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Farnesoid X receptors (FXR) are bile acid receptors that play roles in lipid, glucose, and energy homeostasis. Synthetic FXR-
specific agonists have been developed for treating nonalcoholic fatty liver disease (NAFLD) patients. However, the detailed
mechanism remains unclear. To investigate the effects of FXR on NAFLD and the possible mechanism, FXR-null mice were
fed either a normal or a high-fat diet. The FXR-null mice developed hepatomegaly, steatosis, accumulation of lipid droplets in
liver cells, glucose metabolism disorder, and elevated serum lipid levels. Transcriptomic results showed increased expression of
key lipid synthesis and glucose metabolism-related proteins. We focused on pyruvate dehydrogenase kinase 4 (PDK4), a key
enzyme involved in the regulation of glucose and fatty acid (FA) metabolism and homeostasis. Subsequently, we confirmed an
increase in PDK4 expression in FXR knockout cells. Moreover, inhibition of PDK4 expression alleviated lipid accumulation in
hepatocytes caused by FXR deficiency in vivo and in vitro. Our results identify FXR as a nuclear transcription factor that
regulates glucose and lipid metabolism balance through PDK4, providing further insights into the mechanism of FXR agonists
in the treatment of metabolic diseases.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most
common causes of chronic liver disease in Western coun-
tries [1]. NAFLD can progress to nonalcoholic steatohepati-
tis (NASH), liver fibrosis, and even cirrhosis caused by
oxidative stress and lipid peroxidation, which may eventu-
ally lead to hepatocellular carcinoma, portal hypertension,
and liver failure [2–4]. Moreover, NAFLD is associated with
a high risk of multiorgan insulin resistance, type 2 diabetes,
dyslipidemia, and coronary heart disease [5]. Thus, mecha-

nistic understanding of NAFLD pathogenesis is crucial for
developing a therapeutic strategy.

The hallmark feature of NAFLD is steatosis and excessive
intrahepatic triglyceride (TG) in the liver of NAFLD patients
[6, 7]. The mechanisms of excessive intrahepatic TG include
[8] (1) increased supply of free fatty acids (FFAs), including
increased lipolysis in both visceral/subcutaneous adipose tis-
sue and/or increased uptake of dietary fat; (2) increased de
novo hepatic lipogenesis (DNL); (3) decreased FFA oxidation;
and (4) reduced removal of intrahepatic TG due to decreased
very low-density lipoprotein (VLDL) secretion. FFA delivery
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to the liver accounts for almost two-thirds of its lipid accumu-
lation [9]. Therefore, elevated peripheral blood FAs and DNL
are the main causes of liver fat accumulation in NAFLD [8].
Several rate-limiting enzymes and transcription factors partic-
ipate in hepatic lipid metabolism. The activation of DNL to
TG synthesis in the liver involves sterol regulatory element-
binding protein-1c (SREBP-1c) and lipogenic enzymes,
including fatty acid synthase (FASN), acetyl-CoA carboxylase
1 (ACC), stearoyl-CoA desaturase-1 (SCD1), and glycerol-3-
phosphate acyltransferase 1 (Gpat1) [10]. The expression
levels of these enzymes in hepatocytes are significantly upreg-
ulated regardless of whether it is in obese humans or rodents,
suggesting that an increase inDNL plays a crucial role in hepa-
tosteatosis [11].

Transcription factor functions play a central role in reg-
ulating lipid metabolism. Farnesoid X receptor (FXR) is one
of the most important bile acid and nuclear receptor in the
liver and is highly expressed in the liver and intestines
[12]. Activation of FXR apparently regulates bile acid syn-
thesis in the liver, its transport within the enterohepatic cir-
culation, and a series of physiological processes [13–16].
Growing evidence suggests that the FXR signaling pathway
is involved in lipid metabolism, glucose homeostasis, and
in the pathogenesis and progression of NAFLD [17]. Efforts
has been made to utilize bile acid, a small molecule with
strong physiological effects, and FXR agonists for therapeu-
tic applications [13]. Obeticholic acid (OCA) is the most
promising synthetic FXR agonists that has been approved
for the treatment of primary biliary cholangitis [18]. OCA
has been shown to increase insulin sensitivity in patients
with type 2 diabetes and to improve markers of liver inflam-
mation and fibrosis [19]. The effectiveness of OCA therapy
has also been demonstrated in a multicentre trial of patients
with noncirrhotic, nonalcoholic steatohepatitis [20]. The
improvement of histological features of NASH by OCA
may be related to the activation of FXR, which reduces
hepatic lipogenesis by downregulating transcription factor
SREBP1c and increasing Sirtuin 1 (SIRT1) [21, 22]. How-
ever, the exact mechanism underlying the effect of the bile
acid signaling pathway on energy metabolism is unclear.

