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Genetic testing provides valuable insights into family screening strategies, diagnosis,

and prognosis in patients with hypertrophic cardiomyopathy (HCM). On the other hand,

genetic testing carries socio-economical and psychological burdens. It is therefore

important to identify patients with HCM who are more likely to have positive genotype.

However, conventional prediction models based on clinical and echocardiographic

parameters offer only modest accuracy and are subject to intra- and inter-observer

variability. We therefore hypothesized that deep convolutional neural network (DCNN,

a type of deep learning) analysis of echocardiographic images improves the predictive

accuracy of positive genotype in patients with HCM. In each case, we obtained

parasternal short- and long-axis as well as apical 2-, 3-, 4-, and 5-chamber views.

We employed DCNN algorithm to predict positive genotype based on the input

echocardiographic images. We performed 5-fold cross-validations. We used 2 reference

models—the Mayo HCM Genotype Predictor score (Mayo score) and the Toronto

HCM Genotype score (Toronto score). We compared the area under the receiver-

operating-characteristic curve (AUC) between a combined model using the reference

model plus DCNN-derived probability and the reference model. We calculated the p-

value by performing 1,000 bootstrapping. We calculated sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV). In addition, we examined

the net reclassification improvement. We included 99 adults with HCM who underwent

genetic testing. Overall, 45 patients (45%) had positive genotype. The new model

combining Mayo score and DCNN-derived probability significantly outperformed Mayo

score (AUC 0.86 [95% CI 0.79–0.93] vs. 0.72 [0.61–0.82]; p< 0.001). Similarly, the

new model combining Toronto score and DCNN-derived probability exhibited a higher

AUC compared to Toronto score alone (AUC 0.84 [0.76–0.92] vs. 0.75 [0.65–0.85];
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p= 0.03). An improvement in the sensitivity, specificity, PPV, and NPV was also achieved,

along with significant net reclassification improvement. In conclusion, compared to

the conventional models, our new model combining the conventional and DCNN-

derived models demonstrated superior accuracy to predict positive genotype in patients

with HCM.

Keywords: hypertrophic cardiomyopathy, echocardiography, deep learning, genotype, prediction

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is the most common
genetic cardiac disease, affecting ∼1 in 200–500 people (1).
HCM is caused by mutations in the genes coding for proteins
constructing the contractile apparatus of the myocardium (2).
Investigators have documented dozens of genes and >1,000 gene
mutations associated with HCMpathogenesis (2). Genetic testing
has now become a powerful tool for family screening, diagnosis,
and prognostication in HCM (3, 4). For example, genetic testing
can determine whether each of the first-degree relatives is at risk
of developing HCM (3, 5). Genetic testing can also help clinicians
establish the diagnosis of HCM in patients with atypical clinical
features (5). Furthermore, positive genotype carries a significant
prognostic impact (6). On the other hand, genetic testing is time-
and resource-intensive, and can introduce substantial financial
(7, 8), social (e.g., insurability) (9), and psychological burdens
(10). Thus, it is important to precisely determine the pre-
test probability in each patient with HCM prior to performing
genetic testing.

Several prediction tools have been developed to
predict positive genotype in HCM—e.g., the Mayo
HCM Genotype Predictor score (“the Mayo score” in
this manuscript), the Toronto HCM Genotype score
(“the Toronto score”) (11, 12). These scoring systems
are based on a limited number of clinical parameters
including echocardiographic features [e.g., left ventricular
(LV) wall thickness, interventricular septal morphology]
(11, 12). However, these measurements can be subjective
and are prone to intra- and inter-observer variability.
Further, these scoring systems only offer limited predictive
accuracy (11–15).

Deep learning is a rapidly evolving approach in a variety
of medical settings including cardiovascular imaging (16–
20). This technology has the potential to overcome the
aforementioned human limitations (21). In the HCM
population, a previous study demonstrated that deep learning-
derived classification model using echocardiographic images
can distinguish HCM from other cardiovascular diseases
(22). Nonetheless, no previous studies examined the ability
of deep learning to predict positive genotype in HCM.
We therefore designed the present study to investigate, in
patients with HCM, whether deep convolutional neural
network (DCNN, a type of deep learning) analysis of
echocardiographic images improves the ability to predict
positive genotype compared to the conventional models based
only on clinical parameters.

