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Abstract: Alzheimer’s disease (AD) is neurodegeneration that accounts for 60–70% of dementia cases.
Symptoms begin with mild memory difficulties and evolve towards cognitive impairment. The
underlying risk factors remain primarily unclear for this heterogeneous disorder. Bioinformatics
is a relevant research tool that allows for identifying several pathways related to AD. Open-access
databases of RNA microarrays from the peripheral blood and brain of AD patients were analyzed
after background correction and data normalization; the Limma package was used for differential
expression analysis (DEA) through statistical R programming language. Data were corrected with
the Benjamini and Hochberg approach, and genes with p-values equal to or less than 0.05 were
considered to be significant. The direction of the change in gene expression was determined by its
variation in the log2-fold change between healthy controls and patients. We performed the functional
enrichment analysis of GO using goana and topGO-Limma. The functional enrichment analysis
of DEGs showed upregulated (UR) pathways: behavior, nervous systems process, postsynapses,
enzyme binding; downregulated (DR) were cellular component organization, RNA metabolic process,
and signal transduction. Lastly, the intersection of DEGs in the three databases showed eight shared
genes between brain and blood, with potential use as AD biomarkers for blood tests.

Keywords: Alzheimer’s disease; biomarkers; bioinformatics; differentially expressed genes

1. Introduction

Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder.
AD is the most common cause of dementia, accounting for 60–80% of all these cases [1].
According to the World Alzheimer Report 2021, over 55 million people globally live with
dementia [2–6], and this number is projected to increase to 152 million by 2050 [7,8]. An
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estimated 6.5 million Americans aged 65 and older are living with Alzheimer’s dementia
in 2022, with 73% aged 75 or older [9]. Furthermore, the Alzheimer’s Association reported
that Alzheimer’s deaths jumped 16% during the coronavirus pandemic (SARS-CoV-2).

AD is a progressive age-related neurodegenerative disorder. The most common type
is late-onset or sporadic AD, defined as AD with an age of onset after age 65. It is at-
tributed to a complex combination of genes, chemicals factors, environment, and lifestyle
habits [10,11]. For instance, several studies suggested an association between AD and
increased blood levels of toxic metals such as copper (Cu), selenium (Se), zinc (Zn), lead
(Pb), and mercury [12,13]. Several investigations focused on elucidating the influence of
these toxic metals and the molecular mechanisms involved in neurodegenerative disease
development [14]. Elevated levels of nonessential metals may induce various detrimental
intracellular events, including oxidative stress, mitochondrial dysfunction, DNA fragmen-
tation, protein misfolding, endoplasmic reticulum stress, autophagy dysregulation, and
the activation of apoptosis that may alter neurotransmission. Living in industrial areas
constitutes an environmental hazard that could be an important contributing factor for the
development of AD and other diseases because of exposure to high concentrations of heavy
metals. Furthermore, there is increasing evidence suggesting the role of environmental
factors in the development of AD, such as exposure to polychlorinated biphenyls (PCBs)
and organochlorine pesticides (OC) [15,16]. The other type of AD is early-onset (EOAD) or
familial AD, which occurs at ages of onset ranging from 30 to 50 years; it is hereditary and
accounts for 1%–5% of AD cases; the remaining 90% are sporadic or late-onset AD (LOAD).
EOAD involves mutations in genes encoding amyloid precursor protein (APP), presenilin-1
(PS1), and presenilin-2 (PS2). Mutations in these genes might result in the alteration of
amyloid beta (Aβ) peptide production (both Aβ 40 and Aβ 42, and smaller Ab peptides),
leading to cell death and dementia [17–19].

The development of intraneuronal and extracellular lesions at vulnerable sites in the
brain is central to AD. Pathological hallmarks of AD are neuritic plaques and neurofibrillary
tangles related to the accumulation of the amyloid-β (Aβ) peptide in brain tissue and to
cytoskeletal abnormalities that are caused by the accumulation of hyperphosphorylated
microtubule-associated protein tau in neurons, respectively [5,20,21]. The progression of
AD pathology begins in structures of the entorhinal cortex (EC) and hippocampus (HIP) in
the prodromal stage [22–26].

