 1.5% bovine serum albumin (BSA), 1 mM

CaCl2, and 10,000 activity units of type-I collagenase (Life Technologies, Carlsbad, CA). The cell sus-

pension was filtered through a 100-mm nylon mesh (BD Falcon, Franklin Lakes, NJ) and collected in a

50-ml centrifuge tube. The suspension was centrifuged at 200 � g for 10 min to pellet the cells and

the supernatant removed. Red blood cell (RBC) lysis solution was added to re-suspend the cells, fol-

lowed by incubation at room temperature for 5 min. After RBC lysis, ice-cold PBS was added and

the cell suspension filtered through a 40-mm nylon mesh (BD Falcon, Franklin Lakes, NJ) to remove

cell clumps. Finally, the cell suspension was centrifuged at 200 �g for 5 min to pellet the cells. For

primary hepatocyte culture, the isolated mouse hepatocytes (2 � 105 cells/per 9.5 cm2 well) were

then cultured in DMEM containing 10% fetal calf serum (FCS) and 2 mM penicillin/streptomycin in 6-

well plates coated with rat tail collagen (Corning, Tewksbury, MA).

siRNA-mediated knockdown of Nr3c1
Primary hepatocytes were isolated and cultured as described above. Upon reaching a confluency of

~60%, the adherent cells were treated with 50 ng ON-TARGETplus NR3C1/GR-targeting SMART-

pool siRNAs (L-045970-01-0005) or non-targeting pool (D-001810-10-05) (GE Dharmacon, Lafayette,

CO) for 24 hr using transfection reagent DharmaFECT 1 as per the manufacturer’s protocol. Cells

were harvested for a-GR ChIP assays after 48 hr of incubation with complete medium. Successful

knockdown was determined by reduced Nr3c1 mRNA expression of at least 80% when compared

with non-targeting siRNA treatment group.

Gene expression microarray and analysis
RNA samples were randomly selected from three different litters for each genotype (n = 6). Total

RNA was extracted from mouse liver using TRIzol reagent (Life Technologies, Carlsbad, CA) and fur-

ther purified using RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. RNA quality measurements were performed using an Agilent 2100 bioanalyzer (Agilent

Technologies, Waldbronn, Germany). Only samples with intact bands corresponding to the 18S and

28S rRNA subunits without contamination with chromosomal DNA and had an RNA integrity number

> 8.0 were selected for array hybridization. Hybridization was performed with Affymetrix Mouse

Genome MoGene1.0 ST arrays according to the manufacturer’s protocol and analyzed as described

previously (Leuenberger et al., 2009).Briefly, the significant enrichment of underlying KEGG, GO,

and Reactome curated pathways was determined from the hypergeometric distribution and cor-

rected for multiple comparisons using Broad Institute Molecular Signatures Database v4.0 (http://

www.broadinstitute.org/gsea/msigdb/). Gene sets with a false discovery rate p-value<0.05 were

considered significant. Genes that were up- or down-regulated were identified by selecting genes

with logarithmic fold-change ratio (PPARa-/-/PPARa+/+) > 1.3 (up-regulated genes) or < �1.3 (down-

regulated genes). The raw data have been deposited in NCBI Gene Expression Omnibus and made

accessible through the GEO database (accession number: GSE39669 and GSE39670).

Cell sorting
E19.5 fetal hepatic cells were isolated as described above and incubated with PE- or FITC-conju-

gated monoclonal antibodies against DLK (LS-C179444) (LifeSpan Biosciences, Seatlle, WA) or CK18

(ab52459) (Abcam, Cambridge, MA) at 1:200 dilution in PBS supplemented with 0.1% fetal calf

serum according to a protocol previously described (Tanimizu et al., 2003). The samples were then
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washed with PBS and mixed with 1 mg/ml propidium iodide before cell sorting using a FACSAria cell

sorter (Becton Dickinson, San Jose, CA).