METHODS

Study Design and Population
We prospectively enrolled patients who were seen at the Center
for Advanced Cardiac Care at Columbia University Medical
Center (New York, NY, USA) and ≥18 years of age with
a clinical diagnosis of HCM between 1988 and 2018. We
diagnosed HCM if there was echocardiographic evidence of
LV hypertrophy—i.e., max LV wall thickness ≥15 mm—out of
proportion to systemic loading conditions and a non-dilated
LV (3, 23, 24). We excluded patients based on the following
criteria; (1) Patients who have never had genetic testing; (2)
Patients with HCM phenocopies such as Fabry disease and
cardiac amyloidosis confirmed with appropriate testing (3); and
(3) Patients who underwent septal reduction therapy—i.e., septal
myectomy, alcohol septal ablation—or heart transplant before
enrollment. We collected baseline characteristics of the study
sample including medical and family history, medication use,
and echocardiographic parameters at the time of genetic testing.
The institutional review boards of Columbia University Irving
Medical Center and Tokushima University Hospital approved
this study.

Outcome Measure
The primary outcome was positive genotype. By convention,
variants categorized as “definitely pathogenic” or “likely
pathogenic” were regarded positive in the present analysis
(6, 11, 12). Variants classified as “variant of uncertain
significance,” “likely benign,” or “benign” were considered
negative (6, 11, 12). This definition of positive genotype was
used in the present study because only these mutations are
clinically actionable (i.e., allow treating physicians and the
proband’s family members to proceed with cascade genetic
screening) and carry diagnostic and prognostic impact (3–5). All
the patients were offered genetic testing for HCM using one of
the commercially available testing kits (e.g., GeneDx, Invitae).
Genetic testing kit was chosen based on available insurance
reimbursement and patient preference. A sensitivity analysis
was also performed after excluding patients with variant of
uncertain significance.

The Reference Models
We used 2 reference models: (1) the Mayo score and
(2) the Toronto score. To calculate the Mayo score, we
assigned 1 point for the presence of the following variables:
age at diagnosis ≤45 years, maximal LV wall thickness
≥20mm on transthoracic echocardiography, reverse curve
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septal morphology on transthoracic echocardiography, positive
family history of HCM, and positive family history of sudden
cardiac death (11). We subtracted 1 point from the score
if hypertension was present (11). We made the diagnosis of
hypertension based on past medical history, blood pressure
measurements, and antihypertensive medication use. We did
not count antihypertensives solely used for non-antihypertensive
purposes—e.g., β-blockers and/or non-dihydropyridine calcium
channel blockers for symptomatic relief of obstructive HCM
and/or rate control of atrial fibrillation. For the calculation of
the Toronto score, we used the following weighted variables: age
at diagnosis, sex, hypertension, family history of HCM, septal
morphological subtype (i.e., reverse or neutral), and the ratio of
maximal LV wall thickness to posterior wall thickness (12).

Acquisition of Echocardiographic Images
Standard echocardiographic examinations were performed using
a commercially available ultrasound system (iE33, Philips
Healthcare, Amsterdam, The Netherlands) as a part of routine
clinical care according to the guideline recommendations (25).
The 2-dimensional echocardiographic images of all subjects were
obtained from the parasternal short- (SAX) and long-axis (LAX)
views as well as the apical 2- (AP2), 3- (AP3), 4- (AP4), and 5-
chamber (AP5) views. We selected cases with good or adequate
imaging quality on the basis of the visualization of the LV walls
and endocardial borders. Echocardiographic images were stored
digitally as a DICOM file and analyzed offline.

Import of the Echocardiographic Images
Echocardiographic images from the SAX, LAX, AP2, AP3, AP4,
and AP5 views were analyzed. All DICOM images were rigidly
registered and rescaled into a reference image to adjust the size of
the echocardiographic images. The images were cut and down-
sampled to 18.07 × 18.07 cm with 120 × 120 monochrome
pixels. Simultaneously, metadata presented in the periphery of
the images were removed. To adjust for differences in frame rate

and heart rate between patients, 10 equally-spaced images per
1 cardiac cycle were chosen with the use of a semi-automatic
heartbeat analysis algorithm. The starting frame was defined
by the R wave on the electrocardiogram as a recording of
echocardiographic images are triggered by the R wave. The
methodological details are provided in Supplementary Methods

and have been published previously (16).