AD is a heterogeneous disease; novel approaches to integrating genetics, expression,
and epigenetics into organized molecular networks may facilitate the understanding of
the pathogenesis underlying these diseases [27]. Currently, AD does not have a cure, and
confirmatory diagnostics is postmortem; however, some potential biomarkers in CSF were
proposed for the diagnosis of AD, such as the presence of total tau protein (T-tau) and
hyperphosphorylated tau (P-tau 181 and P-tau 217), the relationship between amyloid beta
42/40 peptides, and the presence of neurofilament light protein (NfL) [28–30]. The use
of other diagnostic biomarkers such as YKL-40 associated with neuroinflammation was
suggested [31]. More studies are needed to identify potential biomarkers of this disease for
developing early diagnostics and new therapeutic approaches. Several high-throughput
experimental approaches involving genomewide linkage (GWL) scans, genomewide as-
sociation (GWA) studies, and genomewide expression (GWE) profiling were extensively
utilized to identify the underlying genetic risk factors and new biomarkers [32–34]. Re-
cent discoveries indicate that comprehensive bioinformatic analyses could allow for the
discovery of new therapeutic targets in AD pathology [35,36]. In this study, we performed
a bioinformatics analysis of open-access RNA microarrays from AD patients’ peripheral
blood and brain to explore critical genes that might be involved in AD pathogenesis and
could help in improving diagnosis.

2. Materials and Methods

Figure 1 schematizes the bioinformatics analysis performed in this study. The down
sections detail it to step by step.
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Figure 1. Flowchart of bioinformatics analysis performed in this study with detailed software,
database, and tools used for each step (AD, Alzheimer´s disease; GEO, Gene Expression Omnibus;
PCA, principal component analysis; DEA, differential expression analysis; DEGs, differentially
expressed genes; FEA, functional enrichment analysis; GO, gene ontology; BP, biological processes;
CC, cellular component; MF, molecular function).

2.1. Microarray Processing

In this work, all analyses were carried out in January 2022 with R version 4.1.2.
First, we analyzed free-access microarray databases from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 22 March 2022) from affected human
blood (GSE4226, GSE63061, GSE85426, GSE97760, GSE140829, GSE18309) and brain areas
(GSE132903, GSE118553, GSE110226, GSE84422, GSE28146, GSE33000, GSE48350, GSE4757,
GSE39420) with sporadic Alzheimer disease. We only selected databases in which gene
expression showed normal distribution in the histogram, similar a median across all
samples in boxplot, and with AD samples and healthy samples grouped apart or with

https://www.ncbi.nlm.nih.gov/geo/
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a tendency to separate in PCA plots. For further analysis, we worked with only female
samples between 65 and 90 years old to reduce variability (Table 1).

Table 1. Selected database characteristics.

GEO ID Tissue Samples Condition Race
Publication and

Last Update
Date

GSE97760 Peripheral blood CNTRL: 10
AD: 9

CNTRL: healthy
AD: spo-

radic/advanced

CNTRL: not
provided
AD: not

provided

Published on 14
April

2017/updated
on 27 March 2018

GSE84422-
GPL96 Hippocampus CNTRL: 4

AD: 9

CNTRL: healthy
AD: spo-

radic/definite

CNTRL: 4 white
AD: 8

white/1black

Published on 19
August

2016/updated
on 26 June 2019

GSE132903 Middle temporal
gyrus

CNTRL: 8
AD: 8

CNTRL: healthy
AD: spo-

radic/advanced

CNTRL: not
provided
AD: not

provided

Updated on 18
September 2019

Data from database GSE84422-GPL96 were preprocessed with the affy and Core R
packages using the mas5 algorithm for background-noise correction and filtering absent
probes. Subsequently, preprocessed data were normalized with quantile normalization
and transformed into a base 2 logarithmic scale. For GSE97760 and GSE132903, we down-
loaded preprocessed data and normalized them with quantile normalization, and base 2
logarithmic scale transformation was applied to both.

