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ABSTRACT Wemodeled the relaxation dynamics of (lipid) vesicles upon osmotic upshift, taking into account volume variation,
chemical reaction kinetics, and passive transport across the membrane. We focused on the relaxation kinetics upon addition of
impermeable osmolytes such as KCl and membrane-permeable solutes such as weak acids. We studied the effect of the most
relevant physical parameters on the dynamic behavior of the system, as well as on the relaxation rates. We observe that 1) the
dynamic complexity of the relaxation kinetics depends on the number of permeable species; 2) the permeability coefficients (P)
and the weak acid strength (pKa-values) determine the dynamic behavior of the system; 3) the vesicle size does not affect the
dynamics, but only the relaxation rates of the system; and 4) heterogeneities in the vesicle size provoke stretching of the relax-
ation curves. The model was successfully benchmarked for determining permeability coefficients by fitting of our experimental
relaxation curves and by comparison of the data with literature values (in this issue of Biophysical Journal). To describe the dy-
namics of yeast cells upon osmotic upshift, we extended the model to account for turgor pressure and nonosmotic volume.
SIGNIFICANCE Physiochemical kinetic models are an important set of tools for the understanding of biochemical and
biological systems. We present a comprehensive description of the relaxation dynamics of vesicles upon osmotic shock
that includes volume variation, reaction kinetics, passive permeability across the membrane, and turgor pressure. The
model is a flexible platform for the description of many biochemical systems. Owing to its generality, the model is easily
extended with the addition of new features for the interpretation of in vitro experiments with protein transporters,
electrochemical studies, and uptake experiments.
INTRODUCTION

Out-of-equilibrium (pump-and-probe) relaxation tech-
niques, which are methods in which the relaxation kinetics
of the system are measured upon perturbation of the equilib-
rium, are precious experimental tools to investigate the
behavior and properties of many systems in the life, chem-
ical, and physical sciences. Indeed, the measured relaxation
kinetics contains invaluable information about the micro-
scopic properties of such systems. Despite being relatively
easy to perform, traditional pump-and-probe experiments
crucially rely on modeling of the system’s dynamics for cor-
rect data interpretation. In this respect, chemical kinetics
and physiochemical dynamic models are widely used. Per-
fect examples are osmotic-shock relaxation experiments
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performed on lipid vesicles to characterize the membrane
physiochemical properties (1–3). In this issue of Biophysi-
cal Journal (4), we present a stopped-flow fluorescence-
based assay for measurement of weak acid or base perme-
ation across the membrane of both artificial vesicles and
living cells. Despite the long-term application of osmotic-
shock relaxation techniques, we could not find in the litera-
ture any satisfactory representation of our experimental
systems. Thus, we set out to construct a comprehensive
theoretical model describing the vesicle dynamics upon os-
motic perturbation. The model was benchmarked with the
osmotic-shock relaxation data (4) and allowed us to obtain
permeability coefficients of both weak acids and water.
Then, we modified the model to describe yeast cell dy-
namics upon osmotic shock and determine the permeability
coefficients of weak acids across the plasma membrane.
Importantly, the model is a flexible platform for the descrip-
tion of many biochemical systems. Owing to its generality,
the model is easily extended and upgraded with the addition
of new features—for instance, in vitro experiments with
Biophysical Journal 118, 435–447, January 21, 2020 435

mailto:b.poolman@rug.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2019.11.3383&domain=pdf
https://doi.org/10.1016/j.bpj.2019.11.3383
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Gabba and Poolman
protein transporters and electrochemical studies—but it can
also be used to characterize in vivo uptake experiments.
THEORY

We describe vesicle relaxation upon osmotic shock to under-
stand the relationship between the microscopic properties
and the dynamics of the system. A general framework for
the solution of this problem with constant vesicle volume
is given by Knudsen (5). We aim to extend the description
to account for volume variations. We focus on passive diffu-
sion either across the lipid bilayer or through protein
channels.
Vesicle relaxation dynamics

Problem definition

We describe a spherical vesicle of volume V delimited by a
flexible membrane with constant surface area A. We assume
that the membrane thickness d is much smaller than the
vesicle radius r0. The vesicle entraps n molecular species
and freely diffuses in a solution containing m species. All
molecular species are permeable across the membrane.
We assume that the solute diffusion in solution is much
faster than the diffusion across the physical barrier, that is,
the vesicle membrane, which is the limiting step for the
relaxation dynamics on timescales longer than milliseconds.
Thus, the solutions are well mixed, and both the internal ci
and external c�i concentrations are spatially uniform, that is,
c(r) ¼ c. Also, because we assume that the external-phase
volume is much larger than the vesicle volume V, the
external concentrations c�i are constant in time. Finally, we
assume that the internal and external solutions are electri-
cally neutral and that charged molecules are impermeable
across the membrane. To simplify the text, we omit the tem-
poral dependences of the following quantities: ci(t), Ni(t),
V(t), Ri(t), Jij(t), and fij(t).

The working equation

By definition, the internal molar concentration ci [mol/cm3] is

cih
Ni

V
(1)

where Ni is the number of moles of the molecule i. Thus,
temporal variation of both the number of moles Ni and vol-
ume V may induce modifications of the internal concentra-
tion ci. The temporal variation of ci is expressed by the
partial time derivative _ci ¼ vci/vt of Eq. 1,

_ci ¼ 1

V

�
_Ni � ci _V

�
: (2)

The working Eq. 2 shows that the variation of the internal
concentration is proportional to both the molar _N [mol/s]
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and volume _V [cm3/s] flow rates. Thus, to impart physical
meaning to Eq. 2, we must introduce the physical phenom-
ena inducing temporal variations of both Ni and V.

Molar variation _Ni

The number of moles Ni of molecule i in the vesicle lumen
can change for two reasons: 1) molecular transport across
the membrane and/or 2) chemical reaction kinetics gener-
ating or disassembling molecule i. In this respect, according
to the reaction-diffusion equation, the molar flow rate in the
vesicle is

_Ni ¼
ZA
0

Jijð~rÞd~r þ
ZV
0

Rið~rÞd~r (3)

where Jijð~rÞ is the molar flux [mol/(s , cm2)] of molecule i
across a small area dA of a specific membrane j, and Rið~rÞ
[mol/(s , cm3)] describes the reaction kinetics occurring
in a small volume dV inside the vesicle. These two terms
are integrated over the surface area A and the vesicle volume
V, respectively. The reaction term Ri depends on the specific
chemical reaction and can be either a source (R > 0) or a
sink (R < 0) of molecules. For instance, R ¼ �ka for a sim-
ple kinetics like a/

k
b.

To proceed further, we make two assumptions. First, the
membrane composition is nanoscopically homogeneous.
Therefore, the molar flux is uniform over the membrane
surface; that is, Jijð~rÞ ¼ Jij. Second, the internal concentra-
tion is spatially uniform—that is, cið~rÞ ¼ ci—which implies
that the reaction term Rið~rÞ ¼ Ri is also uniform in the whole
vesicle lumen. Thus, upon integration of the two terms,
Eq. 3 becomes

_Ni ¼ JijAþ RiV (4)

where the first term is written as fij ¼ JijA [mol/s].

