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Abstract: Connecting transcriptionalandpost-transcriptional regulatorynetworks solvesan importantpuzzle
in the elucidation of gene regulatory mechanisms. To decipher the complexity of these connections, we build
co-expression network modules for mRNA as well as miRNA expression profiles of breast cancer data. We
construct gene and miRNA co-expression modules using the weighted gene co-expression network analysis
(WGCNA)method and establish the significance of thesemodules (Genes/miRNAs) for cancer phenotype. This
work also infers an interaction network between the genes of the turquoise module from mRNA expression
data and hubs of the turquoise module frommiRNA expression data. A pathway enrichment analysis using a
miRsystem web tool for miRNA hubs and some of their targets, reveal their enrichment in several important
pathways associated with the progression of cancer.

Keywords: geneexpression;hubs;miRNA;moduledetection;moduleeigengenenetworks;network inference.

1 Introduction
Gene expression programs encode the instructions for organism development, its physiological functions,
and morphological characteristics. These programs are regulated at multiple levels and involve interaction
between different regulatory factors. The first level of interaction occurs at the transcription level wherein
DNA binding proteins called transcription factors (TFs) attach themselves to the promoter sequences near the
transcription start sites and help build transcription initiation complex. These TFs also bind themselves to
regulatory sequences, such as enhancers, and can control gene expression either by activating or repressing
transcription of related genes [1–3]. The way these gene expression regulators interact with their targets can
be described in the form of a transcriptional regulatory network (TRN). In a TRN, the genes and TFs serve as
network nodes and the edges represent the direct interactions between them. TRNs are highly complex due to
the complex connectivity patterns of their nodes and the number of regulatory links present in the network.

BuildingmodelsofTRNsprovidesasystemsapproach tostudy important functionsof the livingorganisms
that control and co-ordinate its development and physiology of all vital organs. A thorough understanding
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of TRNs is a vital tool in the hands of research scientists and can help in solving problems in the research
domains ranging from basic to applied bioinformatics.

Disease mechanisms that arise due to the dysfunction of TRNs can also be explained by understanding
underlying regulatory processes. TRNs also guide the design of efficient strategies to select novel drug targets
and to understand cellular engineering. A range of computationalmethods for the inference of TRNs has been
proposed over a couple of decades. These methods operate on either a single data source (transcriptome) or
a combination of multiple data sources (i.e., genome, transcriptome, methylome, and epigenome, etc.) that
play an essential role in gene expression regulation. A comprehensive review of these methods can be found
in [4, 5].

Another level of gene expression regulation takes place after the process of transcription is over. This
post-transcriptional gene regulation is primarily mediated through small non-coding RNAs usually referred
to as miRNAs. These miRNA are approximately 22 nt in length and have become a major attraction in gene
regulation studies for a variety of disease mechanisms [6]. The discovery of miRNA’s has expanded the scope
of gene regulation studies [7, 8], and extensive literature has been published since then to understand the
functions ofmiRNAs and their role in post-transcriptional regulation. They are found in almost all eukaryotes,
including humans [9]. They regulate up to 30% of the protein-coding genes in humans and account for nearly
1–5% of the total genome. They are reported to have a ubiquitous role in post-transcriptional gene regulation
[10, 11] by targeting the 3′ untranslated region (UTR) of the mRNA, thereby resulting in either degradation of
the target mRNA or its translational repression [12]. Since miRNAs target translational templates of proteins,
they perform key functions in many biological processes, such as cell proliferation, cell differentiation, cell
growth, development, and apoptosis. However, any alterations to their functioning have been related to
various pathological disorders, including tumorigenesis [9]. According to miRNA target databases, miRNAs
and mRNAs can establish different regulatory relationships. These relationships can be either one-to-many,
where a single miRNA can regulate many target genes or many-to-one, where one gene may be the target
of multiple miRNAs. Further studies delving into the miRNAs and mRNAs interactions have reported even
many-to-many relationships between these genomic entities using computational analysis [9, 13, 14].