2.2. Differential Expression Analysis

We performed differential expression analysis (DEA) with processed data between
the AD and CNTRL samples of each microarray database using the Limma R package.
Genes with a logarithmic fold change (logFC) > 0.5 and a corrected p-value (adj.pval) < 0.05
(Benjamini–Hochberg for multiple tests) were considered to be upregulated differentially
expressed genes (DEGs); genes with logFC < −0.5 and adj.pval. < 0.05 were considered to
be downregulated DEGs.

2.3. Functional Enrichment Analysis

In each database, we performed functional enrichment analysis (FEA) of up- and
downregulated DEGs; we used the R topGO package with the weight01 algorithm. For
statistical comparison, we carried out a Fisher’s exact test. We considered as background
up and down DEGs. Lastly, we plotted the first 10 most enriched gene ontology terms (GO)
for biological processes (BPs), cellular components (CCs), and molecular functions (MFs),
the number of genes in each GO, and the significance of the enrichment.

2.4. Genes in Common and Selection of Genes of Interest

To find the genes of interest, we looked for genes in common with the same pattern of
expression in the blood and brain datasets. We compared DEGs found in blood with DEGs
found in each brain database (GSE97760 ∩ GSE84422-GPL96; GSE97760 ∩ GSE132903).
Lastly, we sought genes that were shared among all comparisons.

3. Results
3.1. Homogenization of Raw Database Data

We selected and processed three open-access microarray databases to analyze tran-
scriptomic differences in Alzheimer’s disease. These databases were obtained from blood
samples (GSE97760, peripheral blood) and two from brain tissue (GSE84422-GPL96 of
hippocamppus and GSE132903 of middle temporal gyrus). They are summarized in Table 1,
they originated from patients with Alzheimer’s disease, and were compared with samples
from control individuals.
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Selected processed data showed normal distribution in their expression level and
a similar median in all samples; this indicates that all three databases were suitable for
further statistical analysis (Figure 2A–C). Subsequently, we performed principal component
analysis (PCA) to observe the pattern between patient samples and controls from the pro-
cessed data. Our results showed that the first and second principal components explained
approximately 25% of variation in the transcriptomic profile. Subjects with Alzheimer’s
disease were also grouped independently of control subjects, indicating that the two groups
(patients vs. controls) differed in their transcriptional profiles (Figure 3A–C).
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brain tissue from database GSE84422-GPL96, and (C) brain tissue from database GSE132903.
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Figure 3. Principal component analysis (PCA) of processed data (CNTL and AD). Data of (A) blood
database GSE97760, (B) brain database GSE84422-GPL96, and (C) brain database GSE132903.

3.2. Differential Expression Analysis (DEA)

Differential expression analysis (DEA) was performed to evaluate the differences in
the transcriptional profile between the groups of each database. Our results showed 850
downregulated and 693 upregulated DEGs for the blood database (Figure 4A) (GSE97760),
and 17 downregulated and 81 upregulated DEGs in the brain database (GSE84422-GPL96)
(Figure 4B). In the GSE132903 database, we found 167 downregulated DEGs and 156
upregulated DEGs (Figure 4C).

3.3. Functional Enrichment Analysis of DEGs
3.3.1. Biological Process

After finding many upregulated and downregulated DEGs, we determined in each
database if these genes overrepresented any specific biological function, for which we
performed functional enrichment analysis (FEA). For the blood database (GSE97760), we
detected the enrichment of different mRNA biological processes: the regulation of transcrip-
tion by RNA polymerase II and RNA processing were upregulated, while downregulated
were cell development, G protein-coupled receptor signaling pathway, and animal organ
morphogenesis (Figure 5A). Analysis for the brain database (GSE84422-GPL96) showed no
upregulated biological processes, while downregulated processes were related to the RNA
metabolic process (Figure 5B). Upregulated DEGs in the other brain database, GSE132903,
were associated with cellular component assembly and the negative regulation of the apop-
totic process. In contrast, those downregulated were associated with the signal transduction
and establishment of localization in the cell (Figure 5C).