Volume variation _V

To calculate the volume flow rate _V [cm3/s], we note that a
molecule crossing the membrane transports a small volume
dV equal to the molar volume Mi [cm

3/mol] divided by the
Avogadro’s number Na [mol�1], as well as a mass MW/Na

and a charge ze. Consequently, the molar flux Jij of molecule
i generates a volume flow rate fV,ij ¼ AMiJij [cm

3/(s , cm2)]
across the vesicle surface, leading to swelling or shrinkage
of the vesicle. Thus, the total volume flow rate fV,j generated

by the fluxes of all permeable molecule is
Pn
i

fV;ij ¼

A
Pn
i

MiJij. Assuming that the molar volume variation dur-

ing a chemical reaction is very small with respect to the
contribution of the volume flux across the membrane, the
reaction term Ri is negligible. Thus, the total volume flow
rate is
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_V ¼ A
Xn
i

MiJij: (5)

Importantly, the molar flux Jij couples the vesicle lumen
with the external solution. In this respect, the vesicle is a
nanoscopic chemical reactor fed by the molecular flux.

Dilute solution

To simplify the description presented above, we consider
a dilute solution for which the molar fraction of water
xw ¼ Nw= Nw þ Nsð Þ is very large with respect to the molar
fraction of the n � 1 soluble species, that is, xw [ xs.
Indeed, under normal experimental conditions, the maximal
solute molar fraction xs is at least three orders of magnitude
smaller than the water molar fraction xw. Thus, in a dilute
solution, the solute contribution to the total volume is negli-
gible—that is, V x Vw—and Eq. 5 simplifies to

_Vx _Vw ¼ AMwJwj (6)

meaning that only the water flux across the membrane af-
fects the vesicle volume.

Single vesicle dynamics

Now, by substitution of Eq. 4 in Eq. 2 and considering Eq. 6,
we can write the n þ 1 coupled differential equations
describing the overall dynamics of the system:

_ci ¼ �ci
V

_V þ A

V
Jij þ Ri:

_V ¼ AMwJwj

(7)

By focusing on the three terms in the first equation, we
observe that three physical phenomena can modify the inter-
nal concentrations ci. These phenomena are 1) the volume
flow rate _V—that is, the vesicle swelling or shrinkage—
induced by the water flux Jwj; 2) the solute flux Jij across
the membrane; and 3) the chemical transformations Ri of
the contained molecules. Importantly, all three terms are
functions of the solute concentrations ci (see next section)
and, therefore, they are coupled.
Passive transport

In the previous section, we disregarded any specific trans-
port mechanism. Here, we introduce passive transport
(either channel mediated or directly through the lipid
bilayer), for which the molar flux Jij is (5,6)

Jij ¼ Pij

�
c�i � ci

�
: (8)

In Eq. 8, c�i is the external concentration and Pij is the
permeability coefficient [cm/s] of molecule i through a
membrane or protein channel j. Equation 8 shows that the
concentration gradient Dci ¼ c�i � ci drives the molar flux
Jij across the physical barrier, that is, the membrane. The
sign of the gradient determines the direction of the molecu-
lar flux which is directed toward region with lower concen-
tration. A positive (Dci > 0) and a negative (Dci < 0)
gradient determine influx and outflux of molecules, respec-
tively. The equilibrium is reached when the solute gradient
dissipates, that is, Dci ¼ 0.

Next, we consider that in a dilute solution, the molar flux
of water Jwj depends on the total solute concentration
gradient Dcs ¼ c�s � cs (7) as follows:

JwjxPwj

�
DPM

RT
� �c�s � cs

��
(9)

where the constants cs ¼
Pn�1

ci and c� ¼ Pm�1

c� are the total

i

s
i

i

internal and external solute concentrations, respectively,
and DPM is the hydrostatic (or mechanical) pressure
opposing the osmotic pressure, that is, P x RTDcs. Impor-
tantly, in our description, we consider only osmotic upshifts,
that is, positive gradients Dcs > 0 leading to vesicle
shrinkage. From Eq. 9, we observe that 1) the solute concen-
tration gradient Dcs induces a water flux across the mem-
brane, 2) the water flux is directed toward the region
with higher solute concentration, and 3) the mechanical
resistance of the membrane (DPM > 0) slows down
the water flux. Because a typical lipid membrane can me-
chanically sustain very small concentration gradients up
to 0.1 mM (8,9), for values above 0.1 mM, the membrane
freely deforms without opposing mechanical resistance to
the osmotic pressure; that is, DPM � P. Thus, we set
DPM x 0 and rewrite Eq. 7 in the dilute solution limit

_ci ¼ A

V

"
ciMwPwj

 
c�s �

Xn�1

i

ci

!
þ Pij

�
c�i � ci

�#þ Ri

_Vx� AMwPwj

 
c�s �

Xn�1

i

ci

!

(10)

where i ¼ n � 1 identifies all molecular species enclosed by
the vesicle except for water. Indeed, we can show that, for a

dilute solution, the water concentration is time independent
( _cw x 0). Importantly, both c�i and c

�
s are constant. Equation

10 demonstrates that the relaxation dynamics of the volume
V and internal concentrations ci are driven by the concentra-
tion gradients (Dci and Dcs) across the membrane. Further-
more, the relaxation dynamics depends 1) on the magnitude
of the concentration gradients (jjDcijj and jjDcsjj); 2) on the
physiochemical properties of the membrane, such as the
surface area A and the permeability coefficient Pij; and 3)
on the chemical properties of the contained molecules,
such as Pij and Ri. Equation 10 is the most important
outcome of this work. Indeed, the equations generalize the
Biophysical Journal 118, 435–447, January 21, 2020 437
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dynamic description of any experimental system that is well
approximated by a closed compartment delimited by a
permeable membrane to account for the effects of volume
variation. Also, the model can comprise both multiple
permeable and impermeable molecules as well as any chem-
ical reaction between the solute molecules.