Deep Learning Algorithm
Figure 1 visualizes the processing steps of DCNN. Positive
genotype was predicted by a DCNN algorithm using the 6
views (SAX, LAX, AP2, AP3, AP4, and AP5). All data were
randomly divided into 5 groups and 4 of the groups were used
as the training set to develop the model, and the rest was
used as the test set to examine the model performance (i.e.,
5-fold cross-validation; Supplementary Figure 1). To avoid an
unexpected extraction of undesired features for the evaluation,
training data were augmented in each dataset. The output
was the probability of positive genotype. Model training was
performed on a graphics processing unit (GeForce GTX 1080
Ti, NVIDIA, Santa Clara, California, USA). The Adam optimizer
was used for training (Supplementary Figure 2) (26). The details
are provided in Supplementary Methods. Deep learning was
performed with the Python 3.6 programming language with
Keras 2.1.5. Additionally, to visually display which part of
the heart the DCNN-based models were focused on, gradient-
weighted class activation mapping (grad-CAM) analysis was
performed (27).

Statistical Analysis
For comparisons of the baseline characteristics between patients
with positive and negative genotype, Fisher’s exact test, Student’s
t-test, or chi-squared test was used, as appropriate. The following
steps were taken to compare the area under the receiver operating
characteristics curve (AUC) of one of the reference models
(i.e., the Mayo score or the Toronto score) and that of a

FIGURE 1 | Steps of the deep convoluted neural network analysis using echocardiographic images. DCNN, deep convoluted neural network; AP2, apical 2-chamber

view; AP3, apical 3-chamber view; AP4, apical 4-chamber view; AP5, apical 5-chamber view; LAX, parasternal long-axis view; SAX, parasternal short-axis view.
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TABLE 1 | Baseline clinical characteristics of the study sample.

Characteristics* Genotype

Positive Negative P-value

n = 45 n = 54

Demographics

Age (year) 40 ± 17 55 ± 22 <0.001

Female 17 (38) 18 (33) 0.80

NYHA functional class 1 [1–2] 1 [1–2] 0.70

Race/ethnicity 0.77

Caucasian 36 (80) 46 (85)

African-American 1 (2) 2 (4)

Asian 1 (2) 0 (0)

Other or unidentified 7 (16) 6 (11)

Medical history

Prior AF 26 (58) 29 (54) 0.83

Prior sustained VT/VF 8 (18) 3 (6) 0.10

Prior non-sustained VT 13 (29) 9 (17) 0.49

Prior syncope 9 (20) 6 (11) 0.34

Family history of sudden cardiac death 10 (22) 7 (16) 0.34

Family history of HCM 21 (47) 6 (13) <0.001

Medications

β-blocker 26 (58) 29 (54) 0.83

Calcium channel blocker 11 (24) 21 (39) 0.19

ACE inhibitor 2 (4) 8 (15) 0.10

ARB 1 (2) 10 (19) 0.02

Diuretic

Loop diuretic 4 (9) 7 (13) 0.74

Thiazide 1 (2) 11 (20) 0.01

Potassium-sparing diuretic 1 (2) 7 (13) 0.07

Disopyramide 17 (38) 5 (9) 0.001

Amiodarone 2 (4) 4 (2) 0.69

Echocardiographic measurements

Left atrial diameter (mm) 43 ± 8 44 ± 8 0.65

Systolic blood pressure (mmHg) 117 ± 17 129 ± 19 0.001

Diastolic blood pressure (mmHg) 71 ± 10 74 ± 11 0.17

Interventricular septum thickness (mm) 19 ± 5 18 ± 5 0.38

Posterior wall thickness (mm) 12 ± 3 13 ± 3 0.08

Left ventricular outflow tract gradient (mmHg) at rest 18 [0–25] 26 [0–40] 0.18

Left ventricular outflow tract gradient (mmHg) with Valsalva maneuver 35 [0–51] 38 [0–64] 0.79

Left ventricular ejection fraction (%) 60 ± 10 60 ± 12 0.97

Left ventricular end-diastolic diameter (mm) 43 ± 7 44 ± 9 0.65

Left ventricular end-systolic diameter (mm) 29 ± 7 28 ± 9 0.80

Systolic anterior motion of mitral valve leaflet 24 (53) 29 (54) >0.99

Degree of mitral regurgitation† 1 [1–2] 1 [1–2] 0.67

Genotype –

MYBPC3 20 (44) –

MYH7 12 (27) –

TNNT2 5 (11) –

MYL2 3 (7) –

ACTN2 1 (2) –

THBD 1 (2) –

Multiple 1 (2) –

Other 2 (4) –

(Continued)
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TABLE 1 | Continued

