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Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which
is produced and secreted by the fetal Leydig cells in the testes only. It appears to be
undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately
following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be
detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-
coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is
expressed by the mesenchymal cells of the gubernacular ligament linking the testes to
the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the
gubernaculum which then retains the testes in the inguinal region, while the remainder of
the abdominal organs grow away in an antero-dorsal direction. This represents the first
phase of testis descent and is followed later in pregnancy by the second inguino-scrotal
phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as
a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by
maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or
phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but
as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.

Keywords: leydig cell, testis descent, cryptorchidism, endocrine disruption, RXFP2
INTRODUCTION

Insulin-like peptide 3 (INSL3) was first identified as a Leydig cell-specific gene transcript encoding a
putative secretory product from adult testes of boars and mice independently (1, 2) and later
confirmed for other species, including human (3, 4). As its name suggests, INSL3 is a small peptide
of approximately 6000 Dalton with the insulin-typical A-B heterodimeric structure (Figure 1), held
together by three internal cysteine bonds. Its expression by the adult testes was subsequently
confirmed using immunohistochemistry and immunoassay (6–10). However, it was the
development of genetically altered mice lacking INSL3 expression (11, 12), which first suggested
a major role for the peptide in the fetus in relation to testicular descent. Furthermore, it was the
discovery of an identical phenotype of bilateral cryptorchidism in a natural mutant mouse (Great)
which identified the receptor (RXFP2; RelaXin-like Family Peptide receptor 2) for INSL3 (13–15).
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Subsequent research confirmed not only the production of
INSL3 by the fetal Leydig cells in rodents and the expression
of RXFP2 on mesenchymal cells of the gubernacular ligament
linking the fetal testes to the inguinal wall (16, 17), but also the
unique action of INSL3 to achieve gubernacular thickening (7,
16, 18). Moreover, INSL3 and RXFP2 represent a unique cognate
ligand-receptor pair: no other ligand at physiological
concentration can activate RXFP2, and no other receptor was
able to respond to INSL3 at physiological concentration (14). In
retrospect, INSL3 appears to be the molecular identity of the
previously mooted hormone ‘descendin’ which had been
partially characterized biochemically as a factor responsible for
testicular descent in fetal pigs (19).

INSL3 has now been characterized at the genome, transcript
and/or the protein level from the testes of most extant mammal
species, including humans. The exceptions are those mammals,
such as the Afrotherian tenrec or the manatee, which appear to
be primarily testicond, i.e. do not exhibit the descent of testes
into a scrotum (20). INSL3 belongs to a small group of peptide
hormones which have been referred to as ‘neohormones’ (21).
These are hormones which, while often having ancestry in early
vertebrates, have specifically evolved further in mammals to
manage the specialist requirements of viviparity and internal
fertilization, which required adaptations in both male and female
physiology. Neohormones include several members of the
relaxin-like family, including INSL3, as well as peptides like
oxytocin, and proteins involved in the maternal recognition of
pregnancy, such as hCG. Testicular descent became essential to
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provide a mechanism by which sperm could be stored in the
scrotal epididymis at a temperature several degrees below
abdominal core temperature. Upon ejaculation into the female
tract there is a jump in temperature and environment sufficient
to trigger capacitation, hyperactivation, and ultimately apoptosis
unless internal fertilization occurs within the oviduct (20).

INSL3 may have roles beyond fetal life, in both adult males
and females. These may be relicts of ancestral functions prior to
the emergence of mammals and the acquisition of new roles and
include support of gametogenesis (8, 22, 23) and bone
metabolism (24), and possibly also improvement of kidney
function (25). In female mammals INSL3 is expressed by the
equivalent cells in the ovary to Leydig cells, the theca interna cells
of growing antral follicles. Here, INSL3 is essential for the
paracrine regulation of the steroid precursor androstenedione
(26). These roles will not be discussed here, where the focus will
be primarily on the role of INSL3 in the first phase of testis
descent and cryptorchidism in the male fetus.
THE STRUCTURE OF INSL3 AND
ITS RECEPTOR

INSL3 is encoded by a single small gene, in the human located on
the short arm of chromosome 19 (19p13.11). There is a single
intron separating the protein-coding domain. At its 5’ end the
INSL3 gene is very close to the 3’ end of the JAK3 gene and in
some species (e.g. the mouse) it even lies within a terminal intron
A

B C

FIGURE 1 | Scheme to illustrate the synthesis and processing of INSL3 from its preliminary precursor form (A, prepro-INSL3) via a possibly secreted pro-form
(A, C, pro-INSL3), to give rise to the final A-B heterodimer (B). SP, signal peptide. The sulfhydryl bridges formed by cysteine residues are shown as dashed lines (A)
or as yellow molecular structures (B, C) [reproduced from (5)].
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of that gene (27). Such information suggests that all relevant
regulatory sequences are likely to be restricted to only a few
kilobases of genomic DNA close to the INSL3 gene. Like the
genes for the structurally related peptide hormones insulin and
relaxin, the INSL3 gene encodes a precursor polypeptide
comprising a signal peptide to aid secretion, followed
successively by an A-domain, a connecting C-domain, and
finally a B-domain (Figure 1A). In the adult, the precursor A-
C-B form is mostly processed to yield in the circulation an A-B
heterodimer (Figure 1B), as for insulin and relaxin, although the
precursor A-C-B form can also be secreted (Figure 1C).
Importantly, both forms of INSL3 are equally bioactive at the
receptor, and probably are equally detected by the immunoassays
currently in use (10). For INSL3 in the fetus, we have as yet no
information regarding INSL3 precursor processing and secretion
for any species.