Problem rescaling

To better grasp the physics of the system and to prepare the
equations for numerical solution, we aim to obtain dimen-
sionless equations (10). To this end, we transform the vari-
ables as follows:

ci ¼ ci
c�s
; V ¼ V

V0

; t ¼ t

tc
(11)

where tc [s] is an arbitrary characteristic time and V0 [cm
3] is

the vesicle volume at time t ¼ 0. Thus, the transformed con-

centrations and volume ˛ [0, 1] and V(0) ¼ 1. By substitut-
ing these new variables in Eqs. 10 and by setting tc ¼�

A
V0
PwjMwc

�
s

	�1

(see Appendix B), we obtain the desired

dimensionless equations

_ci ¼ 1

V
�ci

Xn�1

i

ci � 1

 !
þ lij 1� ci

gi

� 	" #
þ Rij

_Vx
Xn�1

i

ci � 1

lij ¼ Pij

Pwj

gi

Mwc
�
s

; gi ¼
c�i
c�s

(12)

where Rij is a dimensionless reaction term. We note that the
ratio ðci =giÞ is equal to the ratio ðci =c�i Þ between the inter-
nal and external concentration of molecule i. Remarkably,
the dynamics of the system (or dynamic state of the system)
is completely defined by a set of 2(n � 1) dimensionless pa-
rameters {lij, gi} and n starting conditions fcið0Þ;Vð0Þg. We
can simulate the whole set of possible dynamic behaviors of
the system (shape of the relaxation curves) by modifying
these parameters with given starting conditions. If all lij
are equal to zero, only one dynamic regime is observed,
whereas the dynamic complexity of the system increases
with the number of parameters.
Yeast cell relaxation dynamics

Problem redefinition

To describe the volume and pH dynamics of a yeast cell
upon osmotic upshift, we followed the procedure applied
to vesicles but with additional assumptions. We describe
the yeast cell as a spherical shell (11) that contains solute
molecules, organelles, and macromolecules. The latter oc-
438 Biophysical Journal 118, 435–447, January 21, 2020
cupies the so-called nonosmotic volume b (11–13), inacces-
sible to solutes. The model cell is delimited by a spherical
model membrane with variable volume V and surface area

A ¼ V
2
3

�
3
4p

	2
3

, reproducing the most relevant features of

both the plasma membrane and the cell wall, i.e., semiper-
meability and elasticity.

Dynamic description

The aforementioned hypotheses are incorporated in our
description as follows. First, we redefine the internal solute
concentration accounting for the nonosmotic volume b,

cih
Ni

V � b
: (13)

Second, we introduce a term for elasticity that generates a
hydrostatic (or turgor) pressure DPM (11,14–16),

DPM ¼ e
DV

Vr

: (14)

Here, ε [MPa] is the volumetric elastic modulus and DV ¼
Vr � V is the relative volume variation with respect to the
reference volume Vr, which we set to the cell volume at
zero turgor, that is, Vr ¼ VðDPM¼0Þ. Thus, by exploiting the
redefined concentration ci and the turgor pressure DPM,
we derive the following system of differential equations
describing the model cell relaxation dynamics upon osmotic
shock:

_ci ¼ � A

V � b

�
ci _V � Pij

�
c�i � ci

��þ Ri

_VxAMwPwj

"
e

RT

DV

Vr

�
 
c�s �

Xn�1

i

ci

!#

A ¼
�

3

4p

	2
3

V
2
3:

(15)

The balance between the two terms inside the square
brackets (see second equation of Eq. 15) determines
whether the volume shrinks or swells upon relaxation. The
first term depends on the elasticity of the model membrane,
whereas the second term is the solute concentration gradient
Dcs across the membrane, as defined in the previous section.
We observe that in our experiments (presented in this issue
(4)), the cellular volume is always larger than the reference
volume Vr, that is, V > Vr. Thus, DV ¼ Vr � V is negative,
meaning that the model membrane opposes (slows down)
swelling and favors (speeds up) shrinking of the cell simi-
larly to a bicycle inner tube. Following the same analogy,
pumping air inside the tube would correspond to an osmotic
downshift (Dcs > 0) and sucking air out to an osmotic
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upshift (Dcs < 0). We also note that for yeast, in contrast to
the vesicle description, the surface area A is variable.

Problem scaling

Analogously to vesicles, we derive dimensionless equations
for the yeast model cell but with the difference that the
volume V is scaled with respect to the zero-turgor volume
Vr instead of the volume at time 0 V0:

V ¼ V

Vr

: (16)

Thus, the characteristic time becomes tc ¼
�

Ar

Vr
PwjMwc

�
s

	�1

,

and the system of dimensionless differential equations is

_ci ¼ � 1

V � b

�
ci
_V � lij 1� ci

gi

� 	�
þ Rij

_VxV
2
3 Q 1� V

� �þXn�1

i

ci � 1

" #

lij ¼ Pij

Pwj

gi

Mwc
�
s

; gi ¼
c�i
c�s
; b ¼ b

Vr

; Q ¼ e

RTc�s
: (17)

We note that the dynamics of the model cell with respect to
that of vesicles depends on two additional parameters,
which are b and Q. These parameters, which originate
from the additional assumptions made for yeast (nonos-
motic volume and semipermeability and elasticity of the
cell envelope), add complexity to the relaxation dynamics
of the model cell.
RESULTS

Osmotic-shock perturbation

From now on, the mathematical tools that we built are used
to describe the relaxation dynamics of a vesicle or cell per-
turbed by an osmotic upshift, that is, an increase of the
external solute concentration c�s . First, we assume that for
times t < 0, the vesicle or cell is in a stationary state. The
vesicle is in a stationary state if Dcs ¼ 0 and Dci ¼ 0 ci.
The cell is in a stationary state if the turgor pressure equals
the osmotic pressure, that is, ðe =RTÞðDV =VrÞ ¼ Dcs and
Dci ¼ 0 ci. In the stationary time regime, the dynamics is
governed by statistical fluctuations dDci of the molar con-
centration gradients around the average values Dci. Second,
at time t ¼ 0, we apply an osmotic upshift. Thus, for times
t > 0, the concentration gradient governs the dynamics of
the vesicle or cell, which relaxes to equilibrium under the
constraints given in Eq. 10 (or Eq. 15). The relaxation dy-
namics is described by the solutions ci and V of Eq. 10 (or
Eq. 15), which are calculated with the well-defined starting
conditions {ci,0, c
�
i;0, V0} and parameters {A, Pij, Pwj,Mw, Ri,

(ε, b, Vr)}. Because the relaxation dynamics is univocally
determined by the chemical composition of the internal
and external solutions and by the vesicle or cell physio-
chemical properties (see above), the relaxation kinetic
curves are fingerprints of the system’s physiochemical
properties.
Calculation of pH and calcein fluorescence
emission

To compare the osmotic-upshift kinetic experiments with
the model predictions, we calculate the two physical quan-
tities obtained from our kinetic experiments. These are 1)
the pH of the vesicle or cell lumen and 2) the normalized
fluorescence emission intensity F(t)/F(0) of calcein encap-
sulated in the vesicle at self-quenching concentration (17).
The first quantity, pH, is sensitive to the permeation of
a weak acid or base across the membrane, whereas the sec-
ond quantity, F(t)/F(0), responds to the volume variation.
The internal pH is easily calculated from the proton concen-
tration, that is, pH ¼ �log10[H

þ]. The normalized fluores-
cence intensity of calcein F(t)/F(0) is obtained by
modifying the Stern-Volmer (equation 18) according to

FðtÞ
Fð0Þ ¼

1þ KSVcð0Þ
1þ KSVcðtÞ (18)

where KSV x 100 M�1 is the dynamic self-quenching con-
stant of calcein (17) and c(0) and c(t) are calcein concentra-
tions before and after the osmotic shock, respectively. We
note that both quantities are calculated differently if an
ensemble of vesicles with heterogeneous size distribution
is considered (see Appendix B).
Model examples: Vesicles

Here, we present examples on the construction of the dy-
namic model for description of real experiments; that is,
we show how to build up the equations describing the vesicle
dynamics. We focus on the osmotic-upshift kinetic experi-
ments performed on lipid vesicles (presented in this issue
(4)). We stress that for the numerical solution, the equations
reported in the following sections must be rescaled as
described above and in Appendix A. Our aim is to provide
everyone with essential instructions to set up the modeling
tools and to recognize the fingerprint of the vesicle physio-
chemical properties from the relaxation curves.