Characteristics* Genotype

Positive Negative P-value

n = 45 n = 54

Predictors of positive genotype

Age at diagnosis 34 ± 17 49 ± 21 <0.001

Reverse septal contour 21 (47) 13 (24) 0.03

Maximal left ventricular wall thickness 19 ± 5 18 ± 5 0.38

Hypertension 26 (58) 34 (63) 0.74

Ratio of maximal wall thickness to posterior wall thickness 0.03

<1.46 16 (36) 33 (61)

1.47–1.70 13 (29) 9 (17)

1.71–1.92 9 (20) 5 (9)

1.93–2.26 4 (9) 4 (7)

>2.27 3 (7) 3 (6)

*Data were expressed as number (percentage), mean ± standard deviation, or median [interquartile range].
†
Degree of mitral regurgitation was converted to numerical values according to the following rule: none = 0, trace = 1, trace to mild = 1.5, mild = 2, mild to moderate = 2.5, moderate

= 3, moderate to severe = 3.5, severe = 4.

ACE, angiotensin converting enzyme; AF, atrial fibrillation; ARB, angiotensin II receptor blocker; HCM, hypertrophic cardiomyopathy; NYHA, New York Heart Association; VT/VF, ventricular

tachycardia or ventricular fibrillation.

TABLE 2 | Predictive performance of Mayo score and a new model combining Mayo score and deep convolutional neural network-based probability to predict positive

genotype in patients with hypertrophic cardiomyopathy.

Prediction model AUC P-value* NRI† P-value† Sensitivity

(%)

Specificity

(%)

PPV (%) NPV

(%)

Mayo score (reference) 0.72 (0.61–0.82) Reference Reference Reference 71 (56–84) 81 (69–91) 76 (61–87) 77 (63–88)

Mayo score + DCNN 0.86 (0.79–0.93) <0.001 0.71 (0.30–1.24) <0.001 71 (56–84) 81 (69–91) 76 (61–87) 77 (63–88)

*P-value was calculated to compare AUC of the reference model with that of the combined model.
†
Continuous NRI and associated p-values were displayed.

AUC, area under the receiver-operating-characteristic curve; DCNN, deep convoluted neural network; NPV, negative predictive value; NRI, net reclassification improvement; PPV, positive

predictive value.

new model combining the reference model with the DCNN-
derived model. First, logistic regression model was constructed
to estimate the coefficient values and the constant to combine
the reference model and the DCNN-derived probability. Second,
the AUC of the reference model and that of the combined
model were compared using non-parametric receiver operating
characteristic estimation with 1,000 bootstrapping. The Stata
command rocreg with auc option was used to perform this step.
Additionally, the net reclassification improvement was examined
using the Stata command incrisk. The sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) were also calculated. Statistical significance was declared
if the 2-sided p-value was <0.05. These analyses were performed
using Stata Statistical Software: Release 12 (StataCorp LP, College
Station, TX).

RESULTS

Initially, 105 patients with HCM who underwent genetic testing
and had at least 1 echocardiographic study were screened. In
this cohort, six patients were excluded based on the exclusion

criteria. The most common reasons for exclusion were prior
septal reduction therapy and prior heart transplant. As a result, 99
patients were included in the analysis. A total of 45 (45%) patients
had positive genotype. This proportion is similar to what has been
reported in the literature (6). Baseline patient characteristics are
shown in Table 1. Patients with positive genotype were younger
and more likely to have family history of HCM as well as reverse
septal contour, and had lower systolic blood pressure.

The DCNN-predicted probability showed the AUC of 0.76
(95% CI 0.66–0.86). The AUC of the Mayo score was 0.72
(95% CI 0.61–0.82). Table 2 summarizes the net reclassification
improvement, sensitivity, specificity, PPV, and NPV using
the Mayo score as the reference model. The new model
combining theMayo score with the DCNN-predicted probability
significantly improved the predictive accuracy compared to the
Mayo score (AUC= 0.86; 95%CI 0.79–0.93; p< 0.001; Figure 2).
There was also a significant net reclassification improvement
(Table 2), indicating that a larger number of patients were
reclassified in the right direction compared to the number
of patients who were reclassified in the wrong direction. The
coefficients and constant to construct the combined model are
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shown in Supplementary Results. The sensitivity analysis after
excluding patients with variant of uncertain significance showed
similar findings; the AUC of the Mayo score was 0.73, whereas
that of the combined model was 0.87 (p= 0.0002).

