
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11492  | https://doi.org/10.1038/s41598-020-67546-w

www.nature.com/scientificreports
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Transient simulations of dynamic systems, using physics-based scientific computing tools, are 
practically limited by availability of computational resources and power. While the promise of 
machine learning has been explored in a variety of scientific disciplines, its application in creation of 
a framework for computationally expensive transient models has not been fully explored. Here, we 
present an ensemble approach where one such computationally expensive tool, discrete element 
method, is combined with time-series forecasting via auto regressive integrated moving average 
and machine learning methods to simulate a complex pharmaceutical problem: development of 
an agitation protocol in an agitated filter dryer to ensure uniform solid bed mixing. This ensemble 
approach leads to a significant reduction in the computational burden, while retaining model accuracy 
and performance, practically rendering simulations possible. The developed machine-learning model 
shows good predictability and agreement with the literature, demonstrating its tremendous potential 
in scientific computing.

Machine learning has emerged as one of the most promising technologies in the past decade due to its capability 
to provide valuable insights1 into vast amounts of data generated during the Internet era. Rapid democratization 
of machine learning tools has allowed for the successful adoption of the technology in a wide range of fields 
including robotics, computer vision2, speech and natural language processing3, autonomous driving4, neurosci-
ence, drug-discovery5 and in fundamental sciences6. However, its application to computational sciences, and 
applied computational physics in general, has been limited. Prior efforts to apply machine learning to computa-
tional sciences have primarily focused on steady state problems which are more tractable. However, applications 
of machine learning to time-variant problems are rare.

Over the past decade, a tremendous growth in computational power, easily accessed through cloud computing 
platforms, has been observed. Even then, simulations based on first-principles models of natural systems and, in 
particular, time-variant problems of these systems remain prohibitively expensive for most practical applications. 
First-principles models refers to the models that are based on the physical laws such as Newton’s laws of motion 
and are not merely data-driven. Many of these models, such as molecular dynamics (MD)7 used for enhancing 
understanding of molecular arrangements, computational fluid dynamics (CFD)8 used for understanding flow 
patterns for both gas and liquid phase, density functional theory (DFT)9 used for understanding electronic (or 
nuclear) structure, discrete element methods (DEM)10 used for understanding motion of particulate systems 
and, last but not the least, finite element method (FEM)11 used to measure the structural strength of materials, 
have immense potential to accelerate research and ultimately change the world around us. Advances in the field 
of ML and artificial intelligence combined with its rapid democratization, increasing adoption in adjacent fields, 
and ultimately fueled by the rapid growth of computational power in the form of on-demand cloud computing 
certainly create an opportunity for ML to be utilized for high-fidelity scientific computing as shown in Fig. 1. 
This framework allows for the development of more accurate system maps using ML tools which can be utilized 
for optimization and decision-making.
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Within all of the fields outlined, simplifying assumptions and more computationally affordable coarse-
grained representations are required to characterize or predict the overall state of a complex system. However, 
these simplifying assumptions may ultimately limit the accuracy of the results. Another way of enhancing our 
understanding with these high-fidelity models is to apply them under idealized conditions or in some regimes 
of interest. Even then, time-variant simulations of simplified models are highly expensive, as well as unstable, 
due to restrictions on time steps and other process parameters. The temporal component is either neglected in 
high-fidelity models or is solved through highly idealized systems of ordinary differential equations which may 
ignore a lot of relevant details. Most practically relevant transient problems require simulations on the order of 
hours or days, however stability and computational burden only allow for a few minutes of simulations. Zonal 
or multi-compartmental modeling12,13 has been used in some areas such as CFD simulations to overcome the 
computational cost of transient simulations, however the inherent problem with this approach is the difficulty in 
defining the zones or compartment that efficiently capture the flow behavior. A great deal of opportunity exists if 
we can efficiently learn the behavior of the system from a few time-steps (completed in a feasible computational 
time) and forecast it in time space to remove the need for running computationally expensive simulations until 
completion.