Problem definition

We assume that before the osmotic upshock, at time t < 0,
the vesicle lumen is filled with a water solution at pH 7 con-
taining 90 mM potassium phosphate (KPi) and 10 mM of
the fluorophore calcein (17). The external water solution,
also at pH 7, contains 100 mM KPi. At time t ¼ 0, we
Biophysical Journal 118, 435–447, January 21, 2020 439
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osmotically upshift the vesicle solution by mixing it with a
100 mM KPi water solution (pH 7) containing one or more
additional osmolytes such as KCl, glycerol, a weak acid or
base, a mixture of weak acid and base, etc.

Impermeable solute

We start by constructing the model for vesicles osmotically
perturbed with an impermeable osmolyte having concentra-
tion c�6. The concentration c

�
6 is the total osmolyte concentra-

tion upon dissolution in the water solution. In this respect,
upon osmotic upshift with a salt such as KCl, the total
osmolyte concentration is c�6 ¼ 2[KCl] ¼ [Kþ] þ [Cl�].
First, we identify the most abundant molecular species in
the vesicle lumen, which at pH 7 are [H2O] ¼ c1,
[calcein] ¼ c2, [H2PO4

�] ¼ c3, [HPO4
2�] ¼ c4, and

[Hþ]¼ c5. Second, we identify the prevalent chemical equi-
libria between the molecular species in solution, which for
the KPi buffer at pH 7 are

H2PO
�
4 #

k1

k�1

HPO2�
4 þ Hþ

c3 #
k1

k�1

c4 þ c5:

(19)

Third, we set the starting internal concentrations, which
are either known (c2,0 ¼ 10 mM and c6,0 ¼ 0) or calculated
by using the Henderson-Hasselbach equation and the defini-
tion of pH: {c2,0, c3,0, c4,0, c5,0}. Also, we calculate the
external solute concentration c�s ¼ c�3 þ c�4 þ c�5 þ c�6, which
is constant in time, by knowing the concentration of the
impermeable osmolyte c�6, KPi (100 mM), and the external
pH. Fourth, we assume that only water is permeable on
the observed timescales; that is, P1 > 0 and {P2, P3, P4,
P5, P6} ¼ 0 for t ˛ [0.001–10] s. Thus, according to Eq.
10, we write the 5 þ 1 differential equations describing
the dynamics of the system as

_c1 ¼ 0

_c2 ¼ �1

V
c2 _V

_c3 ¼ �1

V
c3 _V � k1c3 þ k�1c4c5

_c4 ¼ �1

V
c4 _V þ k1c3 � k�1c4c5

_c5 ¼ �1

V
c5 _V þ k1c3 � k�1c4c5

_V ¼ �AM1P1

�
c�s � c2 � c3 � c4 � c5

�
:

(20)

We observe that 1) all equations from the second to the fifth
contain a volume term � 1

Vci
_V; 2) the third through fifth

equations, which describe the dissociation of KPi, also
contain the chemical kinetic terms coupling c3, c4, and c5;
440 Biophysical Journal 118, 435–447, January 21, 2020
3) the second equation only contains the volume term
because calcein does not participate in any chemical reac-
tion; 4) all equations are coupled by the concentration
gradient Dcs throughout the _V term; and 5) no transport
term is found because all molecules except for water are
impermeable.

Now, to decrease the number of free parameters, we intro-
duce the acid-base dissociation constant K1 ¼
ðk1 =k�1Þ ¼ ðc4c5 =c3Þ and rewrite the previous equations
as follows:

_c1 ¼ 0

_c2 ¼ �1

V
c2 _V

_c3 ¼ �1

V
c3 _V � k1

�
c3 � c4c5

K1

	

_c4 ¼ �1

V
c4 _V þ k1

�
c3 � c4c5

K1

	

_c5 ¼ �1

V
c5 _V þ k1

�
c3 � c4c5

K1

	

_V ¼ �AM1P1

�
c�s � c2 � c3 � c4 � c5

�
:

(21)

The dissociation constant K1 [M�1] is calculated from the
pKa of KPi, which is pK1 ¼ 7.21. The surface area A and
the starting volume V0 of the sphere are calculated from
the radius r0. The water molar volume is known: M1 ¼
18 cm3/mol. The microscopic rate constants k1 and k�1

are usually on the order of (105–106) s�1 (19). The perme-
ability coefficient of water P1 is �10�3 cm/s for a typical
lipid membrane composition (1). Thus, the numerical
solutions ci and V of the rescaled equations are computed
by using the MATLAB (The MathWorks, Natick, MA)
ode15s solver upon linearization of the equations with the
Jacobian matrix.

Next, we discuss the most important features of the vesicle
dynamics as a function of the physical parameters of the sys-
tem as shown in Fig. 1. First, the relaxation dynamics lasts
until the driving force is completely dissipated at �100 s
(that is, the solute concentration gradient is 0 (Fig. 1 a)).
Second, the vesicle volume shrinks to approximately 50%
(Fig. 1 b), thereby inducing an equivalent relative increase
of the internal solute concentrations (Fig. 1 c). Third, the ratio
between the concentration of H2PO4

� and HPO4
2� is con-

stant and defined by the weak acid dissociation constant
K1. Fourth, the pH variation induced by the volume reduction
is below 0.0001%, owing to the buffering capacity of KPi
(Fig. 1 d). The fluctuations at around 1 s observed in the
pH relaxation curve are instabilities of the numerical solution
related to the numerical precision of the software.

To get insight into the effects of the vesicle properties
on the relaxation kinetics, we focus on the measured ratio



FIGURE 1 Simulated curves for an impermeable

solute. (a) Variation of the solute concentration

gradient across the membrane Dcs(t) is shown. (b)

Vesicle volume variation V(t) is shown. (c) Variation

of the internal solute concentrations ci(t) is shown.