In this study, we found that FXR null (FXR-/-) mice fed
either with a normal or a high-fat diet were hepatomegaly
with lipid droplet aggregation and elevated plasma lipids.
We demonstrated that FXR regulated liver lipid droplet
accumulation and IR by mediating pyruvate dehydrogenase
kinase 4 (PDK4) gene expression. These results expand
understanding of FXR regulatory mechanisms of lipid
metabolism and promote the clinical application of FXR
agonists.

2. Materials and Methods

2.1. Reagents and Antibodies. Rabbit polyclonal antibodies
against FASN (#3180), PGC-1α(#2178), SCD1(#2438),
ACLY(#4332), p-p38 MAPK(#4511), ACC(#4190), P-
AMPKα1 (#2537), p-mTOR-S244–8(#5536), mTOR(#2983),
and α-tubulin(#2144) were from Cell Signaling Technology.
Anti-PDK4(#DF7169) antibodies were from Affinity Biosci-
ences. Anti-GCK(#ab137714), anti-CD36 (#ab133625), and

anti-PDK4(#ab89295) antibodies were from Abcam. Anti-
NR1H4(#PP-A9033A-00) was from R&D Systems. Anti-
SREBP-1c (#Sc-13551) was purchased from Santa Cruz.
Sodium dichloroacetate (#347795) was purchased from
Sigma-Aldrich. Sodium oleate/sodium palmitate
(#SYSJKJ006) was purchased from Xi’an Kun Chuang
Technology Company. All other chemicals were from
Sigma-Aldrich.

2.2. Animals. The animal experimental protocol was con-
formed to the Animal Ethics Committee of the University
of South China and followed the approved guidelines. Eighty
1-3-month-old male FXR knockout C57BL/6 mice (FXR-/-)
and C57BL/6 wild type (wt) mice were obtained from Jack-
son Laboratory. Mice were housed in SPF facilities. To deter-
mine the effect of FXR on glucose and lipid metabolism,
mice with matched body weight were randomized for four
groups and then either maintained on the standard chow
diet (SD,13% fat, 3.66Kcal/g, #1010009, Xietong, Nanjing,
China) or received a high-fat diet (HFD, 60% lard fat,
5.13Kcal/g, #XTHF60, Jiangsu Xietong Pharmaceutical
Bio-engineering Co., Ltd. Nanjing, China) for 12 weeks; ran-
domization was accomplished as follows: SD-WT (n = 10),
SD-FXR-/-(n = 10), HFD-WT (n = 10), and HFD-
FXR-/-(n = 10). The body weight of the mice and the food
consumed by mice were weighed every 3 days. After 71 days,
the mice were subjected to a glucose tolerance test (GTT),
and all mice were subjected to an insulin tolerance test
(ITT) after 80 days. The animals were sacrificed 12 weeks
later. Venous blood, livers, and adipose tissue (VAT) depots
from inguinal subcutaneous (SAT) and visceral were iso-
lated, rinsed with 0.9% NaCl, snap-frozen in liquid nitrogen,
and stored at -80°C for further analysis.

To determine the role of PDK4 in the process of FXR
regulating glucose and lipid metabolism, mice were random-
ized into the following four groups: HFD-WT (n = 10),
HFD-FXR-/-(n = 10), HFD-FXR-/-+low-DCA [intraperito-
neal injection 100mg/kg/day dichloroacetate (DCA, n = 10
)], and HFD-FXR-/-+high-DCA [intraperitoneal injection
300mg/kg/day dichloroacetate (DCA, n = 10)]. The body
weight of the mice and the food consumed by mice were
weighed every 3 days. After 49 days, the mice were subjected
to a GTT, all mice were subjected to an ITT after 54 days.
The animals were sacrificed immediately 8 weeks later.
Venous blood, livers, and adipose tissue (VAT) depots from
inguinal subcutaneous (SAT) and visceral were isolated,
rinsed with 0.9% NaCl, snap-frozen in liquid nitrogen, and
stored at -80°C for further analysis.