3.3.2. Molecular Function

In the case of molecular function, in the blood database (GSE97760), we found func-
tions of metal ion binding, DNA binding, and RNA binding to be upregulated. Downregu-
lated functions were organic cyclic compound binding, heterocyclic compound binding,
and small-molecule binding (Figure 6A). In the brain database (GSE84422-GPL96), we
found no upregulated molecular function, but found downregulated RNA binding func-
tion (Figure 6B). For database GSE132903, we found upregulated molecular functions to
be DNA-binding transcription factor activity, RNA polymerase II cis-regulatory region
sequence-specific DNA binding, and kinase activity, while downregulated were enzyme
binding, catalytic activity (acting on a protein), and calcium ion binding (Figure 6C).
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Figure 4. Volcano plot of up- and downregulated differentially expressed genes (DEGs) when
comparing Alzheimer’s disease (AD) samples with healthy control samples (CNTRL), and heat map
with logarithmic scale expression of DEGs in AD and CNTRL samples. CNTRL in blue, AD in
red, purple line = median value, principal component 1, Dim1; principal component 2, Dim2; not
significant, NS; genes with −0.5 > fold change < 0.5 (green dots); genes with −0.5 > fold change
< 0.5 and adjusted p value (adj.P.val) < 0.05 (red dots). Data of (A) blood GSE97760, (B) brain
GSE84422-GPL96, and (C) brain GSE132903.
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3.3.3. Cellular Component

Regarding enriched cellular components, we found that, for the blood database
(GSE97760), upregulated enriched processes were the nucleus, nucleoplasm, and nucle-
olus. Downregulated were integral components of membrane, extracellular region, and
extracellular space (Figure 7A). In the brain database (GSE84422-GPL96), we found the up-
regulation of cellular components related to neuron projection, axon, and postsynapse, and
the protein-containing complex was downregulated (Figure 7B). In database GSE132903, we
found upregulated alterations for cellular components such as chromatin, and intracellular
organelle lumen, synapse, endoplasmic reticulum, and membrane protein complex were
downregulated (Figure 7C).
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3.4. Genes of Great Interest as Potential AD Biomarkers

We looked for the intersection of genes between the two brain databases and the
blood database, which are of great interest as potential AD biomarkers for blood tests.
We found genes of interest in common (shared between the blood and brain databases)
with the same expression pattern (up- or downregulated) between the blood and brain
datasets. As mentioned in Section 2, the blood database (GSE97760) was analyzed with the
two brain databases (GSE84422-GPL96 and GSE132903). In the first intersection between
the blood database (GSE97760) and one of the brain databases (GSE84422-GPL96), we
found three genes of interest, namely, PPP3CB, SNCB, and SACS, and all were upregulated
(Figure 8A). Five genes of interest were found for the intersection between the blood
database (GSE97760) and brain database GSE132903: SNCA, FKBP1B, JMY, ZNF525, and
COBLL1 (Figure 8B).
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Figure 8. Venn diagram of overlap between genes from differential expression analysis and weighted
gene correlation network analysis for AD phenotype (DEGs+WGCNA), previously reported differen-
tially expressed genes, and list of mapped genes obtained from genomewide association studies (AD
GWAS); intersection (∩). (A) GSE97760 ∩ GSE84422-GPL96; (B) GSE97760 ∩ GSE132903.

4. Discussion

The analysis of the gene expression dataset and the identification of differentially
expressed genes in disease compared to a healthy condition target different nodes for novel
biomarker detection.