(d) Variation of the internal pH is shown. The

following parameters were used for calculations:

pK1 ¼ 7.21, M1 ¼ 18 cm3/mol, pH0 ¼ pH�
0 ¼ 7.0,

[KPi] ¼ 90 mM, [KPi]* ¼ 100 mM, [calcein] ¼
10 mM, k1 ¼ 106 s�1, KSV ¼ 102 M�1,

c�6 ¼ 120 mM, r0 ¼ 100 nm, and P1 ¼ 0.003 cm/

s. For calculation of pH(t), we set [KPi] ¼
100 mM and [calcein] ¼ 0 M.
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F(t)/F(0). In previous works (1,2), the experimental relaxa-
tion data F(t)/F(0)exp were fitted with the volume ratio V(t)/
V(0). In Fig. 2 a, we compare the calculated vesicle volume
V(t)/V(0) with the calcein fluorescence intensity F(t)/F(0),
both normalized to 1 at time 0. We observe the difference
between the two simulated relaxation curves. Therefore,
we strongly recommend using the calculated normalized
fluorescence intensity F(t)/F(0) instead of the normalized
volume V(t)/V(0) for fitting of the experimental data. In
the remaining three panels of Fig. 2, we show how variations
of the magnitude of the driving force Dcs, the vesicle radius
r0, and the permeability coefficients Pij affect the measured
relaxation rates. The increase of the solute concentration
gradient Dcs increases the relaxation rate (note that the ves-
icles reach equilibrium earlier for larger gradients; Fig. 2 b)
and the maximal vesicle shrinkage. Importantly, variations
of the permeability coefficient and vesicle radius have an
equivalent but opposite effect on the relaxation rate
(compare Fig. 2 c and Fig. 2 d); that is, the increase of the
radius and decrease of the permeability coefficient induce
a decrease of the relaxation rates and vice versa. Therefore,
it is crucial to accurately determine the vesicle radius for a
correct estimation of permeability coefficients. Interest-
ingly, we observe that variation of the physical parameters
in Fig. 2 has no effect on the shape of the curves (that is,
on the dynamics type or character of the relaxation kinetics),
but only on the relaxation rate (that is, on ‘‘the speed to re-
establish the equilibrium’’). In this respect, more complex
dynamics are observed upon the introduction of permeable
solutes (see below).
FIGURE 2 Simulated curves for an impermeable

solute. (a) Comparison of normalized volume V(t)/

V(0) and calcein fluorescence intensity F(t)/F(0) is

shown. Variation of F(t)/F(0) is shown as a function

of (b) the solute concentration gradient Dcs, (c) the

vesicle radius r0, and (d) the water permeability co-

efficient Pwj. The following parameters were used

for calculations: pK1 ¼ 7.21, M1 ¼ 18 cm3/mol,

pH0 ¼ pH�
0 ¼ 7.0, [KPi] ¼ 90 mM, [KPi]* ¼

100 mM, [calcein] ¼ 10 mM, k1 ¼ 106 s�1, KSV ¼
102 M�1, c�6 ¼ 100 mM, r0 ¼ 100 nm, and

P1 ¼ 0.003 cm/s. The last three parameters (c�6, r0,
P1) were modified according to the figure legends.
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Permeable weak acid

In the second example, we osmotically perturb the vesicle
solution with a weak acid AH that at pH 7 dissociates to
the following chemical equilibrium

AH#
k2

k�2

A� þ Hþ

c6 #
k2

k�2

c7 þ c5:
(22)

For simplicity, we do not consider here the counterion (Naþ,
Kþ, or Liþ) that is released in the solution upon addition of
the weak acid salt. However, the presence of the ion, which
contributes to the total solute gradient Dcs, is taken into ac-
count in the analysis of the measured relaxation kinetics (see
the accompanying study (4)). We assume that besides water,
only the neutral species AH is permeable through the mem-
brane, that is, P6 > 0. Thus, the most abundant chemical
species in the vesicle lumen before the osmotic shock are
[H2O] ¼ c1, [calcein] ¼ c2, [H2PO4

�] ¼ c3, [HPO4
2�] ¼

c4, and [Hþ] ¼ c5. However, after the osmotic shock, two
additional chemical species [AH] ¼ c6 and [A�] ¼ c7 are
present in the lumen because AH permeates the membrane
and dissociates according to Eq. 22. Therefore, the starting
internal concentrations {c2,0, c3,0, c4,0, c5,0} are calculated as
described in the previous example. Also, we know that
c6,0 ¼ c7,0 ¼ 0. The external solute concentration is c�s ¼
c�3 þ c�4 þ c�5 þ c�6 þ c�7, and the permeability coefficients
are {P1, P6}> 0 and {P2, P3, P4, P5, P7}¼ 0. Thus, the sys-
tem of 7 þ 1 equations describing the vesicle dynamics is

_c1 ¼ 0

_c2 ¼ �1

V
c2 _V

_c3 ¼ �1

V
c3 _V � k1 c3 � c4c5

K1

� 	

_c4 ¼ �1

V
c4 _V þ k1 c3 � c4c5

K1

� 	

_c5 ¼ �1

V
c5 _V þ k1 c3 � c4c5

K1

� 	
þ k2 c6 � c7c5

K2

� 	

_c6 ¼ �1

V
c6 _V � k2 c6 � c7c5

K2

� 	
þ A

V
P6 c�6 � c6
� �

_c7 ¼ �1

V
c7 _V þ k2 c6 � c7c5

K2

� 	

_V ¼ �AM1P1 c�s � c2 � c3 � c4 � c5 � c6 � c7
� �

:

(23)

where K2 is the dissociation constant obtained from the
weak acid pKa. With respect to the previous example (Eq.
21), we observe 1) the presence of the transport term in
the sixth equation, which chemically couples the vesicle
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lumen with the external solution; and 2) the chemical
coupling of the third through seventh equations by means
of the proton concentration c5, which describes the buffering
capacity of KPi that counteracts the acidification of the
lumen induced by the weak acid influx. Indeed, the weak
acid, which carries a proton across the membrane and
then releases it in the vesicle lumen, effectively acts as a
proton source, whereas KPi acts as a sink of protons. The
detailed balance between the source and the sink terms
determines the overall pH variation. The opposite behavior
is observed for a weak base BHþ, for which the equations
must be modified accordingly. In Fig. 3, the relaxation dy-
namics are calculated by varying the permeability coeffi-
cient of the weak acid with respect to that of water, which
we keep constant. In the upper panels, we display the
relaxation kinetics of the acid (Fig. 3 a) and of the solute
concentration gradients (Fig. 3 b) that drive the relaxation
of the internal pH (Fig. 3 c) and volume (Fig. 3 d), respec-
tively. We observe that the acid flux, that is, the transport
term in the sixth equation, introduces extra features in the
relaxation curves with respect to the previous example
(compare Fig. 3 d with Fig. 2 a). Namely, three different dy-
namic regimes or behaviors are observed with respect to the
single dynamic regime displayed upon perturbation with an
impermeable osmolyte.