2.3. Histology. Liver and adipose tissues from the mice were
fixed in phosphate-buffered 4% paraformaldehyde. The right
lateral lobule of the liver was then divided into 2 sections at
the long middle line, one of which was embedded in paraffin
blocks and the other in the O.C.T. compound. Samples were
frozen and sectioned at a thickness of 25μm with a Leica
cryostat. Lipid droplets were determined by Oil Red O stain-
ing. Take 25μm paraffin section for morphology with hema-
toxylin and eosin (H&E); the relative content of PDK4
expression was detected by immunohistochemistry.
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2.4. Intraperitoneal Glucose Tolerance Test. The intraperito-
neal glucose tolerance tests (IPGTT) were performed after
fasting for 12 hours, and then, glucose (2 g/mL) was injected
into them intraperitoneally. Blood samples were collected
from the tail vein, and blood glucose was measured at 0
(before the glucose injection), 15, 30, 60, 90, and 120min
after the glucose injection using a blood glucose meter
(ROCHE, Germany).

2.5. Intraperitoneal Insulin Tolerance Test. The intraperito-
neal insulin tolerance test (IPITT) was performed five days
after the IPGTT test. The mice were fasted for 6 h and then
intraperitoneally injected with insulin (1U/kg). Blood sam-
ples were collected from the tail vein, and blood glucose
was measured at 0 (before the insulin injection), 15, 30, 60,
90, and 120min after the insulin injection using a blood glu-
cose meter (ROCHE, Germany).

2.6. Serum Analyses. Total blood samples were also collected
for measurement of fasting serum total cholesterol (TC), tri-
glyceride (TG), and nonesterified fatty acid (NEFA). Deter-
mination of blood lipids and liver enzyme index in serum
was conducted by the automatic biochemical analyzer (JEOL
Ltd, Japan).

2.7. Intracellular and Liver Triglyceride Measurement. Intra-
cellular and liver triglycerides were assayed using a triglycer-
ide assay kit (#E1013, Applygen Technologies Inc., China)
according to the manufacturer’s recommended protocol.
Intracellular and hepatic free fatty acids (FFA) were esti-
mated using an ultrasensitive assay kit for free fatty acids
(#BC0595, Beijing Solar bio Science &Technology Co., Ltd.,
China) according to the manufacturer’s recommended
protocol.

2.8. Cell Line. L-02 cells (human hepatic cell line) were
obtained from the Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, China). FXR-null L-02 cells
were generated by the CRISPR-Cas9 system, as described [23].
The targeting sgRNA sequences (NR1H4: 5′-TCCCTGCTG
ACGCGCCC ATG-3′) were subcloned into LentiCRISPRv2
(#49535, Addgene, USA). Recombinant LentiCRISPR plasmid
was cotransfected with pCMV-VSV-G (#8454, Addgene,
USA) and psPAX2 (#12260, Addgene, USA) into HEK293T
cells to package infectious lentivirus. Medium-containing
viruses were used to infect cells for 8h and then selected in
0.5μg/mL puromycin. Genomic DNA was isolated and ampli-
fied by PCR (forward: 5′-TTTGTTTTAGGCTTGTTAAC-3′,
Reverse: 5′-TTGGACTAG AAATTCAGCTG-3′) followed by
Sanger sequencing. Two independent FXR-null L-02 clones
were selected for further analysis.

2.9. Cell Culture and Treatment. L-02 WT cells and FXR-
null L-02 cells were cultured in 1640 medium (Gibco,
USA) containing 10% fetal bovine serum (Gibco, USA)
and 1% penicillin/streptomycin (Invitrogen, USA) in a
humidified atmosphere of 5% CO2 at 37°C, and fresh
medium was changed daily. When the cell confluence
reached 30%, nontargeted control or targeted PDK4 siRNAs

(5′-CTACTCGATGCTGATGAA-3′) were transfected into
FXR-null L-02 using Lipofectamine 3000 Reagent (#L3000-
015, Invitrogen, USA). Cells were incubated with 1640 com-
plete medium supplemented with 500μM/250μM sodium
palmitate/sodium oleate (SYSJKJ006, China) for 6 h, then
the medium was replaced with the flash medium. After 6 h
of culture, the cells were washed twice with PBS. Finally,
BODIPY493/503 (#D3922, Thermo Fisher Scientific, USA)
staining was performed to check the lipid droplet formation.

2.10. RNA-Seq Analysis. Total RNA was isolated using TRI-
zol® Reagent (Thermo Fisher Scientific, USA) following the
manufacturer’s protocol and cDNA library generation with
the TruSeq RNA Sample Preparation Kit (Illumina, USA).
Clusters were generated with the TruSeq SR Cluster Kit v2
according to the reagent preparation guide. The RNA
sequencing was performed using the Illumina platform.
High-quality reads were aligned to the mouse reference
genome (mm9) using the SOAP aligner. The expression
levels for each of the genes were normalized to reads per
kilobase of exon model per million mapped reads (RPKM)
to compare mRNA levels between samples. The genes asso-
ciated with glucose and lipids metabolism were retrieved
from the Cufflinks output for further analysis.