Figure 1.   Flowchart of steps involved in applying machine-learning to computationally expensive high-fidelity 
scientific models. Availability to high-quality data is key to developing a good machine learning predictive 
model. Identification of meaningful features is paramount to achieving higher model performance. Operations 
such as data transformation and feature engineering (adding/removing and transforming the available features) 
enable advanced data inspection, also contributing to better model performance.
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In light of the above-mentioned challenges, there is an obvious need for a broadly applicable ensemble mod-
eling framework to overcome computational limitations and move towards high-fidelity predictive models that 
can bridge the gap between coarse-grained systems and real systems in a computationally affordable manner. 
In order to overcome the challenges of performing transient simulations, we propose the use of a time-series 
forecasting method known as auto-regressive integrated moving average (ARIMA). ARIMA has been previously 
used in weather forecasting and stock market prediction14; however, its application to first-principle models 
has not been reported so far to the best of our knowledge. ARIMA can be used to train on data generated from 
high-fidelity transient simulations and then forecast key relevant physical quantities of interest. As ARIMA is 
learning from the entire simulation dataset, it has capability to capture start-up transients, local heterogeneities, 
and temporal evolution of the solution. ARIMA can be an excellent tool to probe the real system under investi-
gation as a function of time. A physical system may have a desired state that can be numerically represented by 
a time-dependent variable/meta variable reaching a defined value. Hence, ARIMA can be used to forecast the 
time needed (Tend) to reach a desired state, and also the spatial distribution of time-variant physical quantities 
at that desired state. Taking it a step further, a machine learning predictive model for the time required to reach 
the desired state (Tend) can be built on ARIMA results as a function of multidimensional system parameters. 
The multidimensional system parameters would be the features of the machine learning trained to predict Tend. 
Machine learning models are quick to probe and preserve the information of high-fidelity models, making it an 
excellent tool for real-time analysis, optimization, and model-based control of the system of interest.

We selected particulate mixing as our test problem for framework development due to its broad applicabil-
ity in pharmaceutical, food, and agro-sciences industries. Solid particles mixing is indispensable to achieve 
desired product quality with respect to content uniformity and reproducible manufacturing across scales in 
many industrial processes such as drying, blending, and granulation15,16. Across the aforementioned applications, 
understanding of mixing also renders optimal process design and robust scale-up. Controlled mixing can reduce 
the process cycle time by multiple folds and decrease undesired outcomes, such as particle agglomeration or 
breakage due to attrition, to ensure optimum product quality. Solid particulate matter and associated processes 
are complex due to factors such as single particle properties, equipment design, and modes of mixing16.

An important example of pharmaceutical unit operation which involves particulate mixing is the drying of 
the active pharmaceutical ingredient (API) in an agitated filter dryer (AFD). Post chemical synthesis and crystal-
lization, the AFD is essential to isolation of potent APIs, where the crystallized API product is separated from the 
solvents and dried to the desired residual solvent levels. For drying, heat is provided from jacketed vessel walls. 
Intermittent agitation (or intermittent mixing of the wet cake with the impeller blade) is usually performed to 
achieve uniform heat transfer across the API bed. The agitation protocol is a key design criterion for this unit 
operation in which the frequency and duration of agitation and the impeller blade speed can tremendously affect 
particle properties. An unoptimized agitation protocol will lead to potential agglomeration and/or attrition which 
would significantly impact the particle size distribution (PSD) achieved at the end of the drying and required 
for manufacturability and performance of the drug product formulation downstream. Particulate mixing is also 
relevant to blending and granulation of the drug product formulation and thus impact the dose and content 
uniformity of each final tablet. Unfortunately, though it is very critical to many pharmaceutical unit operations, 
particulate mixing is a poorly understood phenomenon.

A first-principles modeling technique, such as DEM, can reveal the underlying mechanistic understanding of 
particulate mixing. However, like all other high-fidelity scientific computing techniques discussed above, DEM 
also suffers from the requirement of enormous computing power as practical systems of interest are quite large 
(i.e. the number of particles are huge and the numerical solutions to compute their motions individually require 
enormous computing power). For example, a simulation of API particles of 10 µm size in a manufacturing scale 
filter dryer (0.88 m diameter and fill level of 20 cm) yields a system comprising more than 20 trillion particles 
which would take around 7,000 CPU core-years to simulate one minute of physical time for particle mixing. 
Hence, DEM simulations are feasible and limited to systems with a small number of particles or equivalently 
larger particles for the same fill level. It should be noted that results from a scaled-down model, with small num-
ber of particles, cannot not be directly extrapolated for larger systems because of the scale-dependent variability. 
Computational requirements significantly increase further with cohesive interacting particles or when longer 
transient simulation times are required. Thus, over the years, a large body of DEM simulations17–19 performed 
to understand particulate mixing have limited their investigation to smaller systems.