Dynamic regime #1: When the acid permeability is at
least one order of magnitude larger than the water
permeability (that is, P6 R 10 � P1) (blue curves),
the acid gradient D[AH] dissipates faster than the so-
lute gradient Dcs (in Fig. 3 a, the acid gradient D[AH]
stops decreasing at �10�1 s, whereas in Fig. 3 b, the
solute gradient Dcs reaches a minimum at �100 s).
Also, we observe that the relaxation of pH and volume
occurs simultaneously with the concentration gradi-
ents (compare Fig. 3 a with Fig. 3 c and Fig. 3 b
with Fig. 3 d), showing that the gradients dissipate
as a result of the acid and water flux, respectively.
Remarkably, the blue curve in Fig. 3 c shows an in-
crease of pH in the time interval from 10�1 s and
100 s. Indeed, the volume shrinkage, which follows
in time the dissipation of the gradient D[AH], in-
creases the internal acid concentration above the
external value ([AH] > [AH]*). Consequently, to re-
establish the equilibrium (that is, D[AH] ¼ 0), the
acid flows out of the lumen, causing the observed in-
crease of pH. Furthermore, from Fig. 3 b, it may
appear that the solute gradient does not dissipate
completely but stabilizes to Dcs x 22 mM. This is ex-
plained by the large amount of acid (�22 mM)
diffusing into the vesicle lumen to equilibrate the con-
centration gradient D[AH] of �60 mM and compen-
sate the buffering capacity of KPi. Therefore, the
internal solute concentration cs increases from the
starting value of 100 mM to �122 mM, thus lowering



FIGURE 3 Simulated curves for permeable weak

acids. The permeability coefficient of water is fixed

to P1 ¼ 0.003 cm/s, whereas the weak acid perme-

ability P6 was modified as indicated in the figure

legend. The time evolution of (a) the acid concentra-

tion gradient D[AH] of AH and (b) the solute con-

centration gradient Dcs is shown. The relaxation

dynamics of (c) internal pH and (d) normalized vol-

ume V(t)/V(0) are shown. The following parameters

were used for calculations: pK1 ¼ 7.21, pK2 ¼ 4,

M1 ¼ 18 cm3/mol, pH0 ¼ pH�
0 ¼ 7.0, [KPi] ¼

90 mM, [KPi]* ¼ 100 mM, [calcein] ¼ 10 mM,

k1 ¼ 106 s�1, KSV ¼ 102 M�1, c�6 þ c�7 ¼ 60 mM,

r0 ¼ 100 nm, and P1 ¼ 0.003 cm/s. For calculation

of pH(t), we set [KPi] ¼ 100 mM and [calcein] ¼
0 M. To see this figure in color, go online.
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the gradient Dcs from 60 mM to (160 � 122 mM)
38 mM.

Dynamic regime #2: When the acid and water perme-
ability coefficients are similar (that is, P6 x P1)
(see the yellow curve), the acid and solute gradients
relax on the same timescale, both ending at �100 s
(compare upper panels). Thus, the pH (acid inflow)
and volume (water outflow) also have similar relaxa-
tion times (compare bottom panels).

Dynamic regime #3: When the acid permeability is
slower than that of water (that is, P6 % 0.1 � P1) (or-
ange curves), the solute gradient dissipates faster than
the acid gradient (compare the upper panels in which
Dcs stops decreasing at�100, whereas D[AH] stops at
�101). Thus, the volume decreases faster than the pH
(compare the bottom panels). Interestingly, for times
longer than 100 s, the volume swells (Fig. 3 d) to
compensate for the increase of the internal solute con-
centration (Fig. 3 b) induced by the acid influx.

We observe that knowledge of both pH(t) and V(t) is
required to differentiate between the three dynamic regimes.
Indeed, from pH-only data, regime 2 is almost indistinguish-
able from regime 3 (compare the shape of the yellow and
orange curves in Fig. 3 c). Furthermore, regime 1 and 2
are hardly separated from volume-only data (compare the
shape of the yellow and blue curves in Fig. 3 d). On the
contrary, by looking at both pH and volume data, we can
immediately assess the dynamic regime of the system.

More generally, the transition between the three dynamic
regimes observed for weak acids depends on one dimension-
less parameter, that is, l6, appearing in the rescaled equa-
tions (see Appendix A). By looking at the definition of l
(see Eq. 12), we write the dependence of l6 from the phys-
ical parameters of the system
l6f
P6

P1

c�6
c�2s

: (24)

The parameter l6 is proportional to 1) the ratio ðP6 =P1Þ be-
tween the acid/water permeability and 2) the ratio ðc�6 =c�2s Þ
between the external AH concentration c�6 and the squared
solute concentration c�s . In Fig. 3, we show the effect of
the permeability ratio ðP6 =P1Þ on the dynamics of the sys-
tem by fixing P1 and varying P6. The same behavior is
expected if l6 is modified upon variation of the ratio
ðc�6 =c�2s Þ. To test this hypothesis, we fix the acid concentra-
tion at 60 mM and modify the pKa of the acid (see Fig. 4).
Thus, the external solute concentration is constant (c�s ¼
160 mM), whereas the relative amount of the permeable
species (AH ¼ c�6) changes according to the Henderson-
Hasselbach equation. Indeed, for higher pKa (that is, for
weaker acids), the concentration of AH gets higher with
respect to the concentration of A� and vice versa. As pre-
dicted, variation of the acid strength induces transitions
between the three dynamic regimes similar to the perme-
ability ratio, as shown by the similarity between Figs. 3 c
and 4. Interestingly, the vesicle radius has no effect on the
dynamic character of the system (data not shown), but
only affects the relaxation rates, similarly to Fig. 2 c.
Ensemble of vesicles

To describe the properties of a vesicle population as
measured during osmotic-upshift relaxation experiments,
we focus on ensemble-average physical quantities. To this
end, we consider a polydisperse population of spherical ves-
icles represented by the normalized vesicle size distribution
g(r0), where r0 is the vesicle radius. The relaxation dy-
namics of a single vesicle is described by the mathematical
Biophysical Journal 118, 435–447, January 21, 2020 443



FIGURE 4 Simulated curves for a permeable weak acid. The time evolu-

tion of internal pH upon variation of the weak acid pKa is shown. The

following parameters were used for calculations: pK1 ¼ 7.21, pK2 ¼ 4,

M1 ¼ 18 cm3/mol, pH0 ¼ pH�
0 ¼ 7.0, [KPi] ¼ 100 mM, [Kpi]* ¼

100 mM, [calcein] ¼ 0 M, k1 ¼ 106 s�1, KSV ¼ 102 M�1, c�6 þ
c�7 ¼ 60 mM, r0 ¼ 100 nm, and P1 ¼ 0.003 cm/s. The parameter pKa

was varied as indicated in the legend.