Flow cytometry
Primary hepatocytes were isolated as described above. Mitochondria and peroxisomes were stained

using MitoTracker Red and SelectFX Alexa Fluor 488 Peroxisome Labeling Kits (Life Technologies,

Carlsbad, CA) according to the manufacturer’s protocols. Negative controls without Mitotracker Red

or fluorophore-conjugated secondary antibodies were used to gate the quadrants. Levels of mito-

chondrial membrane potential and intracellular ROS production were determined by tetramethylr-

hodamine, ethyl ester (TMRE) (ab113852) staining and 2’,7’ –dichlorofluorescin diacetate (DCFDA)

(ab113851) (Abcam, Cambridge, MA) staining, respectively, according to the manufacturer’s proto-

cols. Treatments with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP, an ionophore

uncoupler of oxidative phosphorylation capable of eliminating mitochondrial membrane potential) at

20 mM for 10 min or N-acetylcysteine (NAC, an antioxidant) at 5 mM for 2 hr served as negative con-

trols for the respective staining. A total of 10,000 events were recorded. The data were analyzed

using BD FACSDiva software (version 6; Becton Dickinson, San Jose, CA) and further processed by

FlowJo software (version 7.6.1; Tree Star, OR).

Measurement of Cellular ATP Production
Primary hepatocytes were isolated and cultured as described above. Cellular ATP production was

measured in the presence of 25 mM glucose, 10 mM galactose, or 2.5 mM rotenone (Sigma-Aldrich,

Saint Louis, MO) using the ENLITEN ATP Assay System Bioluminescence Detection Kit (Promega,

Madison, MI) according to the manufacturer’s protocol. Bioluminescence signals were read on a Glo-

Max 20/20 Luminometer (Promega, Madison, MI) and normalized to the total number of viable cells.

Cell viability assay was performed in extracted primary hepatocytes using trypan blue exclusion test

based on a protocol previously described (Strober, 2001). The production of pyruvate via the glyco-

lytic metabolism of glucose yields 2 net ATP, but the same catalytic pathway yields no net ATP when

galactose is used instead of glucose, thereby forcing cells to rely on oxidative phosphorylation for

energy. Thus, the use of galactose in the primary hepatocyte culture acts as a positive control for the

measurement of oxidative phosphorylation-dependent energy production (Aguer et al., 2011).

Oxygen Consumption Rate (OCR) Measurement
Primary hepatocytes were isolated as described above and 2 � 104 cells seeded per well on XF-24

cell culture plates (Seahorse Bioscience, Billerica, MA) coated with rat tail collagen in DMEM medium

containing 5% FCS and incubated overnight at 37˚C. The cellular oxygen consumption rate was mea-

sured as described previously (Nasrin et al., 2010). The next day, cells were equilibrated with buffer

(111 mM NaCl, 4.7 mM KCl, 2 mM MgSO4, 1.2 mM Na2HPO4, 2.5 mM glucose, 0.5 mM carnitine)

and incubated at 37˚C for 60 min. The basal cellular respiration was measured without any treatment

for 15 min (n = 9 per group), followed by treatment with 200 mM palmitate conjugated with BSA in a

6:1 molar ratio or BSA alone for 40 min (n = 6 per group). To measure the mitochondrial fatty acid

oxidation, cells were subsequently incubated with 300 mm etomoxir, a known carnitine palmitoyl-

transferase I inhibitor, for another 30 min (n = 3 per group). All measurements utilized the Seahorse

XF24 Flux Analyzer (Seahorse Biosciences, Billerica, MA). The OCR of whole hepatocytes was stan-

dardized for total protein concentration after the assay was completed.

Histological analysis
Fresh liver samples were collected and embedded in OCT tissue freezing medium (Leica Microsys-

tems, Wetzlar, Germany). Oil Red O stock solution was prepared by dissolving 0.5 g of Oil Red O

powder (Sigma-Aldrich, St. Louis, MO) in 500 ml isopropanol. To constitute 50 ml of 60% Oil Red O

working solution, 30 ml of the stock solution was diluted with 20 ml of water. Fresh-frozen samples

were sectioned (6 mm thick) and stained with 60% Oil Red O solution for 10 min. The Oil Red

O-stained sections were counterstained with methylene blue.
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Table 4. Control diet formulation.