In this work, we present an ingenious framework for utilizing ARIMA and ML models for computationally 
expensive transient models (Fig. 2). It should be noted that a very similar route can be taken for other cases. 
Spatially-averaged segregation index was used in this work to define particle homogeneity in mixing, however a 
logical extension would be to divide the domain in multiple relevant zones and track desired physical quantities 
as a function of time in each of these zones, perform ARIMA to predict the time required to reach a desired state 
and subsequently use ML to map out the entire spatiotemporal evolution of the system. Segregation index, as 
defined by Eq. 1, represents the extent of mixing of solid particles and is defined based on the spatial position of 
the particles and the number of contacts between particles of each type.

Results
Segregation index from DEM simulations.  DEM simulations of cohesive granular pharmaceutical 
particles were performed in a manufacturing scale agitated filter dryer. DEM equations are explained in detail in 
supplementary section S.1. Similar systems can be found in food, agriculture, mining, and chemical industries 
where particle or powder handling is quite common. In DEM simulations, particle motion is described in a 
Lagrangian framework wherein equations of motion are solved for each particle or each particle acts as a compu-
tational node. At each time step, the forces acting on a particle are computed. A multitude of forces can be acting 
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at the granular particle scale such as friction, contact plasticity, cohesion, adhesion, liquid bridging, gravity, and 
electrostatics depending upon the system under study20–22.

In total, 65 simulations were performed for one minute of physical agitation time by varying the material 
(particle) properties encompassing a range of particle radius R, particle density ρ, coefficient of restitution e, 
cohesive energy density γcohesion, tangential friction µf  , Young’s modulus E, and process parameters covering a 
span of number of particles NP, impeller speed RPM, and cake height h. Impeller RPM represents the rotation 
speed of the impeller and is reported in revolutions per minute. The typical average time for each of these DEM 
simulations was over a month. Figure 3 shows the violin plot23 of the range and frequency of a given parameter 
in our simulation design space. DEM simulations are initiated with two distinct vertical layers of the particles of 
types 1 and 2, and the position and velocity of the particles is tracked at all times as shown in Fig. 4a.

The extent of particle mixing is quantified using the Segregation Index parameter, ψ24, defined in Eq. 1. ‘Cij’ 
represents the total number of contacts between particles of type ‘i’ and ‘j’ in a given domain. ψ is equal to 1 for 
uniform random mixing, whereas it is equal to 2 for a completely unmixed scenario as can be seen in Fig. 4b.

The asymptotic value of ψ for a system would tend to 1 when approaching random uniform mixing, however 
the time required depends on a number of factors, which have been investigated in this study. During mixing, 
spatial arrangement of the particles changes with time resulting in the evolution of the segregation index. At 
any time, the extent of mixing of particles will be different in different regions of the domain indicating a spatial 
distribution of ψ as shown in Fig. 4c. The spatial distribution can be attributed to the increase in the linear veloc-
ity of the particles along the radial direction resulting in differences in particle collision frequency. Whereas 
in Fig. 4d, it can be seen that bulk averaged ψ decreases with time during mixing for different impeller angular 
velocity. With more impeller revolutions, the bed becomes more well-mixed resulting in a drop in the bulk aver-
aged value of ψ. It is clear that longer mixing times would be required at lower RPM as mixing is driven by the 
number of revolutions. Higher RPM would result in a greater number of revolutions per minute. Even though 
the bulk averaged ψ approaches to 1, there may be regions closer to the impeller’s axis of rotation (regions R1 and 
R2 in Fig. 4c) where more revolutions would be required for uniform mixing. The caveat with a longer agitation 
period is that it can affect particle size distribution because of particle attrition25 and agglomeration22. Particle 
agglomeration and attrition are the key challenges that govern decisions or design of an optimized agitation 
protocol and need to be prevented to ensure product quality. It is, therefore, crucial to know the approximate 
agitation time required for uniform mixing for drying effectiveness but avoiding over-mixing which can lead to 
particle agglomeration and attrition.

Time forecasting of segregation index.  Instead of simulating for the entire physical operation time 
which is prohibitively large, we chose to simulate for one minute of operation and project the results (segregation 
index with time) in time–space using a time-series forecasting method, ARIMA, to overcome the prohibitively 
large simulation time of a high-fidelity simulation technique like DEM.