To investigate how miRNAs and genes jointly affect complex human diseases, we adopt the network
approach proposed by Zhang and Horvath [15], wherein weighted co-expression network modules are built
from miRNA and mRNA expression datasets to uncover the nature of complex relationships between genes
and their regulators amongmiRNAs. Since individual genes do not act in isolation but interactwith each other
and other genomic entities and jointly affect human health. Therefore, inferring and analyzing networks of
gene regulation (i.e., transcriptional and post-transcriptional) provides an important framework to search
for genes/regulators that play an essential role in complex biological functions and diseases. Further, the
integration of miRNAs co-expression modules can provide regulatory links between transcriptional and
post-transcriptional regulatory mechanisms.

2 Related literature
Various studies have been conducted based on integrated miRNA and mRNA expression analysis mainly
on different types of cancers [16–21]. These studies incorporated large scale datasets of mRNA and miRNA
expression profiles to infer regulatory interactions between miRNAs and their targets genes [18–21]. For
example, a bi-clique approach proposed by Peng et al. [18] uses the expression profile of miRNA and mRNA
datasets for module construction. However, the modules obtained in this way resulted in very few miRNAs
being included in each module, thereby, making it difficult to explain the complexities of relationships
betweenmiRNAs and their targets. Another important study aimed at constructingmiRNA–mRNA regulatory
modules uses bi-clustering together with a Gaussian Bayesian Network to infer miRNA–gene relationships
[21]. Seo et al. [22] combined correlation and bi-clustering approaches to construct miRNA–mRNA modules
to identify and rankmiRNAs that are related to cancer. The ranking is done based on influence scores derived
fromsignificant correlationsbetweenmiRNA–mRNApairs. the integrationofbothexpressionprofiles resulted
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in the identification of a large number ofmiRNAs related to cancer andhelps in understanding their regulatory
mechanisms.

A recent study by Pham et al. [23] adopted a different approach to infer miRNA–mRNA interaction net-
works frombreast cancer data. Theyproposedan invariant causal prediction (ICP)methodbasedon the causal
inference approach. The ICPmethod searches for the miRNA–mRNA pairs wherein causal relationships exist
across different cancer subtypes. The predicted miRNA–mRNA regulatory relationships are then validated
by transfection data using the miRLAB R package [24] and other experimentally validated databases. A sim-
ilar study that infers miRNA–mRNA regulatory networks employs Funrich [25], an analysis tool used for the
prediction of TF targets ofmiRNAs. The study also uses amiRNet database for target gene prediction. Glioblas-
toma multiforme (GBM) mRNA and miRNA expression datasets downloaded from the TCGA database were
subjected to differential expression analysis. Subsequently, a pathway and functional enrichment analysis
on these differentially expressed gene and miRNAs was performed using Enrichr database [26]. For hub gene
identification, the authors used Cytoscape software and the prognostic roles of these hubs were determined
by Prognoscan and GEPIA databases. Finally, a potential miRNA–mRNA regulatory networkwas successfully
inferred with a significant contribution to the onset and progression of GBM.

Song et al. in [27] integrated nine HCC datasets by employing rank aggregation method. These GEO
datasets were subjected a weighted gene co-expression analysis revealing key modules related to hepato-
cellular carcinoma. A network topology analysis of the modules identified novel risk genes. The potential
functionsof these riskgeneswere furtherexploredwith theaidofmiRNA–mRNAregulatorynetworks.Another
study by Mokhtaridoost and Gönen [28] approached the same problem by devising a two-step framework to
model miRNA–mRNA regulatory relationships. They formulated a regularized factor regression model (RFR)
that extracts modules by decomposing the regulatory matrix into two low rank matrices, thereby grouping
co-related miRNAs and mRNAs together. Another study in the domain of network medicine by Paci et al.
[29], whereby the authors integrate the co-expression networks with human interactome network to predict
novel putative disease genes andmodules. An algorithm predicts key (switch) genes within the co-expression
network which regulate disease transitions. These genes are then mapped to PPI networks to predict novel
disease gene relationships. Another important study taking an integrative approach combined miRNA-seq,
mRNA-seq and lncRNA datasets was carried out by Zhou et al. [30]. Here, the authors performed a WGCNA
analysis and indentified key modules and hub genes as potential candidates that may contribute to the
progression bovine endometritis.