Regarding AD, previous studies showed that abnormalities in the pre- and/or postsy-
naptic machinery are compromised in many age-related neurological disorders, including
AD [37–39]. Upon subjection to enrichment analysis, our DEGs revealed that they are
involved in diverse processes that could be related to this neurodegenerative disease. In
this sense, some enriched GO biological processes are relevant to disease due their rela-
tionship with the synaptic process. Analysis of the blood database (GSE97760) showed
that downregulated DEGs are associated with axon guidance and behavior, while the brain
database (GSE84422) showed downregulated DEGs associated with learning or memory. In
the case of molecular function, in the blood database (GSE97760), we found downregulated
molecular function of ion channel activity, calcium ion binding, and gated channel activ-
ity. In contrast, the brain database (GSE84422) showed downregulated DEGs associated
with calcium ion binding. Lastly, upregulated cellular components in the brain database
(GSE84422-GPL96) were related to neuron projection, axon, and postsynapse. A previous
study demonstrated the association between miRNAs in AD brains and their target genes
using bioinformatics analysis; findings showed dysregulated miRNAs and their target mR-
NAs involved in biological processes such as postsynaptic machinery, neurotransmission,
and neuronal viability in AD [40]. Lastly, the results of an approach to identify common
signature patterns across public AD studies suggest that AD gene regulatory networks
(GRNs) show significant enrichment for key signaling mechanisms involved in neurotrans-
mission. Prioritized genes were prominent in synaptic transmission and implicated in
cognitive deficits [41].

The results of the present bioinformatic analysis to explore critical genes potentially
involved in the pathogenesis of AD revealed eight interesting genes, which are described
below.
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The first gene to emerge from the intersection analysis of open-access microarray
databases GSE97760 (peripheral blood) and GSE84422-GPL96 (hippocampus) was cal-
cineurin A subunit β (PPP3CB), which is upregulated.

Calcineurin is a major calmodulin-binding protein in the brain and the only ser-
ine/threonine phosphatase under the control of Ca2+/calmodulin. Calcineurin is always
present as a heterodimer, and it consists of a 58–64 kDa catalytic subunit, calcineurin A,
and a 19 kDa regulatory subunit, calcineurin B [42]. The calcineurin A subunit is differen-
tiated into three types, namely, Aα, Aβ (PPP3CB), and Aγ, derived from three different
genes. Calcineurin Aα and Aβ are highly expressed in the brain, whereas calcineurin Aγ

expression is specific for the testis [43].
A study showed that calcineurin Aβ is upregulated in the hippocampus in the early

stages of AD, and these are data correlated with our finding of the upregulation of cal-
cineurin A subunit β in both the blood and brain databases. In that study, the authors
compared gene expression in the hippocampus, a region relatively susceptible to neurode-
generation by neurofibrillary tangles (NFTs), with its expression in the parietal cortex, a
brain region more resistant to this type of degeneration [44].

At the molecular level, calcineurin may be involved in the regulation of tau phospho-
rylation in AD brains [45,46]. Another possible explanation of the role of calcineurin Aβ

in AD is that calcineurin may be involved in neuronal cell death triggered by insults that
increase cytosolic Ca2+ [47] or that the overexpression of calcineurin triggers cytochrome
c/caspase-3-dependent apoptosis in neurons [48]. Lastly, one study concluded that the
increased expression of calcineurin Aβ might alter APP metabolism and lead to increased
production of amyloid Aβ, a major cause of AD. Therefore, the downregulation of cal-
cineurin Aβ levels could be used as a potential therapeutic agent to reduce amyloid Aβ

levels [49].
The second gene obtained in our study is beta-synuclein (SNCB), which is upregulated.

Beta-synuclein (βSyn) is a presynaptic protein that is expressed in the central nervous
system (CNS) and highly enriched in the hippocampus [50]. A significant advantage
of βSyn compared with other synaptic CSF markers, such as neurogranin, is its specific
expression in the CNS, which is why the release of βSyn from degenerating neurons is
more likely to also be detected in blood [51].

The physiological function of βSyn is unclear, and it was studied in the context of
α-synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy bodies
(DLB) [52,53]. No significant changes in βSyn levels were observed in CSF and serum
from PD patients. Therefore, it is unlikely that changes in βSyn in AD are due to α-
synuclein copathology. Because the pattern of βSyn changes in CSF and serum resembles
other synaptic proteins in neurodegenerative diseases, total βSyn levels reflect synaptic
degeneration rather than specific changes associated with βSyn pathology [51].