ARIMA26 is one of the most widely used approaches for time-series forecasting in finance14 and econometrics 
as it aims to describe the autocorrelation in the data for forecasting. ARIMA models can handle both seasonal 

(1)ψ =
C11

C11 + C12

+
C22

C22 + C21

Figure 2.   Flowchart of the integrated approach to model solid particle mixing. A machine learning predictive 
model of solid particle mixing was developed using the integrated approach shown in Fig. 2. DEM simulations 
(STEP II) should be carried out for some initial time steps to provide the training data for the ARIMA model 
(STEP III). ARIMA can then be implemented to forecast the mixing behavior and compute the required 
agitation time. Finally, a machine learning model can be built to predict the agitation time for any set of material 
properties and process parameters.
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and non-seasonal data and offer advantage over classical exponential smoothing methods. Spline-fitting was 
also implemented, but it did not perform well due to the noisy nature of the data in certain cases. Time-series 
data can sometimes be extremely noisy making it difficult to untangle the mean ‘stationary’ behavior from the 
noise. ARIMA can transform time-series data into ‘stationary’ post-differencing, or in other words, a combina-
tion of a signal and noise. The elements constituting ARIMA are the number of autoregressive terms required 
for good forecasting (p), the number of differencing operations to achieve stationarity (d), and the number of 
lagged forecast errors (q). ARIMA formulation is explained in detail in supplementary section S.2. Differencing 
and regression using the ‘relevant’ previous time points, unlike other methods, helped ARIMA to capture the 
non-seasonal and non-stationary behavior of the segregation index at higher RPMs.

We chose to do time-forecasting of Segregation index, ψ, which is an indicator of the extent of particulate 
mixing. ARIMA predictions were verified on all DEM generated data by training on ψt=0 to ψt=T/2, where T is 
the total time step of the DEM simulation and predicting on the latter half (t = T/2 + 1 to t = T), as can be seen 
in Fig. 5a. The ARIMA model was able to capture the temporal evolution of the segregation index with an error 
margin of less than 2.5% from the prediction of DEM simulations. ARIMA validation is summarized in sup-
plementary section S.4.

Figure 3.   Violin plot of the variation in material properties and process parameters assessed, collectively 
known as predictor variables. The machine learning model was trained using 8 predictor variables, namely 
cohesive energy density, particle size, particle size, tangential friction, coefficient of restitution, Young’s modulus, 
particle density, number of particles, and impeller RPM. In each plot, the second horizontal line (out of the 
three lines) shows the mean value of the individual material property, and the thickness shows the frequency of 
that particular value across all the simulations. It can be seen that there is good variability in the values of the 
properties except for number of particles, which can be attributed to the computational challenges of simulating 
a larger number of particles.
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Post-verification, the ARIMA model was used to forecast the trend of ψ and the time required to reach the 
desired state of uniform random mixing, i.e. ψ ~ 1 as shown in Fig. 5b. In this work, a cut-off of ψ = 1.1 was chosen 
to determine uniform mixing as the asymptotically slow approach of ψ towards 1 would result in erroneously 
large predicted mixing time. It should be noted that the ARIMA model took computational time of O(minutes) 
while DEM simulation would have typically taken another one and half months running on the same computa-
tional resources for the results shown in Fig. 5.

ARIMA, though applied here on ψ, could have been applied on another time-varying physical quantity of 
interest such as torque, stress, and kinetic energy depending on the needs of the study. ARIMA is a powerful tool 
to reduce the computational cost and time by several orders of magnitude, in terms of core-hours, as indicated 
in Table 1. End-point estimation using the combination of DEM and ARIMA frees up computational resources 
that can now be utilized for a parameter sweep of the entire relevant range of material properties and process 
parameters to build a robust machine learning model.