Here we propose to study this relationship at the modular level between miRNA–mRNA modules by
applying weighted gene co-expression network analysis (WGCNA) [15]. WGCNA is an established system
biology tool to detect co-expression modules and identify key genes that serve as network hubs within these
modules and associate these modules to phenotypic traits. We apply theWGCNA pipeline to both miRNA and
mRNA expression profile data to construct co-expression modules and detect the hub genes in both datasets.
We further explore the connectivity between miRNA and mRNA modules using the MultiMir R package [31].
MultiMir offers an interface to comprehensive databases containing predicted and experimentally validated
interactions between miRNAs and their target genes in addition to their association with diseases and drugs.
The identified modules from genes and miRNAs represent subgroups that are co-expressed and highly co-
related and the connectivity among them derived using multiMir may further enhance our understanding of
regulatory mechanisms between miRNA–mRNA regulatory interactions.

3 Materials and methods

3.1 Datasets

We downloaded miRNA and mRNA expression profiles of patients suffering from breast invasive carcinoma (BRCA) from the
Broad Institute data portal (https://gdac.broadinstitute.org) that hosts TCGA (The Cancer Genome Atlas) data. For this study, we
selectedmiRNA andmRNA expression profiles from 20 normal samples and 50 unmatched tumor samples. Besides, miRNA–gene

https://gdac.broadinstitute.org


4 | N. Wani et al.: Modular network inference between miRNA–mRNA

interaction information is provided by the MultiMir R package [31]. The package provides an interface to 14 external databases
that store miRNA–gene interactions, both experimentally validated and computationally predicted.

3.2 WGCNA pipeline

WGCNA [15] is an important systems biology tool used to construct co-expression gene networks. Besides, WGCNA is also used to
identify gene modules of gene/miRNAs and detect the role of some central players within these modules that are designated as
module hubs. The WGCNA pipeline depicted in Figure 1 is as follows:
1. Pre-processing of expression data: the gene expression data are normalized using Z-scores. These normalized expression

values for both miRNAs andmRNAs are subjected to differential expression analysis to obtain differentially expressed genes
(DEGs) anddifferentially expressedmiRNAs (DEMs). The limmavoompackage of R is used for differential expression analysis
with a false discovery rate (FDR) of less than 5%.

2. Build a network of co-expressed genes formally represented by an adjacency matrix, the elements of this matrix indicate
similarity in expression profiles of a gene pair.

3. Identify modules: For module identification, WGCNA employs hierarchical clustering. It first builds a similarity matrix from
which it derives a dissimilarity matrix for the clustering algorithm to identify gene modules. It uses a topological overlap
measure derived from the adjacencymatrix. Using this measureWGCNA identifies biologically meaningful modules that can
be subjected to further downstream analysis.

4. Relate modules to phenotypes: WGCNA pipeline helps associate modules to phenotypic traits. WGCNA defines a module
eigengene (ME) as a representative of the expressionprofile of all the geneswithin amodule. It is thefirst principal component
that can be used to derive an association between derived modules and the phenotypic traits of interest. WGCNA defines
various measures to relate genes and modules to phenotypic traits. They are (a) gene significance (GS) and (b) module
significance (MS), where GS is computed by finding a correlation between genes and phenotypes of a particular module and
MS is the average GS of all nodes within a given module. Modules with high MS value may represent signaling pathways
characteristic of the phenotypic traits for which GS and MS have been calculated.

Figure 1: Network construction and module detection workflow.
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5. Derive inter-module associations: module eigen genes (MEs) are used as representative expression profiles for a module
within the WGCNA pipeline. MEs quantify module similarities by computing the correlation between the eigengenes of
different co-expression modules. Studying this relationship between modules can elucidate the similarity between gene
groups in modules and their physiological functions.

6. Find key drivers inmodules of interest: within the co-expressionmodules, there are nodes having connections to a very large
number of other nodes in the network. In network terminology, nodes with higher degrees have the most and important
connections within the network. In the event of these nodes malfunctioning, they affect all the connected genes within
the network. WGCNA assumes that genetic networks obey the scale-free topology criterion. Doing away with the standard
practice of inferring co-expression networks between gene pairs (connected= 1, unconnected= 0), the connectivity matrix
is obtained by assigning weights to the edges of the connected gene pair using soft thresholding, which has been proven to
yield more robust results than un-weighted networks.