Gabba and Poolman
solutions of Eq. 10. These solutions depend on the surface
area A(r0) and on the starting volume V0(r0) of the vesicle.
Consequently, the dynamics of internal concentrations and
volume depend on the vesicle radius, that is, ci ¼ ci(r0)
and V ¼ V(r0). The same holds for any physical quantity h
function of V and ci. Thus, the population-averaged quanti-
ties h are calculated according to

h ¼
Z N

0

hðr0Þgðr0Þ dr0: (25)

The effects of polydispersity on the vesicle relaxation dy-
namics are shown in Fig. 5 for a permeable weak acid. Here,
we simulated ensembles of vesicles having log-normal size
distributions g(r0) with fixed mean (that is,m¼ 100 nm) and
variable variances n (see legend of Fig. 5 a). Indeed, the log-
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normal distribution is a good approximation of the vesicle
size distribution (9,20–22). We observe that the increase
of the vesicle polydispersity provokes 1) the increase of
the average vesicle volume (the curve shift upwards in
Fig. 5 b), 2) stretching of the relaxation curves or spread
of the relaxation rates (Fig. 5 c), and 3) the decrease of
the volume relaxation rate (Fig. 5 d).
CONCLUSIONS

We present a physiochemical model to describe of the dy-
namics of vesicles and yeast cells upon osmotic upshift.
Analysis of the computed relaxation kinetics upon osmotic
upshift with an impermeable solute and a permeable weak
acid allows us to draw important lessons about the system
dynamics. First, the dynamic character of the relaxation
kinetics depends on the number of permeable species:
the number of dynamic types (or curve shapes) increases
with the number of permeable molecules. Second, transi-
tions between the different dynamic regimes are governed
by the relative magnitude of the permeability coefficients
of the acid and water, as well as by the ratio between the
external concentration of acid and the total external solute
concentration. Thus, variation of the acid strength—that
is, the acid pKa—affects the dynamic behavior of the
system. Interestingly, the dynamic behavior of the system
is completely independent of the vesicle size, which
affects only the relaxation rate by shifting the kinetic
curve as a whole without modifying the curve shape. An
important issue to consider in treating experimental relax-
ation data is the heterogeneity of size of the vesicle pop-
ulations. Indeed, the simulated data show a stretching of
the relaxation curves upon an increase of the distribution
width. Therefore, in the analysis of the osmotic-upshift
relaxation experiments presented in the accompanying
FIGURE 5 Simulated curves for different vesicle

size distributions g(r0) and a permeable weak acid.

The color code is the same in the four panels. (a)

Log-normal distributions with mean m ¼ 100 nm

are shown. The variance v varies as indicated in the

legend. (b) Average volume dynamics hVðtÞi calcu-
lated according to Eq. 25 are shown. The average

pH dynamics hpHðtÞi (c) and the normalized average

fluorescence intensity hFðtÞi=hFð0Þi (d) were calcu-
lated as described in Appendix B. The following pa-

rameters were used for calculations: pK1 ¼ 7.21,

pK2 ¼ 4, Mw ¼ 18 cm3/mol, pH0 ¼ pH�
0 ¼ 7.0,

[KPi] ¼ 90 mM, [KPi]* ¼ 100 mM, [calcein] ¼
10 mM, k1 ¼ 106 s�1, KSV ¼ 102 M�1, c�6 þ
c�7 ¼ 60 mM, r0 ¼ 100 nm, P1 ¼ 0.003, and P6 ¼
0.03 cm/s. For calculation of pH(t), we set [KPi] ¼
100 mM and [calcein] ¼ 0 M. To see this figure in

color, go online.
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study (4), we used vesicle size distributions measured with
dynamic light scattering to account for vesicle size hetero-
geneities. In conclusion, the generality and flexibility of
the model make it a very useful tool for the interpretation
of (relaxation) kinetic experiments and for simulation of
(bio)chemical and biological systems in which molecular
transport across the vesicle membrane and osmoregulation
play a role. While our work was under review, Hanness-
chlaeger et al. (23) published a mathematical model for
weak acid transport across membranes that accounts
both for the accompanying water flux and the presence
of buffer. To the best of our understanding, this model
fails to fully capture the complex interplay between vol-
ume dynamics, passive diffusion across the membrane,
and reaction kinetics because the volume term, that is,
� ðci =VÞ _V, is missing (compare Eq. 23 in our work
with Eqs. 10–16 in (24)). The volume term is readily
acknowledged if dynamic equations are derived from the
definition of molar concentration (see Vesicle Relaxation
Dynamics). We stress the importance of the volume term
that couples all the equations of the system (see Eqs. 21
and 23).
APPENDIX A: DERIVATION OF THE
DIMENSIONLESS EQUATIONS

To derive dimensionless equations, we express the variables appearing in

Eq. 10 as a function of the dimensionless variables defined in Eq. 11,

that is,

ci ¼ cic
�
s ; V ¼ VV0; t ¼ ttc: (26)

Afterwards, these variables are substituted in Eq. 10. Upon substitution,

the derivatives _ci and _V become

_ci ¼ c�s
tc

vci
vt
; _V ¼ V0

tc

vV

vt
(27)

where ðvV =vtÞ ¼ _V and ðvci =vtÞ ¼ _ci. Thus, the overall system of dif-

ferential equation is

_ci ¼ tc

V

"
awjci

 
1�

Xn�1

i

ci

!
þ bijðgi � ciÞ

#
þ tc
c�s
Rij

_Vx� tcawj

 
1�

Xn�1

i

ci

! (28)

where the parameters awj ¼ A
V0
PwjMwc

�
s ½s�1�, bij ¼ ðA =V0ÞPij [s�1],

and gi ¼ ðc�i =c�s Þ were defined. To obtain the equations in their

final form as shown in the main text (Eq. 12), we set tc ¼ a�1
wj

and define a new dimensionless parameter lij ¼ ðbijgi =awjÞ and the

dimensionless reaction term Rij ¼ ðRij =awjc
�
s Þ. For the weak acid

example discussed in the main text, the dimensionless equations are

the following:
_c1 ¼ 0

_c2 ¼ 1

V
c2

_V

_c3 ¼ 1

V
c3

_V �U1

�
c3 � c4c5

J1

	

_c4 ¼ 1

V
c4

_V þU1

�
c3 � c4c5

J1

	

_c5 ¼ 1

V
c5

_V þU1

�
c3 � c4c5

J1

	
þ U2

�
c6 � c7c5

J2

	

_c6 ¼ 1

V
c6

_V �U2

�
c6 � c7c5

J2

	
þ l6

�
1� c6

g6

	

_c7 ¼ 1

V
c7

_V þU2

�
c6 � c7c5

J2

	
_V ¼ c2 þ c3 þ c4 þ c5 þ c6 þ c7 � 1

(29)

where the following dimensionless parameters were defined considering

spherical vesicles for which ðA =V0Þ ¼ ð3 =r0Þ: U1;2 ¼ ðk1;2 =a1Þ ¼
ðr0k1;2 =3P1M1c