Figure 4.   The evolution of segregation index as a function of time and distance from the impeller’s axis of 
rotation. Segregation index was calculated from the spatial positions of the particles at different time steps in 
the DEM simulations. (a) Extent of particle mixing with number of impeller rotations. R = 3 mm, RPM = 15, 
E = 5 × 107 N/m2, γcohesion = 1 × 105 J/m3,µf = 0.1 , ρ = 1,100 kg/m3, e = 0.6, h = 20.33 cm. Particles are labeled by 
two types to examine their mixing behavior, even though their properties are the same, (b) different particle 
arrangements and the corresponding segregation index24 (c) particle mixing is faster in regions farther from the 
center of the impeller. Region R1, R2 and R3 span the radial direction of the bed with R1 being the closest to the 
center of the impeller and R3 being closest to the dryer wall, and (d) particle mixing is a function of the number 
of impeller revolutions. Longer simulations are required for slower RPM.
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Machine learning predictive model.  The desire to develop a ML model stemmed from our vision to 
utilize data from high-fidelity simulations for process optimization and online control. We envision a manufac-
turing platform where online advanced process analytical tools (PAT) are feeding process data to a controller 
which utilizes high-fidelity simulations guided ML models for making process decisions. Once connected with 
PAT devices, these ML models can improve their prediction over time as more process data becomes avail-
able. ML enables learning from a large number of process descriptors along with advanced feature engineering, 
which leads to robust predictions of systems with complex phenomena, and also has been shown to be more 
accurate than linear regression techniques6,27,28. Another advantage of a ML model is that it eliminates the need 
for running costly high-fidelity simulations in the future and provides deeper insights and patterns which were 
otherwise not easy to decipher. Although, machine learning methods are great at predicting interpolated results, 
they may not perform well when the values for the descriptors are far from the training set. To overcome this 
limitation, we created a diverse descriptor design space.

In this work, ARIMA forecasted uniform mixing time was taken as the response variable to be predicted 
as a function of a set of input parameters such as material properties and process parameters. Implementing 
sophisticated machine learning methods, such as neural networks, was tempting but not practical because of 
the dimensions of the dataset making it vulnerable to over-fitting. Random forest outperformed (R2 = 0.79) the 
other methods because of averaging the results from multiple trees generated from a randomly selected subset 
of the data. Partial least squares regression (PLSR), support vector regression, and regularized linear regression 
technique Elastic Net were inferior in performance as compared to random forest with an R2 of 0.70, 0.72 and 
0.71 respectively, also can be seen in Fig. 6. However, all these methods performed better than the conventional 
linear regression because of the non-linear interactions arising from the complex interplay of the underlying 
multi-physics phenomena. Leave-one-out cross-validation was performed on all the above investigated ML 

Figure 5.   Validation of ARIMA time-series forecasting. (a) ARIMA was verified against the DEM simulations 
for impeller speed of 2 RPM, and (b) ARIMA was used to forecast ψ until the bed was uniformly mixed. 

Table 1.   Computational time of DEM and ARIMA simulations. Computational time for DEM significantly 
increases with the number of particles, whereas the computational time for ARIMA is only affected by 
the number of previous time steps to analyze and the number of future time steps to forecast. Hence, the 
computational time to run ARIMA for each of the cases was on O(minutes).

Particle size, R (µm) Number of particles, Np Fill level, h (cm) Young’s modulus (N/m2)
DEM simulation time (CPU 
hours)

1,500 250,000 0.69 1e+7 1584

1,500 1,000,000 2.79 2.5e+7 4,248

4,500 135,000 10.17 5e+7 1,685

4,500 270,000 20.33 5e+6 2,160
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methods to test their prediction and also vulnerability to over-fitting. Further, robustness in performance can 
be ensured as more and more process data becomes available for integration into the existing ML models.

Having obtained the predictive ML model, we sought to gain mechanistic insight in the system (an agitated 
filter dryer) by probing which descriptors impact the response variable the most by a process known as feature 
selection. RT-RF, our best ML model, identifies the importance of the descriptors rather than weights attached 
to the descriptors like in a linear regression model. Importance of a feature is quantified by calculating the per-
centage change in mean-squared error by changing the value of the descriptor. According to RT-RF, fill level, 
impeller rotation, and particle radius, in decreasing order of significance, are the most informative descriptors 
to impact uniform mixing time which is in good agreement with some recent works29,30.

At larger fill levels, particles need to be displaced to a greater extent to achieve uniform mixing leading to 
an increase in mixing time29. In a similar manner, at the same fill level, increasing impeller speed creates larger 
convective diffusion and thus reduces mixing time29. Local shear diffusion rate scales as ~ γ̇ a2 , where γ̇ is the local 
shear rate and a is the particle radius, which was also identified as an important parameter by random forest. We 
hypothesize that, in our system, convective and shear diffusion play an important role in mixing based on these 
results. Though similar conclusions could have been arrived by other means, ML allows us to provide relative 
weight to each descriptor of the system and thus provides a framework for mechanistic exploration. In a convo-
luted system, like the one studied here, where there are multiple descriptors and fundamental understanding is 
missing, ML can be a powerful tool to point theorists in the right direction.