7. Choosing an appropriate soft threshold parameter allows to infer co-expression networks that are nearly or close to a scale-
free network. WGCNA lays strong emphasis on module trait relationships compared to relating phenotypes to individual
genes, which greatly alleviates the multiple testing problem inherent in microarray data analysis.

8. WGCNA is widely applied to analysis of genomic data wherein samples are assumed to be independent of each other.

3.3 Network construction for module detection

For network construction, miRNA expression and mRNA expression data are normalized using Z-scores. These normalized
expression values for both miRNAs and mRNAs are subjected to differential expression analysis to obtain genes and miRNAs
that are differentially expressed (DEGs & DEMs) across selected tumors and normal patient samples. We use the limma voom R
package for differential expression analysis with a false discovery rate set to less than 5%. The need for differential expression is
to select the genes and miRNAs that show high variability across samples. The process for the construction of gene co-expression
and miRNA co-expression networks follow almost similar steps. First, an expression similarity matrix is derived from expression
values of bothmRNA andmiRNA profiles by calculating the Pearson correlation coefficient between all pairs of genes and all pairs
ofmiRNAs. Using this similaritymatrixWGCNAdefines an adjacencymatrix Sij, between the ith gene/miRNA and jth gene/miRNA.

Si j = corr[xi, x j] (1)

The co-relation values obtained from Eq. (1) are raised to a soft thresholding power of 𝛽 > 1 to obtain weighted co-expression
networks.

Therefore, the expression, aij = ‖Sij‖𝛽 is an unsigned networkwith a scale-free topology represented by an adjacencymatrix.
The scale-free topology is an inherent property of biological networks. From the weighted adjacency matrix, we obtain a topology
overlap matrix (TOM). Using the TOM similarity matrix we get a TOM based dissimilarity matrix d𝑤ij. A hierarchical clustering
functionality in WGCNA uses this dissimilarity matrix to identify gene modules. Each module thus identified is assigned a
unique color code. We append letters M and G to the color based module names of genes and miRNAs detected by the WGCNA
algorithm. Genes/miRNAs, that do not belong to any module are placed into the grey module (i.e., genes/miRNAs in this module
are not co-expressed). WGCNA defines a module eigengene (ME), computed as the first principal component that represents the
overall expression level of a module. MEs from individual modules (i.e., both gene and miRNA) are used to test the association
between phenotypic traits of interest and the identified gene/miRNA modules. We calculate module membership (MM) and gene
significance (GS) of all the genes within the detected modules to identify the hubs in eachmodule. Gene significance is calculated
as the absolute value of the correlation between a gene and the clinical trait of interest, while module membership of a gene is the
correlation between its expression profile and the ME. Genes with highMM and GS values are designated as hubs for that module.
A similar procedure is followed for identifying hub miRNAs. A diagrammatic view of this approach is depicted in Figure 2.

4 Connecting miRNA–gene modules through interaction network
To establish an interaction network between transcriptional regulatory modules and miRNA regulatory mod-
ules we usemultiMiR, an R package that provides an interface to 14 external databases housingmiRNA-target
gene interaction information. The strength of the interaction is assessed depending upon the primary score
for target site binding provided by individual databases.We rank themiRNA-target interactions on these score
strengths and select top interactions based on either a percentage or a number cutoff. By default, a 20% limit
is set which can be customized to obtain a selected set of interactions as per the quality requirements.
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Figure 2: WGCNA based module association workflow.

5 Results
Here, we demonstrate that building co-expression modules of genes and miRNAs using the WGCNA pipeline
provide sufficient information about the co-relation between co-expressed gene/miRNA groups and the
phenotypic traits. We build relationships to show how a group of genes can jointly regulate and influence
the phenotypic outcome of a biological process. Initially, both expression profile datasets are subjected to
differential expression analysis. To select statistically significant miRNAs and genes we set the adjusted
p-value set to 0.05. Applying this filter yields 124 DEMs and 7531 DEGs.