2.11. Western Blot Analysis. The liver tissues were homoge-
nized in 2× SDS sample buffer (63mM Tris-HCl, 10% glyc-
erol, and 2% SDS containing protease inhibitor and
phosphatase inhibitor). The cultured cells were washed twice
with 1× PBS and finally added the appropriate amount of 2×
SDS sample buffer for lysis. The protein concentration of
samples was detected using a BCA Protein Assay Kit
(23225, Thermo Fisher Scientific, USA). 20μg protein were
separated by SDS polyacrylamide gels and transferred onto
polyvinylidene fluoride membranes, followed by immuno-
blotting with specific antibodies. Membranes were then
incubated with a peroxidase-conjugated secondary antibody.
Specific bands were detected with a Bio-Rad Imaging System
(Bio-Rad, USA).

2.12. Real-Time PCR. Total RNA from liver tissue was
extracted using TRIzol® Reagent (Thermo Fisher Scientific,
USA) and was reverse transcribed into cDNA with the
RevertAid RT Kit (Thermo Fisher Scientific, USA) according
to the manufacturer’s instruction. SYBR Green qPCR Master
Mix (#K0251, Thermo Fisher Scientific, USA) was used for
quantitative real-time PCR amplification with a CFX96
real-time PCR detection system (Bio-Rad, USA) and corre-
sponding software.

2.13. Statistical Analysis. Statistical analysis was performed
using Prism 7 software (GraphPad Software, USA). The data
were reported as the means ± standard error. A two-tailed
Student’s t-test was used to determine the difference
between the two groups. Analysis of differences between
groups was performed using one-way ANOVA and Tukey.
Quantitation was performed by double-blinded experi-
menters. P < 0:05, the difference was statistically significant.
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3. Results

3.1. FXR Deficiency Causes Hepatomegaly, Body Weight Loss,
Blood Glucose Metabolism Disorder, and Elevated Serum
Lipids in Mice. To investigate the pathophysiology of FXR,
we examined FXR-null mice at 3, 6, 9, and 12 months. At
age 3 months, the FXR-null mice show generally normal.
At age 6 months, FXR-null mice showed a gradual loss of
body weight compared to the wild-type (WT) littermates
(Figure S1A). Histological analysis revealed an increase in
intracellular vacuolation of liver tissue in 6-month-old
FXR-null mice (Figure S1B). However, abdominal and sub-
cutaneous adipose tissue was not affected (Figure S1C, D).
3-month-old FXR-null mice fed on normal and high-fat diet
for 90 days also showed hepatomegaly, uneven pleats, and a
slightly greasy cut surface on the liver compared to the WT
littermates (Figures 1(a) and 1(b)). Interestingly, after 5
weeks, the body weight gain of mice fed on high-fat diet
showed a decrease (Figures 1(c) and 1(d)). Food intake was
also reduced in FXR-null mice after a period of high-fat
feeding (Figure 1(e)).

GTT and ITT showed significant changes in plasma glu-
cose or insulin levels, as evident from the area under the
curve (AUC) of glucose in the FXR-null mice compared to
the WT littermates (Figures 1(f)–1(i)). Serum NEFA, TC,
and TG levels were higher in FXR-null mice as compared
to the WT littermates (Figures 1(j)–1(l)). Taken together,
these results indicate that the FXR deficiency causes abnor-
mal glucose and lipid metabolism in mice.

3.2. FXR Deficiency Leads to Increased Lipid Deposition,
Forming Lipid Vacuoles, Increased Expression of Key Lipid
Synthesis Proteins, and Glucose Metabolism-Related
Proteins in Mice. Histological analysis revealed increased
intracellular vacuolation in liver tissues and accumulation of
Oil Red O stain-positive lipid droplets (Figure 2(a)), which
was accompanied by increased levels of liver TG and FFA con-
tent in FXR-null mice compare with the WT littermates
(Figures 2(b) and 2(c)). High-fat feeding aggravates intrahe-
patic lipid droplet aggregation and increases the content of
TG and FFA (Figures 2(a)–2(c)). Furthermore, the mRNA
and protein level of genes related to lipogenesis and glucose
metabolism, including glycerol-3-phosphate acyltransferase 1
(gpat1), stearoyl-CoA desaturase 1 (scd1), sterol regulatory
element-binding protein 1c (srebp-1c), FA synthase (fasn),
acetyl-CoA carboxylase 1 (acc1), ATP-citrate lyase (acly), glu-
cokinase (gck), and pdk4 were also increased in FXR-null mice
(Figure 2(d)), whereas cluster of differentiation 36 (CD36)
mRNA and protein levels were not significantly different
(Figures 2(d) and 2(e)). These results indicated that the FXR
deficiency increased DNL rather than FA uptake, resulting in
hepatosteatosis in mice. Reduced FXR expression in the liver
is reported to be responsible for hepatic steatosis in aging mice
[24]. Furthermore, consistent with previous studies, Gck
expression was increased in the livers of FXR-null mice sug-
gesting that the hepatic Gck levels are associated with liver
fat in NAFLD [25]. Together, these results demonstrated that
decreased FXR expression causes the impairment of lipid and
glucose metabolism in the liver.