When the Toronto score was used as the reference model,
the AUC was 0.75 (95% CI 0.65–0.85; Table 3). The new
model combining the Toronto score with the DCNN-predicted
probability exhibited significant improvement in the AUC
compared to the Toronto score alone (AUC 0.84, 95% CI
0.76–0.92, p = 0.03; Figure 2). A significant net reclassification
improvement was also achieved along with improvement in the
sensitivity, specificity, PPV, and NPV (Table 3). After excluding
patients with variant of uncertain significance, the AUC of the
Toronto score was 0.74 and that of the combined model was 0.85
(p= 0.01).

To improve the interpretability of DCNN models,
representative visualizations generated by grad-CAM are
shown in Figure 3. This visualization method revealed that the
DCNN-based models applied a large weight on the LV walls
(e.g., the interventricular septum and posterior wall) and the
left atrium.

DISCUSSION

Summary of Findings
In this study that examined the incremental value of
deep learning-based models to predict positive genotype,
the predictive ability of our novel models combining the
conventional model and the deep learning-based probability

significantly outperformed that of the conventional models. The
present study serves as the first investigation demonstrating
the additional value of deep learning-based analysis of
echocardiographic images in predicting positive genotype
in patients with HCM.

Impact of Positive Genotype on Family
Screening, Diagnosis, and Prognostication
Genetic testing is useful in determining family screening
strategies in HCM. Without genetic testing, first-degree relatives
have to undergo phenotypic screening with electrocardiogram
and echocardiography every 5 years, and more frequently if the
age is<18 years (3, 5). This burden can be relieved if the proband
has positive genotype and the family member does not carry the
identified gene mutation (3, 5). Furthermore, genetic testing has
both diagnostic and prognostic values. In patients with suspected
HCM, positive genotype confirms the diagnosis of HCM (2).
With regard to prognostication, patients with positive genotype
had a 2-fold higher risk of adverse outcomes (e.g., heart failure,
atrial fibrillation) compared to those with negative phenotype
in a prospective cohort study of patients with HCM (6). Thus,
positive genotype can have a substantial impact on the clinical
management of patients with HCM and their family members.

On the other hand, genetic testing can carry substantial
financial and social burdens. For example, genetic testing costs
a few thousand dollars in the US, and the proportion of the
patient’s out-of-pocket payment depends on the insurance type
and plan. With regard to the social burden of genetic testing,
while the Genetic Information Non-discrimination Act prohibits

FIGURE 2 | Receiver operating characteristics curve of the reference scoring system and new model combining the reference scoring system and deep convolutional

neural network-based probability to predict positive genotype in patients with hypertrophic cardiomyopathy. The reference scoring system was the Mayo score in (A)

and the Toronto score in (B). The dots represent different threshold levels. DCNN, deep convoluted neural network; AUC, area under the receiver operating

characteristic curve; CI, confidence interval.
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TABLE 3 | Predictive performance of Toronto score and a new model combining Toronto score and deep convolutional neural network-based probability to predict

positive genotype in patients with hypertrophic cardiomyopathy.

Prediction model AUC P-value* NRI
†

P-value
†

Sensitivity

(%)

Specificity

(%)

PPV (%) NPV (%)

Toronto score (reference) 0.75 (0.65–0.85) Reference Reference Reference 73 (58–85) 72 (58–84) 69 (54–82) 76 (62–86)

Toronto score + DCNN 0.84 (0.76–0.92) 0.03 0.64 (0.34–1.22) <0.001 80 (65–90) 78 (64–88) 75 (61–88) 82 (69–91)

*P-value was calculated to compare AUC of the reference model with that of the combined model.
†
Continuous NRI and associated p-values were displayed.

AUC, area under the receiver-operating-characteristic curve; DCNN, deep convoluted neural network; NPV, negative predictive values; NRI, net reclassification improvement; PPV,

positive predictive value.

FIGURE 3 | Spatial display of important features detected by the deep convoluted neural network analysis models. Note that the important features were localized to

(A) the interventricular septum, (B) the LV posterior wall, and (C) the left atrium. Ao, aorta; LA, left atrium; LAX: parasternal long-axis view; LV, left ventricular/ventricle.

discrimination of insurability based on genetic testing results,
the law is silent regarding life, disability, and long-term care
insurance (9, 28, 29). As such, genetic testing can result in
non-negligible burdens, and accurate identification of patients
with HCM who have high pre-test probability carries clinical,
socio-economical, and psychological importance.