5.1 Gene significance and hub gene validation
As can be observed from heat maps of both miRNA and gene expression profiles in Figure 3, the turquoise
modules seem to cluster most of the miRNAs/genes that show strong expression patterns across cancer
samples. To get a clearer picture of the association of various miRNAs/genes to their modules. Also, Figures 4
and 5 plot the gene significance of all the modules of miRNA and gene expression profiles computed as
correlation between the expression profiles and the phenotype of interest (e.g., pathological stage and count
of lymph nodes).

From the bar plots Figures 4 and 5, it can be observed that grey and turquoise miRNA modules contain
miRNAs with higher gene significance. Similarly, brown, dark green, cyan, green, orange, sky blue, and
turquoise gene modules contain genes with higher gene significance values corresponding to the clinical
traits of interest.

Weuploaded thehubs shown in the interactionnetwork to themiRsystem [32] database. A close investiga-
tion of the target genes of these miRNA hubs show their enrichment in a number KEGG pathways that control
the progression of breast cancer, such as Pathways in Cancer, Axon Guidance, PI3K/AKT/mTOR pathway,
neurotrophin signaling pathway, Wnt signaling pathway, and ESR signaling pathway.
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Figure 3: Heatmap showing
expression profiles: expression
levels in miRNA modules (left)
and expression levels in gene
modules (right).

Figure 4: Gene significance of
miRNA modules.

Figure 5: Gene significance of gene modules..
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5.2 Network Analysis
We also computed the node degree and betweenness centrality topological measures of the turquoise gene
andmiRNAmodules as shown in Table 1. The number of elements involved in integrative regulatory networks
that control important aspects of this regulatory network include hubs and genes from turquiose miRNA
and gene modules. We apply these important network topological measures to locate central players in the
interaction network depicted in Figure 6. The degree of a node also measures how densely it is intertwined
with its neighborhood. Such network nodes that possess a very high degree are called hubs [33]. Also, node
with high betweenness centrality is considered an influential node in the network.

A careful validation analysis of the hubs of this interaction network from the literature reveal that miR-
133b andmiR-134 are important miRNAs that have been reported to play a tumor suppressor roles in different
types of cancers. MiR-133b, which participates in myoblast differentiation and myogenic-related diseases, is
commonly recognized as a muscle-specific miRNA [34, 35]. Recent reports demonstrated that miR-133b also
plays a crucial role in breast cancer progression and breast metastasis [36]. Another hub-miRNA, mir-134 has
also been recently reported to participate in a majority of carcinomas and tumors.

Table 1: Integrative analysis of gene-miRNA
regulatory network.

Network node Degree Betweenness centrality

hsa-mir-133b 99 0.19
hsa-mir-134 28 0.35
hsa-mir-206 105 0.26
hsa-let-7c 143 0.66

Figure 6: Interaction network between hub miRNAs and genes of turquoise modules.

6 Discussion & conclusion
In this study, we build weighted co-expression network modules from mRNA and miRNA expression data
using the WGCNA R package. We demonstrate module connectivity for both mRNA and miRNA expression
profilesbyperforming thePearsoncorrelationofmoduleEigengenes formodules frombothmRNAandmiRNA
data. Heatmaps generated from the expression data depict the correlation between themodules and high/low
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expression of genes and miRNAs. Also, the gene significance for each module establishes the association
between the genes of amodule and the phenotypic trait of interest (e.g., cancer in our case). It is observed that
genes/miRNAs from turquoise modules have higher gene significance compared to other modules, therefore,
we infer an interaction network between hub miRNAs of the turquoise module of miRNA expression data
and the genes from the turquoise module derived from gene expression data. An investigation of these hub
miRNAs along with some of their targets reveal their enrichment in many signaling pathways associated with
cancer progression.

Although module-level regulatory networks inference from expression data help in elucidating the regu-
latorymechanisms to a greater extent. But incorporating additional knowledge in the form of protein–protein
interaction (PPI), gene ontology information and the information from signaling pathways using integrative
analysis can further help in exploring intricacies between transcriptional and post-transcription regulatory
networks.
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