3.3. The Expression of PDK4 Was Increased in the Liver of
FXR-Null L-02 Cells and Mice. As a nuclear receptor, FXR
is mainly expressed in enterohepatic tissues and is a major
regulator of bile acid, lipid, and glucose homeostasis [26].
To identify the FXR-regulated genes, global gene expression
in the liver was assessed by RNA-sequencing (RNA-seq)
analysis in FXR-null and the WT control mice. The results
showed that the genes related to glucose and lipid metabo-
lism were significantly different in FXR-null mouse liver
(Figure 3(a)). In particular, the increase of PDK4 was most
significant in FXR-null mice (Figures 2(d) and 3(b)). Consis-
tent with the mRNA levels, immunostaining and Western
blot results showed that PDK4 was also increased in FXR-
null mice compared to the WT littermates livers
(Figures 2(e), 3(c), and 3(d)). PDK4 plays a key role in the
regulation of glucose and fatty acid metabolism and homeo-
stasis via phosphorylation of the pyruvate dehydrogenase
subunits (PDHA1 and PDHA2) [27]. PDK4 expression is
elevated in human NASH liver specimens, and deletion of
PDK4 can alleviate nonalcoholic fatty liver in mice [28,
29]. The specific mechanism of PDK4 in lipid accumulation
in the liver in FXR-null mice received our interest. We also
generated FXR-null L-02 cells using the CRISPR/Cas9 sys-
tem (Figure S2A, B). Western blot analysis revealed that
FXR-deficient human hepatocytes also caused an increase
in PDK4 expression (Figure 3(e)). We also used GeneMA-
NIA (http://genemania.org) to determine the possible rela-
tionships between the FXR and PDK4. The results showed
that FXR (NR1H4) and PDK4 were directly related
(Figure 3(f)). Thus, the data suggest that hepatic lipid metab-
olism disorder caused by FXR deficiency may be associated
with increased PDK4 expression.

3.4. PDK4 Inhibition Alleviated Lipid Accumulation in
Hepatocytes Caused by FXR Deficiency In Vivo. To investi-
gate the role of PDK4 in lipid accumulation in the liver
caused by the FXR deficiency, we determined lipid accumu-
lation in FXR-null mice after inhibiting PDK4. Dichloroace-
tate (DCA) is a mitochondrial PDK inhibitor that activates
pyruvate dehydrogenase (PDH) by inhibiting PDK dephos-
phorylation; this results in a large amount of acetyl CoA that
enters the mitochondria to initiate the citric acid cycle for
promoting oxidative phosphorylation of glucose [30]. DCA
showed no effect on food intake and body weight in
FXR-null mice (Figure S3A-C). However, DCA alleviated
hepatomegaly and abdominal fat production caused by a
high-fat diet in FXR-null mice (Figure S3D, E). The GTT
and ITT showed glucose sensitivity significant improve-
ment; DCA treatment increased the glucose or insulin
levels in a dose-dependent manner, as evident from the
AUC of glucose compared with FXR-null mice
(Figures 4(b)–4(e)). These results showed that DCA ame-
liorated abnormal glucose metabolism caused by FXR defi-
ciency. We also found that DCA treatment had no effect
on TG in the serum but reduced the levels of TC and
FFA in the serum of FXR-null mice fed a high-fat diet
(Figures 4(f)–4(h)). Histological analysis revealed that
DCA also reduced the accumulation of lipid droplets, the
contents of hepatic FFA and TG (Figures 4(i) and 4(j)),
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Figure 1: Continued.
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and hepatic vacuolation (Figure 4(k)). Together, the data
suggest that PDK4 plays a critical role in hepatic steatosis
induced by a high-fat diet in FXR-null mice.