Manufacturer: KLIBA NAFAG, SWITZERLAND
Product ID: 2222

Mouse and rat Experimental diet, purified
diet

AIN-93G

Major nutrients

Dry matter 90.0%

Crude protein 18.0%

Crude fat 7.0%

Crude fiber 3.5%

Crude ash 3.0%

Nitrogen-free extract (NFE) 58.5%

Gross energy 17.5 MJ/kg

Metabolic energy 15.9 MJ/kg

Starch 35.0%

Amino acids

Arginine 0.65%

Lysine 1.40%

Methionine 0.50%

Methionine + cystine 0.85%

Tryptophan 0.22%

Threonine 0.70%

Major mineral elements

Calcium 0.52%

Phosphorus 0.32%

Magnesium 0.08%

Sodium 0.22%

Potassium 0.36%

Chlorine 0.15%

Trace elements

Iron 65 mg/kg

Zinc 45 mg/kg

Copper 6 mg/kg

Iodine 0.6 mg/kg

Manganese 12 mg/kg

Selenium 0.2 mg/kg

Vitamins

Vitamin A 4000 IU/kg

Vitamin D3 1000 IU/kg

Vitamin E 100 mg/kg

Vitamin K3 4 mg/kg

Vitamin B1 6 mg/kg

Vitamin B2 6 mg/kg

Vitamin B6 7 mg/kg

Vitamin B12 0.05 mg/kg

Nicotinic acid 30 mg/kg

Table 4 continued on next page
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Analysis of serum and tissue metabolites
Serum glucose and triglyceride levels were measured using the Accutrend Plus meter (Roche Diag-

nostics, Indianapolis, IN). Serum b-hydroxybutyrate and liver ALT levels were measured using the b-

hydroxybutyrate Assay Kit and ALT Activity Assay Kit, respectively (Sigma-Aldrich, Saint Louis, MO).

Lipids were extracted from the liver samples by the Bligh/Dyer method and analyzed by gas-liquid

chromatography as previously described (Zadravec et al., 2010).

High-fat-diet weaning challenge
Although feeding the P5 pups with milk harvested from Ppara+/- dams would be ideal for this HFD-

weaning challenge, we were ethically and technically restricted to perform oral gavage in these

young pups and to collect sufficient milk for this experiment. For these reasons, we resorted to the

best compromise by exposing the pups to a high-fat/low-carbohydrate (HF/LC) diet or a control diet

from P5 (i.e., just before tooth eruption) to P15 (i.e., when liver steatosis is mostly resolved). The

diets (Provimi Kliba, Kaiseraugst, Switzerland) had the following macronutrient compositions (% w/w:

fat, carbohydrates, protein): control, 16.7/64.3/19.0 (#2222) (Table 4) and HF/LC, 74.4/6.6/19.0

(#2201) (Table 5). Both diets used identical macronutrient sources (fat source: beef tallow; carbohy-

drate source: starch; protein source: casein), allowing a precise comparison of differences in

macronutrients.

L-cycloserine treatment
Two-day-old pups were injected with L-cycloserine (Sigma-Aldrich, Saint Louis, MO) at 30 mg/kg/

day or 0.9% saline (vehicle control) for 2 to 4 days. Blood glucose and body weight of the pups was

monitored before and after treatment.

Western blot analysis
Cytoplasmic and nuclear protein fractions were isolated as described above. For Western blotting,

equal amounts of protein extracts (20 mg) were resolved by sodium dodecyl sulfate-polyacrylamide

gel electrophoresis and electrotransferred onto a nitrocellulose membrane. The membranes were

processed as recommended by the antibody suppliers. Chemiluminescence was detected using the

Luminata Crescendo Western HRP Substrate (Millipore, MA). Beta-tubulin and U2AF65 were used to

check for equal loading and the transfer of cytoplasmic and nuclear proteins, respectively. Primary

Pantothenic acid 16 mg/kg

Folic acid 2 mg/kg

Biotin 0.2 mg/kg

Choline 1200 mg/kg

Ingredients

Corn starch, casein, dextrose, sucrose, refined soybean oil, cellulose, minerals,
vitamins, amino acids

Remarks

- Experimental diet for mice and rats

- Given values are calculated averages in air-dry feed

- Production on demand

Delivery form

Pellets 10 mm round

2222.PH.A05:

5 kg in welded aluminium bag
2222.MA.A05:
5 kg in welded aluminium bag

KLIBA NAFAG | PROVIMI KLIBA AG | CH-4303 Kaiseraugst | Tel. +41 61 816 16 16 | Fax. +41 61 816 18 00 |
kliba-nafag@provimi-kliba.ch | www.kliba-nafag.ch

DOI: 10.7554/eLife.11853.018
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Table 5. High-fat diet formulation.