�
s Þ, J1;2 ¼ ðK1;2 =c

�
s Þ, l6 ¼ ðP6 =P1Þðc�6 =M1c

�2
s Þ, and

g6 ¼ ðc�6 =c�s Þ.
APPENDIX B: CALCULATION OF PROBE
READOUT

To compare the calculated with the experimental relaxation curves, we

consider the readout mechanism of the probes employed in our

in vitro and in vivo assays, which are pyranine (25,26), calcein (17), and

pHluorin (24).
pH-sensitive probe readout

Pyranine and pHluorin are ratiometric pH sensors for which the ratio R12 ¼
F1/F2 between the fluorescence intensities emitted upon excitation at two

different wavelengths (453/405 nm for pyranine and 390/470 nm for

pHluorin) is measured as a function of known pH-values during calibration

experiments. Afterwards, unknown pH-values are calculated from the

measured fluorescence ratios R12 by using the empirical calibration curve

pH(R12)exp. Here, we perform the opposite procedure; that is, we calculate

the population-averaged mean ratio hR12ðtÞith from the computed pH relax-

ation curves pH(r0, t) and compare it with the experimentally determined

ratio hR12ðtÞiexp. To this end, we must consider the fluorescence signal

generated by an ensemble of vesicles containing the probes at concentration

c0 and with size distribution g(r0). The fluorescence intensity F [photon/s]

emitted by a single vesicle is

F ¼ fN (30)

where N is the number fluorophore in the vesicle lumen. For the pH

sensor, the molecular brightness f [photon/(s , molecule)] is sensitive to

the pH in solution, that is, f ¼ f(pH). Thus, the intensity F is also a function

of the pH, that is, F ¼ F(pH). For a vesicle population, the number of

fluorophores N per vesicle is distributed according to the Poisson distribu-

tion PN,

PNðr0Þ ¼ lðr0ÞNe�lðr0Þ

N!
(31)
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with mean l(r0) ¼ c0V(r0)Na (27,28), where V(r0) ¼ ð4 =3Þpr30 is

the vesicle volume of a spherical vesicle. Accordingly, the mean intensity

hFðr0Þi emitted by an ensemble of vesicle with radius r0—that is, a mono-

disperse population for which g(r0) ¼ d(r � r0)—is simply hFðr0Þi ¼
f lðr0Þ. Instead, for a polydisperse population of spherical vesicles, the

mean intensity hFi is

hFi ¼ 4

3
pc0Na

ZN
0

f ðpHÞ r30 gðr0Þ dr0: (32)

Importantly, we note that hFi scales with r30, which means that larger

vesicles contribute more to the measured signal than smaller ones. Next,
we calculate the average fluorescence ratio hR12ith between the mean inten-

sities hF1i and hF2i, that is,

hR12ith ¼
hF1i
hF2i ¼

RN

0
f1ðpHÞ r30 gðr0Þ dr0RN

0
f2ðpHÞ r30 gðr0Þ dr0

: (33)

Here, we recall that the pH dynamics are a function of the vesicle radius,

that is, pH ¼ pH(r , t). Therefore, the molecular brightness f(pH) is also a
0

function of r0 and cannot be extracted from the integral in Eq. 33. The theo-

retical relationship f(pH) between the molecular brightness and the pH is

given for pyranine in (29). However, for the sake of simplicity, we derive

a semiempirical equation exploiting the calibration data of the pH sensor

for the calculation of hR12ith. To this end, we rewrite Eq. 33 upon multipli-

cation by the ratio ðf1ðpH0Þ =f1ðpH0ÞÞðf2ðpH0Þ =f2ðpH0ÞÞ as follows:

hR12ith ¼ R12ðpH0Þ
RN

0
R1ðpHÞ r30 gðr0Þ dr0RN

0
R2ðpHÞ r30 gðr0Þ dr0

(34)

where the constant R12(pH0) and the functions R1(pH) and R2(pH) are
R12ðpH0Þ ¼ f1ðpH0Þ
f2ðpH0Þ ¼ F1ðpH0Þ

F2ðpH0Þ

R1ðpHÞ ¼ f1ðpHÞ
f1ðpH0Þ ¼ F1ðpHÞ

F1ðpH0Þ

R2ðpHÞ ¼ f2ðpHÞ
f2ðpH0Þ ¼ F2ðpHÞ

F2ðpH0Þ

(35)

upon normalization with respect to the brightness at pH0 ¼ 7. These

functions are obtained from empirical fits of the calibration data, which
are {F1, F2, pH}. Finally, by numerical integration of Eq. 34, we can calcu-

late the pH sensor readout as a function of time hR12ðtÞith from the

computed pH relaxation curves pH(r0, t) and the vesicle size distribution

g(r0). This allows us to compare the calculated hR12ðtÞith with the measured

hR12ðtÞiexp relaxation kinetics. Also, we can use the empirical function

pH(R12) to obtain hpHðtÞith. For pyranine, we used the following empirical

functions for the calculation of hpHðtÞith:
1) R12(pH0) ¼ 0.5133;

2) R1(pH) ¼ 0.5129 � pH2 � 5.793 � pH þ 16.4;

3) R2(pH) ¼ a1e
b1pH þ c1e

d1pH with a1 ¼ 1325, b1 ¼ �0.9138,

c1 ¼ �9111, and d1 ¼ �1.278;

4) pH(R12) ¼ a2e
b2R12 þ c2e

d2R12 with a2 ¼ 6.643, b2 ¼ 0.1072,

c2 ¼ �0.9937, and d2 ¼ �8.149.
Calcein readout

To calculate the readout of calcein, we follow a similar approach as for the

pH sensor, but instead of the ratio hR12ðtÞith, we calculate the normalized

ratio hFrðtÞith, that is,
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hFrðtÞith ¼
hFðtÞi
hFð0Þi ¼

RN

0
f ðcðtÞÞ r30 gðr0Þ dr0RN

0
f ðcð0ÞÞ r30 gðr0Þ dr0

: (36)

Indeed, the molecular brightness of calcein at self-quenching concentra-

tion is a function of the calcein concentration itself, that is, f ¼ f(c).

Because, in our description, the calcein concentration at time 0 c(0) is in-

dependent from r0, the term f(c(0)) is constant. Thus, we can take this

term outside the integral and write

hFrðtÞith ¼
RN

0
Frðr0; tÞ r30 gðr0Þ dr0

hr30i
(37)

where hr3i ¼ R r30gðr0Þ dr0 is the average cubic radius and Fr(r0, t) is a

function of the internal concentration c(r0, t) according to the Stern-Volmer

equation

Frðr0; tÞ ¼ Fðr0; tÞ
Fð0Þ ¼ f ðcðtÞÞ

f ðcð0ÞÞ ¼ 1þ KSVcð0Þ
1þ KSVcðr0; tÞ: (38)

Equation 37 is used to calculate the calcein readout hFrðtÞith from the

dynamic quenching constant KSV, the vesicle size distribution g(r0), the

starting calcein concentration c(0), and the computed relaxation curves

c(r0, t).
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