The establishment of a new detection method for beta-synuclein provides evidence
that beta-synuclein is a novel diagnostic and predictive biomarker candidate for AD when
measured in CSF. The CSF levels of presynaptic beta-synuclein could be used as a marker of
synaptic degeneration and may thus be suitable as a measurement in clinical trials targeting
synapse loss AD [54].

The third gene, a product of intersection analysis, is sacsin (SACS), which is a cochap-
erone that acts as a regulator of Hsp70 chaperone machinery and may be involved in the
processing of other ataxia-linked proteins. SACS was upregulated in AD tissue. SACS
encodes the sacsin protein, which contains a UbL domain at the N terminus, a DnaJ do-
main, and a HEPN domain at the C terminus. The gene is highly expressed in the central
nervous system, and is also found in the skin, skeletal muscle, and in small amounts in the
pancreas [55].

Sacsin is predominantly localized in the cytoplasm and in mitochondria. Sacsin in-
teracts with dynamin-related protein 1 (DRP1), a GTPase that mediates mitochondrial
fission. In a sacsin knockout mouse, mitochondria appeared to be overly fused and showed
reduction in mobility [56]. These data suggest that sacsin may also participate in mitochon-
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drial fission. Mitochondrial dysfunction is a common feature in many neurodegenerative
diseases such as Alzheimer’s [57].

The first gene to emerge from our intersection analysis of open-access microarray
databases GSE97760 (peripheral blood) and GSE132903 (middle temporal gyrus) was
alpha-synuclein (SNCA), which is downregulated.

α-Synuclein (αSyn) is predominantly expressed within presynaptic terminals of neu-
rons [58]. The expression of αSyn can mainly be found in the cerebral cortex, cerebellum,
striatum, thalamus, hippocampus, and olfactory bulb [59]. α-Synuclein is a small 140-
residue protein translated from 5 SNCA gene exons located on the long arm of chromosome
4 [60]. The primary structure of αSyn is subdivided into three regions: an amphipathic
N-terminal, a hydrophobic core region known as the NAC, and an unstructured acidic
C-terminal.

In addition to AD brain pathology, including Aβ and tau lesions, studies documented
the occurrence of comorbid αSyn or Lewy-related pathology (LRP) in more than 50% of
autopsy-confirmed AD brains [61]. The co-occurrence of LRP in AD is associated with the
immunohistochemical colocalization of αSyn and tau pathology [62], and to a lesser extent
to αSyn and Aβ pathology [63].

A study conducted with CSF samples collected over a period of 7 years as part of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) showed that lower α-syn/p-
tau181 levels were associated with both the faster progression of cognitive decline and
the conversion of MCI into AD [64]. The results of another study showed lower levels of
α-syn and its heterocomplexes (i.e., α-syn/Aβ and α-syn/tau) in red blood cells (RBCs)
of AD patients compared with healthy controls (HCTLS). Both α-syn/Aβ and α-syn/tau
heterodimers in RBCs distinguished AD participants from healthy controls with sufficient
accuracy. These data suggest that α-syn heteroaggregates in erythrocytes are a potential
tool for the early diagnosis of AD on blood tests [65].

The second obtained gene is FKBP prolyl isomerase 1B (FKBP1B), which is downregu-
lated.

FK506-binding proteins 1a and 1b (FKBP1a/1b) are immunophilin proteins that
bind immunosuppressive drugs FK506 and rapamycin. Many immunophilins exhibit
peptidyl-prolyl isomerase activity, and function as protein chaperones and structural stabi-
lizers [66,67]. Microarray studies revealed that FKBP1b gene expression was downregulated
in the hippocampus of aging rats and in early Alzheimer’s disease patients. These results
suggest that declining FKBP function is a key factor in age-related Ca2+ dysregulation in
the brain [68]. Furthermore, one paper reported gene therapy approaches, and found that
increasing FKBP1b reversed calcium dysregulation and memory impairment in aging rats,
allowing for them to perform as well as young rats on a memory task [69].