3.5. DCA Suppressed Fatty Acid Synthesis Enzymes and
Altered Multiple Hepatic Signaling Pathways in FXR-Null
Mice. To understand the mechanism of PDK4 regulation lipid

metabolism, the expression of enzymes involved in FA synthe-
sis was measured by qRT-PCR and Western blotting. The
expression of Fasn, Srebp-1c, Scd1, and Acc1 was increased
in FXR-null mice compared to WT littermates, whereas this
increase was reversed in a dose-dependent manner after treat-
ment with PDK4 inhibitor DCA (Figure 5(a)). The FXR defi-
ciency decreased the expression of peroxisome proliferator-
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Figure 1: FXR deficiency caused liver hepatomegaly, dyslipidemia, and glucose metabolism disorder in mice. (a, b) Hepatomegaly of FXR-
null mice. Liver tissue control (WT) and FXR null (knockout [KO]) mice (a) and quantitative analysis of liver tissue mass related to their
body weight are shown (b). Standard chow diet (SD) and high-fat diet (HFD) (n = 10). (c, d) Decreased bodyweight of FXR-null mice. Body
weight changes in mice fed a normal diet and high-fat diet for three months were recorded, and their growth rates were calculated. (e)
Decreased food intake of FXR-null mice (n = 10). (f, g) High-fat diet and FXR deficiency caused glucose tolerance in mice. After 71 days
of feeding the mice, the mice were subjected to a glucose tolerance test (n = 10). (h, i) High-fat diet and FXR deficiency caused insulin
tolerance in mice. After the 80th day, the mice were subjected to an insulin sensitivity test (n = 10). (j–l) Elevated serum lipids in FXR-
null mice. NEFA, TC, and TG content in FXR-null mice and WT fed with SD and HFD diet. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P
< 0:0001 (n = 10).
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activated receptor-γ coactivator-1α (Pgc-1α), a transcription
factor that promotes the expression of enzymes involved in
FA oxidation. The reduction in the expression of this factor
in FXR-null mice was attenuated by DCA. Acly is an impor-
tant enzyme linking glucose catabolism to lipogenesis by pro-
viding acetyl-CoA from the mitochondrial citrate for FA and
cholesterol biosynthesis [31]. Acly-deficient hepatocytes pro-
tect against hepatic steatosis and dyslipidemia [32]. We found
that the deficiency of FXR led to increased expression of Acly
in liver tissue, while DCA inhibited the high expression of Acly
(Figure 5(b)).

We evaluated major signaling pathways reported to be
related to NAFLD pathology. Adenosine 5′-monopho-
sphate- (AMP-) activated protein kinase (AMPK) is a cen-
tral regulator of energy balance. AMPK phosphorylates
specific enzymes and growth control nodes to increase
ATP generation and decrease ATP consumption [33].
Reduced AMPK phosphorylation was observed in FXR-
null mice compared with the WT littermates. However, after
DCA treatment, reduced AMPK phosphorylation was
restored. p38α plays an important role in glucose homeosta-
sis and lipid metabolism [34]. Concerning lipid metabolism,
liver-specific p38α knockout mice were more susceptible to
high-fed diet-induced obesity and steatosis accompanied by
reduced FA β-oxidation [35]. Our results clearly showed

that the deletion of FXR decreased the phosphorylation of
p38α, and the inhibitor of PDK restored the phosphoryla-
tion level of p38α. The mTOR signaling pathway was also
reported to promote de novo lipogenesis through the activa-
tion of SREBP1. The PDK inhibitor DCA also reduced the
phosphorylation level of mTOR caused by FXR deficiency
(Figure 5(b)).