Manufacturer: KLIBA NAFAG, SWITZERLAND
Product ID: 2201

Mouse and rat Experimental diet, purified diet

Ketogenic diet XL75:XP10

Major nutrients

Dry matter 99.1%

Crude protein 9.9%

Crude fat 74.4%

Crude fiber 5.5%

Crude ash 6.3%

Nitrogen-free extract (NFE) 3.0%

Metabolic energy 7208 kcal/kg

Starch 0.7%

Amino acids

Arginine 0.35%

Lysine 0.79%

Methionine 0.28%

Methionine + cystine 0.90%

Tryptophan 0.13%

Threonine 0.38%

Major mineral elements

Calcium 0.98%

Phosphorus 0.61%

Magnesium 0.15%

Sodium 0.40%

Potassium 0.69%

Chlorine 0.57%

Trace elements

Iron 151 mg/kg

Zinc 97 mg/kg

Copper 16 mg/kg

Iodine 1.4 mg/kg

Manganese 31 mg/kg

Selenium 0.6 mg/kg

Vitamins

Vitamin A 8000 IU/kg

Vitamin D3 2000 IU/kg

Vitamin E 200 mg/kg

Vitamin K3 9 mg/kg

Vitamin B1 12 mg/kg

Vitamin B2 13 mg/kg

Vitamin B6 14 mg/kg

Vitamin B12 0.1 mg/kg

Nicotinic acid 66 mg/kg

Pantothenic acid 32 mg/kg

Folic acid 5 mg/kg

Table 5 continued on next page
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antibody against full-length ANGPTL4 was a kind gift from Prof. Andrew Tan Nguan Soon. Primary

antibodies against ACOX1 (#sc-98499), FGF21(#sc-292879), CYP4A14 (#sc-46087), b-tubulin (#sc-

9104), U2AF65 (#sc-48804), GR (#sc-1004), and HDAC3 (#sc-17795), and all secondary antibodies

conjugated with horseradish peroxidase were acquired from Santa Cruz Biotechnology (Dallas, TX).

PPARa polyclonal antibody (#101710) was purchased from Cayman Chemical (Ann Arbor, MI).

Ex vivo tissue culture
Fetal livers (E19.5) were sliced < 0.1-mm-thick using two adjacent scalpel blades and cultured on col-

lagen-coated plates at 37˚C for 24 hr in DMEM:F12 with 10% fetal bovine serum containing 5 mM

butyrate, 5 mM b-hydroxybutyrate, or 0.3 mM trichostatin A. All of these chemicals were acquired

from Sigma-Aldrich (Saint Louis, MO).

statistical analysis
We performed power analysis for sample size estimation using Power And Precision software (ver-

sion 4) by Biostat Inc. when the study was being designed. We set the mean outcome for Ppara+/+

and Ppara-/- mice at 100 and 80, respectively (i.e., 20% difference) and estimated the standard devia-

tion to be ± 10% based on our preliminary data. We estimated that a total of 6 mice per group is

needed in order to have a power of 80%, which means there is an 80% likelihood that the study will

yield a statistically significant (i.e., a value = 0.05) effect to allow us to detect a mean outcome differ-

ence of 20% between Ppara+/+ and Ppara-/- mice. The outcomes (e.g., gene expression, metabolic

parameters) are measured on a continuous scale. The null hypothesis is that the mean outcome for

these two groups is identical. The computation of the sample size is based on the assumption that

there would be no missing data (i.e., all mice will produce data). The data in all figure panels reflect

multiple experiments performed on different days using pups (n = 6 with triplicates) derived from

different litters. In this study, we used 6 mice per group (i.e., biological replicates) for all experi-

ments. Further, measurements and experiments were repeated in triplicates for each sample (i.e.,

technical replication). Values were expressed as mean ± standard error of the mean (SEM). Statistical

tests, including the two-tailed Mann-Whitney and two-way ANOVA with Bonferroni post-hoc analy-

sis, were performed using GraphPad Prism software (version 5.00). p-values<0.05 were considered

significant.

Table 5 continued

Manufacturer: KLIBA NAFAG, SWITZERLAND
Product ID: 2201

Mouse and rat Experimental diet, purified diet

Ketogenic diet XL75:XP10

Biotin 0.4 mg/kg

Choline 1975 mg/kg

Ingredients

Beef fat, casein, cellulose, minerals, vitamins, amino acids

Remarks

- Experimental diet for mice and rats

- Given values are calculated averages in air-dry feed

- Production on demand

Delivery form

Paste

2201.MA.A05:

5 kg in welded aluminium bag

KLIBA NAFAG | PROVIMI KLIBA AG | CH-4303 Kaiseraugst | Tel. +41 61 816 16 16 | Fax. +41 61 816 18 00 |
kliba-nafag@provimi-kliba.ch | www.kliba-nafag.ch

DOI: 10.7554/eLife.11853.019
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We thank Béatrice Desvergne, Federica Gilardi, Sven Pettersson, and Andrew Nguan Soon Tan for
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