Nevertheless, the currently available conventional models—
i.e., the Mayo score, the Toronto score—offer only modest ability
to predict positive genotype. The AUCs of these scoring systems
have been reported to be ∼0.75 (11–15), which is in agreement
with those in the present study (0.72 with the Mayo score and
0.75 with the Toronto score). In this context, findings in the
current analysis add to the body of knowledge by demonstrating
that the deep learning-based analysis of echocardiographic
images provides incremental value to the conventional models in
predicting positive genotype in patients with HCM.

Advantages of Deep Learning-Based
Approach Over the Conventional
Prediction Methods
TheMayo and Toronto scoring systems include a limited number
of parameters determined by echocardiography—e.g., maximal
LV wall thickness, septal morphological subtypes. However, these
parameters have been known to have large intra- and inter-
observer variability (11, 30). It is a time- and cost-intensive
process to train physicians until they can accurately measure

the wall thickness and classify the septal morphology (31). Even
after going through such specialized trainings, the interpretation
of echocardiographic images still remains interpreter-dependent
and subjective, and can be affected by fatigue (31). Moreover,
these parameters used in the conventional models do not account
for dynamic (i.e., non-static) image information.

By contrast, deep learning has a potential to overcome
such variability in human assessment of echocardiographic
measurements (32). Deep learning is also able to extract
information that is not readily apparent to humans (33). Thus,
deep learning-based models can offer a new avenue to generate
an accurate, consistent, rapid, and automated interpretation of
echocardiographic images while reducing the risk of human
errors. Its application has shown a high potential to revolutionize

the process of diagnosis and prognostication, with promising

results in the fields of dermatology (34), radiology (35), and
cardiology (16, 36). In the HCM population, a prior study
reported that a deep learning-derived classification model

using echocardiographic images can differentiate HCM from

cardiac amyloidosis and pulmonary arterial hypertension (22).

Furthermore, our DCNN approach utilizes not only spatial

but also temporal information by incorporating the additional
dimension of time.

Despite the potential usefulness, no prior studies have applied
deep learning-based methods to predict positive genotype
in HCM. The present analysis represents the first study to
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exhibit the incremental value of deep learning-based analysis of
echocardiographic images in addition to the conventional clinical
parameters to predict positive genotype in the HCM population.
The ability of our deep learning-based approach to analyze
echocardiographic images obtained in routine clinical care—as
opposed to “research-quality” images gained for investigational
purposes—further underscores the feasibility and generalizability
of this novel method.

Spatial Visualization of Important Features
to Identify Genotype-Positive Patients
Deep learning technology is frequently referred to as a black
box—i.e., it does not provide information as to which features
are mainly used for the development of discrimination models.
Our deep learning method is not an exception. To address this
issue, in the present study, we have performed the grad-CAM
analysis and provided visualization of the important features that
the deep learning models focused on, which greatly enhances the
interpretability (27). This analysis demonstrated an interesting
finding—in addition to the LV, features spatially located in the
left atrium were frequently used to distinguish between patients
with positive and negative genotype in HCM. This observation
is consistent with our prior knowledge; the left atrial diameter
has been known to predict sudden cardiac death (37) and
cardiovascular death in the HCMpopulation (38). The inferences
from our study suggest that echocardiographic parameters
related to the left atrium—e.g., left atrial diameter, volume, and
ejection fraction—have a potential to predict positive genotype
in the HCM population.

Potential Limitations
Findings in the present study should be interpreted with several
limitations in mind. First, the present study is subject to selection
bias. The study sample was limited to patients with HCM who
underwent genetic testing. Second, positive genotype was defined
by the currently available classification ofmutations; however, the
classification of each mutation can change in the future. Third,
validation with external samples was not performed. This study
should prompt model validation with a new cohort. Last, the
study samples were relatively homogeneous in terms of race and
sex. Further, there is a possibility that the spectrum of mutations
observed in the study samples may not exactly represent those
in the general HCM population. Therefore, generalizability of
the results to other HCM populations (e.g., those who are not
followed at HCM referral centers) needs to be established.

Conclusions
Compared to the conventional models based on clinical and
echocardiographic parameters, our new models integrating
the conventional and deep learning-based analysis of
echocardiographic images demonstrated a superior ability
to predict positive genotype in patients with HCM. For patients
and treating physicians, the novel deep learning-based method
introduced in the present study can be used as an assistive
technology to inform the decision-making process of performing

genetic testing; deep learning coupled to human expertise can
provide more accurate pre-test probability. For researchers,
the current analysis would prompt further investigation into
developing a better deep learning model to predict positive
genotype in patients with HCM.
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