3.6. PDK4 Interference Decreased Lipid Deposition in FXR-
KO L-02 Cells. To explore the mechanism of FXR in hepatic
cells in vitro, we constructed the FXR knockout (KO) L-02
cell line using CRISPR/Cas9 gene-editing technology (Figure
S2A, B). The expression of PDK4 was increased in the FXR
KO cell line compared to that in the control cells (WT).
We performed BODIPY dye and Oil Red O staining to
detect the accumulation of lipid droplets in FXR KO L-02
cells. The results showed that the lipid droplet fluorescence
intensity in FXR KO L-02 cells was significantly higher than
that in L-02 control cells (Figures 6(a) and 6(b)). Oil Red O
staining also showed lipid droplets aggregates in FXR KO L-
02 cell lines (Figure 6(d)). Next, we explored whether the
accumulation of lipid droplets caused by FXR deletion was
related to the increased expression of PDK4. We used siRNA
to silence the expression of PDK4 in L-02 cells. BODIPY
fluorescent staining results showed that the fluorescence
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FXR-null mice. (a) A high-fat diet and FXR deficiency increased hepatocyte lipid deposition. PV: portal vein. Upper panel: bar, 200 μm,
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increased hepatic TG and FFA level, n = 10. (d) Relative mRNA levels of PDK4 and relevant glycolytic and lipogenic genes in the livers
of FXR-null and WT control mice deal with the high-fat diet, HFD-WT: n = 3, HFD-KO: n = 3. (e) Detection expression of Scd1, PDK4,
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intensity of lipid droplets in FXR KO L-02 cells (150:3 ± 8:819
) with PDK4 interference was significantly lower than that in
FXR KO L-02 cells (196:7 ± 6:692) (Figures 6(a) and 6(b)).
Oil Red O staining results were also consistent with BODIPY
fluorescent staining results (Figure 6(d)), suggesting that
PDK4 interference inhibits lipid accumulation caused by
FXR deficiency. We also detected increased content of TG
and FFA in FXR KO cells that were restored after PDK4 inter-
ference (Figures 6(c) and 6(e)). To gain insight into the mech-
anism by which FXR deficiency increases the number of lipid
droplets in FXR KO L-02 cells, the protein levels of enzymes
involved in FA synthesis were measured. In FXR KO L-02
cells, the amounts of Scd1, Acc1, Fasn, Srebp-1c, and Acly
were increased by sodium oleate/sodium palmitate treatment
compared to the control cells. However, the amounts of these
enzymes with siPDK4 were lower than the amounts present in
FXRKOL-02 cells with sodium oleate/sodium palmitate treat-
ment (Figures 6(f) and 6(g)). Consistent with the in vivo
results, we found that the accumulation of lipid droplets
caused by the increase in PDK4 expression in FXR-null
hepatic cells may be related to the mTOR signaling pathway;
however, elucidation of the detailed mechanism requires fur-
ther study. The data suggest that PDK4 plays an indispensable
role in FXR deficiency-induced lipid droplet accumulation.

4. Discussion

Recent studies have suggested that lipid metabolism and glu-
cose homeostasis may be related to nuclear receptor media-
tion, including FXR, pregnane X receptor (PXR), and

constitutive androstane receptor (CAR). Among these nuclear
receptors, the FXR signaling pathway is largely involved in
lipid metabolism and glucose homeostasis, as well as in the
pathogenesis and progression of NAFLD [36, 37]. FXR expres-
sion is decreased in nonalcoholic liver disease and diabetes
[24, 38, 39]. The major finding of this study is that FXR main-
tains glycolipid metabolism in hepatocytes by regulating
PDK4 expression. The findings of hepatic steatosis and hyper-
lipidemia in FXR-null mice in the present study were consis-
tent with previously reported results in the literature [40,
41]. Our results suggest a potential therapeutic strategy for
treating metabolic syndrome by targeting FXR in the liver.
OCA, the most promising synthetic FXR agonist, was recently
shown in a randomized, placebo-controlled clinical trial to
improve liver histology in patients with NASH [20]. The
FXR deficiency resulted in increased lipid content in the liver,
serum cholesterol, and TGs in mice, whereas bile acid or syn-
thetic agonist GW4064 reduced liver steatosis and plasma TGs
by activating FXR [42, 43].

The main cause of lipid accumulation in the liver is
related to the increased activities of key lipid synthetases
such as Scd1, Sredp-1c, Fasn, Acc1, and Gpat1 [44, 45].
Our results confirmed that FXR deficiency in mice fed a
high-fat diet significantly activated the expression of the
lipogenic genes. FXR has been shown to regulate adipogene-
sis [12, 46]. FXR-deficient mice also showed elevated blood
glucose and decreased glucose and insulin tolerance, reveal-
ing that FXR also plays an important role in maintaining
glucose homeostasis [47]. However, the association between
glucose metabolism and adipogenesis is not well understood.

HFD-WT HFD-FXR-/- HFD-FXR-/-+low-DCA HFD-FXR-/-+high-DCA

(k)

Figure 4: DCA relieved hepatomegaly and reduced liver lipid droplet accumulation in FXR-null mice. Mice were divided into WT mice-
saline group, FXR-null mice-saline group, FXR-null mice-100mg/kg/day (low) DCA group, FXR-null mice-300mg/kg/day (high) DCA
group. All the mice were fed a high-fat diet for two months. (a) Experimental protocol of the in vivo study. (b, c) DCA alleviated glucose
tolerance in FXR-null mice. After 49 days, the mice were subjected to a glucose tolerance test, n = 10. (d, e) DCA enhanced insulin
sensitivity in FXR-null mice. After the 54th day, the mice were subjected to an insulin sensitivity test. n = 10. (f–h) DCA reduced blood
lipids in FXR-null mice. NEFA, TC, and TG content in FXR-null mice with DCA treatment, n = 10. (i, j) DCA treatment reduced
hepatic TG and FFA level, n = 10. (k) DCA reduced hepatocytes lipid deposition. PV: portal vein. Upper panel: bar, 200μm,
representative images H&E staining of liver tissues; middle panel: bar, 200μm, lower panel: bar, 50 μm; both of them representative
images of Oil Red O staining of liver tissues; WT: n = 3, KO: n = 3. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001.
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Here, we found that the glucose metabolism-related gene
PDK4 may mediate abnormal lipid metabolism in FXR-
null mice. PDK4 is a mitochondrial enzyme that inhibits