Discussion
A large amount of resources and time are spent in a variety of industries dealing with solid handling in develop-
ing a robust, scalable, and reproducible process. Fundamental scientific tools, though accurate, have prohibi-
tively large computational cost, particularly for transient cases, while most industrial processes, either batch or 

Figure 6.   ML prediction of agitation time compared to DEM-ARIMA simulations. Leave-one-out cross-
validation was performed to evaluate the methods. RT-RF performed the best amongst all the methods with an 
R2 of 0.79.
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continuous, have a transient component in their operation. The study presented here shows that for a complex 
and relevant case of cohesive powder mixing, a novel approach based on time-series forecasting using ARIMA 
and ML can provide tremendous insights and guide development of a mechanistic framework that identifies 
key descriptors that most significantly impact the process. The overall framework presented here is quite sim-
ple and powerful and can be adopted in a variety of engineering and scientific problems that are transient in 
nature. A simpler extension of the framework can be done in the field of computational fluid dynamics (CFD) to 
probe various heat and mass transfer limited and phase transition systems. Similarly, it can be used in the field 
of molecular dynamics (MD) to predict the molecular structures of materials, biological entities like DNA or 
proteins. Coupling of fundamental tools with ARIMA and ML reduce the computational time to probe a large 
descriptor set and provide predictions on the behavior of the system under new conditions and/or, additionally, 
the optimal way of operating the system. From an industrial perspective, ML models can become part of model-
predictive control and, coupled with PAT and automation, they can provide endless opportunities.

Method description
DEM simulation.  SmartDEM (Tridiagonal Solutions, San Antonio, TX) software was employed to per-
form all DEM simulations. SmartDEM is a GUI implementation of the open-source DEM code LIGGGHTS 
(LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) Improved for General Granular and 
Granular Heat Transfer Simulations; CFDEM Project) and allows for ease of simulation setup and result inter-
pretation. Multiple automated scripts were written to create different simulation setup, submit jobs to a super-
computing cluster, and post-process the gigabytes of simulated data. The details of the DEM formulation are in 
supplementary section S.1.

ARIMA forecasting.  A python code31 was customized to forecast the segregation index. As the mixing 
time is a complex function of the descriptors, one ARIMA model would not work best for all the data. ARIMA 
hyperparameters (p,d,q) were therefore sampled between 0 and 100, 0 and 2, 0 and 2 respectively for all the 
simulations. Given that errors at previous time steps are unobserved variables, maximum likelihood estimation 
(MLE) was performed in order to find the best model. Akaike information criterion32 (AIC) score was used to 
select the best ARIMA model after comparing each model against other models. ARIMA python codes were 
run on the Anaconda33 platform using jupyter notebooks. All the simulations took O(minutes) for completion, 
which reflects on the power and scalability of the method. The time complexity of ARIMA is a function of the 
number of values of hyperparameters to sample rather than the number of particles or the values of the other 
descriptors, as compared to the DEM simulations where computational time significantly depends on the fill 
level and the number of particles.

Machine learning methods.  Machine learning methods such as elastic net regression (EN)34, support 
vector regression (SVR)35, partial least squares regression (PLSR)36, and regression tree random forest (RT-RF)37 
were used to build the predictive model (refer to Fig. 2). Due to the limited number of datasets available, artifi-
cial neural networks was not implemented because of the concerns of over-fitting. A variety of linear, regular-
ized linear, and non-linear methods were evaluated, of which random forest performed the best. Leave-one-
out cross-validation was performed to evaluate the machine learning methods and test the vulnerability of the 
methods towards over-fitting. Hyperparameter tuning for all the machine learning methods was done using the 
GridSearchCV option in scikit-learn38. Hyperparameters for random forest such as number of descriptors and 
maximum depth of each tree were sampled and bootstrapping was permitted. The computational time for run-
ning the machine learning methods were on O(mins), which is astronomically lower than the alternative option 
of DEM simulations, which would have taken months of computational time.
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