Other genes in analysis (JMY, ZNF525, and COBLL1) were not previously associated
with Alzheimer’s disease. However, they could be considered in future studies. JMY is
a gene that encodes for junction-mediating and regulatory protein, and it acts as both a
nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on
conditions [70]. During autophagy, actin filament networks move and remodel cellular
membranes to form autophagosomes that enclose and metabolize cytoplasmic contents.
LC3 and STRAP regulate JMY’s actin assembly activities in trans during autophagy [70].
Thus, the connection of JYM to AD may be at the level of autophagy regulation, since
autophagy is impaired in AD neurons and other peripheral cells. ZNF525 encodes for
zinc finger protein 525, which may be involved in transcriptional regulation. Sterner
et al. (2013) reported that the expression of ZNF525 in the cerebral cortex broadly mirrors
developmental patterns of cortical glucose consumption [71]. Therefore, this protein could
be related to brain metabolic function, which is affected in AD. In turn, Cordon-Bleu
WH2 repeat-protein-like 1 (COBLL1) enables cadherin binding activity and it is located
in extracellular exosomes. An important paralog of this gene is COBL, which is involved
in neural tube formation [72,73]. Gene Ontology (GO) annotations related to this gene
include actin binding. Diseases associated with COBLL1 include macular degeneration
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age-related 10 (ARMD10). An association among COBLL1 rs7607980 C allele, lower serum
insulin levels, and lower insulin resistance was reported in overweight and obese children.
Hyperglycemia is a risk factor for dementia [74,75].

Bioinformatics analysis has been applied to many diseases in recent decades in the
search for identifying new biomarkers for disease diagnosis and treatment [76–78].

DEGs in AD were also studied. Results in Gene Ontology (GO) terms of those articles
are similar to ours [40,79]. Our results are reliable for the following reasons: (1) This
study follows statistical test models along with gene enrichment to better understand
detailed molecular mechanisms underlying AD and thus assist in the selection of possible
biomarkers for patients with the disease. (2) The three selected datasets are all based on the
same platform. They could be combined into one dataset for normalized analysis, which
would improve the credibility of the results. (3) During investigation, the original data
were processed to ensure that the information was valid and consistent.

However, there were a few limitations in our study. The sample size for microarray
analysis was small (we selected three datasets with a sample size of 58), which may have
caused a relatively high rate of false-positive results. Moreover, no experimental verification
was performed. Thus, to verify the current results, further studies are warranted to elucidate
the biological function of these genes in AD besides their potential use as reliable molecular
biomarkers for disease.

In summary, eight genes involved in AD pathogenesis identified in our bioinformatic
study shared between the blood database and the two brain tissue databases are potential
biomarkers for AD. More research is warranted in order to validate its detection in patients’
peripheral blood samples or CSF. Among these presumptive AD biomarkers are calcineurin
subunit β, a serine/threonine phosphatase under the control of Ca2+/calmodulin; β-
synuclein, which is associated with synaptic degeneration; α-synuclein, which is associated
with the occurrence of comorbid LRP in AD; and FKBP prolyl isomerase 1B (FKBP1B), a
chaperone involved in age-related Ca2+ dysregulation in the brain. The SACS gene may be
another candidate molecule for AD diagnosis because of its involvement in mitochondrial
dysfunction, which is part of the pathophysiology of AD, and three genes JMY, ZNF525,
and COBLL1, which are involved in the generation of autophagosomes, transcription
regulation glucose consumption, and cadherin/actin binding linked to lower serum insulin
levels, respectively, could also be useful in AD diagnosis.

5. Conclusions

The differential gene expression analysis of tissue (hippocampus and middle temporal
gyrus) and peripheral blood databases from Alzheimer’s disease patients resulted in
the functional enrichment of DEGs showing UR pathways of behavior, nervous system
processes, postsynapses, and enzyme binding, while cellular component organization,
RNA metabolic process, and signal transduction were DR. Lastly, the intersection of DEGs
in the three databases revealed eight common genes in the brain and blood that could
be validated in samples from different ethnic groups, such as Mexican AD patients, as
potential new biomarkers with possible application for AD diagnostic blood tests.
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