the conversion of pyruvate to acetyl-CoA by inhibiting the
phosphorylation of the pyruvate dehydrogenase complex
(PDC) [48]. Inactivation of PDC by PDKs can inhibit the
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conversion of pyruvate to acetyl-CoA, resulting in a shift of
pyruvate to the citric acid cycle or FA synthesis toward glu-
coneogenesis [49]. PDK4 deficiency leads to the inhibition of
FA oxidation and increases glucose oxidation due to the
greater PDC activity, which in turn increases the conversion
of pyruvate into acetyl-CoA [48]. Under diabetic conditions,
the expression of PDK genes, especially PDK4, is signifi-
cantly elevated in the liver and leads to an increase in gluco-
neogenesis; in contrast, PDK4 knockout led to better glucose
tolerance suggesting that the hepatic PDK4 may be critically
involved in the pathogenesis of diabetes [50]. These observa-
tions can help us in explaining the decreased glucose toler-
ance and insulin sensitivity caused by FXR deficiency,

which must be related to the increased expression of PDK4
in the liver. Although we have demonstrated that FXR can
affect the expression of PDK4, whether FXR regulates
PDK4 at the transcription level remains to be determined.

High-fat-diet FXR-null mice treated with the PDK
inhibitor DCA showed improved glycaemic control and glu-
cose tolerance. The predominant site of de novo lipogenesis
is the liver, and FAs produced are esterified to glycerol to
form TGs, packaged with cholesterol esters, cholesterol,
phospholipids, and proteins to form very-low-density lipo-
protein (VLDL) which are then exported to peripheral tis-
sues [51]. Inactivation of PDC by PDKs can inhibit the
conversion of pyruvate to acetyl-CoA, resulting in a shift
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Figure 6: PDK4 interference reduced lipid synthesis in FXR-null L-02 cells (a) Quantization of fluorescence intensity. n = 3. (b) BODIPY
staining and BODIPY493/503 were labeled lipid droplets in cells. Fluorescence intensity was detected. Amplification factor: 10 × 40,
green represents lipid droplets. (c, e) Influence of PDK4 interference on intracellular TG and FFA level induced by sodium oleate/
sodium palmitate, n = 3. (d) Oil Red O staining of cells treated with sodium oleate/sodium palmitate after transfection of siRNAPDK4 or
negative siRNA. Original magnification, 10 × 20. (f, g) Relative mRNA levels of relevant lipogenic genes in FXR-null L-02 cells by
pretreatment with siRNAPDK4. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗∗P < 0:0001, n = 3.
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of pyruvate to the citric acid cycle or FA synthesis toward
gluconeogenesis [49]. Our results show that inhibition of
PDK4 expression alleviates lipid accumulation in hepato-
cytes caused due to FXR deficiency in vivo and in vitro.
When DCA was used as an inhibitor of PDK (particularly
for PDK4 in the liver), lipid accumulation was reduced in
the liver of FXR-null mice and PDK4 expression interference
decreased lipid production in FXR KO L-02 cells in vitro.
Moreover, FXR deficiency led to increased TG and FFAs in
both the serum and liver of mice, and PDK4 interference sig-
nificantly alleviated the abnormal increase in TG and FFAs
caused by FXR deficiency in vitro.

Mechanistically, our results also showed that PDK4 reg-
ulated mTOR, AMPK, PGC-1α, P38, and other signaling
pathways, all of which are involved in lipid metabolism.
The mTOR signaling pathway has been reported that activa-
tion of SREBP1 promotes lipogenesis [52]. This is consistent
with our results; FXR deficiency activated the mTOR signal-
ing pathway, and DCA reversed these effects. PGC-1α is a
transcription coactivator required for the expression of
genes involved in mitochondrial biogenesis, hepatic gluco-
neogenesis, and FA oxidation. Knocking out PGC-1α
induces fat accumulation in the liver [53]. Interference with
PDK4 could lead to higher levels of PGC1α, consistent with
a lower capacity for de novo FA synthesis.

In conclusion, the findings of this study provide novel
insights into the contribution of PDK4 to hepatic steatosis
and illuminate a potential pathogenic mechanism underly-
ing FXR mutant disease.
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