The gene for the INSL3 receptor, RXFP2, is located on the
long arm of chromosome 13 (13q13.1) in the human and
comprises in its full-length form 18 exons, of which the first 14
encode a long extracellular region of the G-protein-coupled
receptor (GPCR), whereas the remaining 4 encode the 7-
transmembrane and intracellular regions (15). Importantly, the
long extracellular region includes 10 leucine-rich repeat (LRR)
elements, as well as an N-terminal low density lipoprotein type a
(LDLa) domain. The LRR elements are each encoded by a short
75 bp exon and are involved in the primary recognition of the
INSL3 hormone via its B-peptide region. The LDLa domain is
essential for receptor signaling and it is believed that binding of
INSL3 to the receptor causes the LDLa domain to move and
interact with sequences in the transmembrane region essential
for signal transduction. At the same time, further parts of the
INSL3 molecule, particularly in the A-peptide domain, now also
appear to interact with extracellular loops of the transmembrane
region of the receptor to confirm the actively signaling
conformation (28).

Both INSL3 and its receptor RXFP2 are highly homologous
between mammalian species, supporting their essential role in
testicular descent and reproduction. Both genes, however, at least
in the adult, are subject to alternative splicing (9, 29–31). The
splice products, which have been identified represent mostly
non-functional transcripts; for example, in the rat a rare
alternative INSL3 transcript encodes an extended B-peptide
only (29, 32). For RXFP2, several variant transcripts have been
described; most represent forms lacking one or more of the LRR-
encoding exons (31) and which consequently cannot generate a
functional receptor. However, since in vitro evidence suggests the
possibility of hetero- and homo-dimerization of this GPCR (33),
it is possible that such splice variants may still be able to
modulate normal receptor function.

It is important to add that, as for INSL3, we have no
information at all for any species on the structure and
expression of RXFP2 transcripts in the fetus. Moreover, the
mRNA evidence from the fetus, mostly derived by RT-PCR,
has consistently made use of only single PCR primer pairs; the
application of a multiplexed PCR matrix as has been used to
detect receptor splice variants in adult cells and tissues is absent.
Frontiers in Endocrinology | www.frontiersin.org 3
THE DYNAMICS OF INSL3 EXPRESSION
IN THE FETAL TESTIS

At least in the adult testis, INSL3 is a constitutive product
uniquely of relatively mature, well-differentiated Leydig cells
(32). Assuming the same is true for fetal Leydig cells, then
INSL3 should be produced as soon as the fetal Leydig cells
have acquired their characteristic, presumably steroidogenic
phenotype. This occurs shortly after gonadal sex determination
and the expression of the SRY and SOX9 genes by the fetal Sertoli
cells. In humans, this would be around weeks 7-8 post coitum
(pc; equivalent to gestational age (time since last menses) less 2
weeks). It is important to recall that at this time the fetal testes,
adrenal glands, kidney and associated tissues are located very
close together on each side of the body, such that mutual
hormonal influences are largely of a paracrine nature within
one side (34). The contralateral organs are further away. For such
paracrine systems, only very low concentrations of a hormone
are sufficient to activate G-protein-coupled receptors such as
RXFP2, well below the 10% effective concentration (EC10) for the
receptor (<10-10M) and, being locally produced, there may not
yet be sufficient hormone to be detected in the fetal bloodstream,
or in amniotic fluid. Thus, we can assume that the fetal INSL3/
RXFP2 system will be activated before INSL3 becomes
measurable in fetal blood or in amniotic fluid. Figure 2
indicates INSL3 mRNA determined by RNA microarray
analysis in samples of human fetal gonads collected during the
first trimester (35) and indicates an up-regulation in testes only,
and not in ovaries, at weeks 7-8 pc. The upregulation of INSL3
follows precisely (i.e. actually on the same day during fetal
development) the concomitant upregulation of the genes
necessary for androgen production in the testes (34). If
constitutively expressed, we can assume that INSL3 peptide
FIGURE 2 | Expression of INSL3 mRNA measured by microarray analysis of
gonadal tissue derived from individual male (blue triangles) or female (red
circles) human fetuses at the ages indicated (35).
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will be produced almost immediately following gene
transcription. This probably increases after that, since other
studies report highest fetal testis INSL3 mRNA at around
gestation weeks 17-18 (36), though it is expressed earlier.

There is limited data available for the human in regard to the
INSL3 concentration in fetal blood. Harrison and colleagues
reported 0.44-2.04 ng/ml from umbilical cord venous blood in
gestation weeks 15-20 (37). Lower concentrations of INSL3 are
recorded in cord blood at term of pregnancy [control subjects:
France, 0.27 ± 0.18 ng/ml (38); Japan, 0.28 (0.25-0.32 IQR) ng/ml
(39); Denmark, 0.13 (<0.05-0.34 range) ng/ml (40); Finland, 0.14
(0.06-0.39 range) ng/ml (40)], with the small differences probably
attributable to the different assays being used to measure INSL3.

INSL3 can also be detected in human amniotic fluid that has
been routinely collected at amniocentesis for prenatal genetic
diagnosis (41, 42). It is measurable only for male fetuses (41) and
in the earliest sample available already at gestation week 11,
though reaches a maximum at gestation weeks 12-16 (Figure 3).
It appears to decline to undetectable levels by about week 20.
Whilst this might reflect a reduced Leydig cell production at that
time, it is also probable that skin keratinization at about gestation
week 20 leads to a limitation of peptides and proteins being
exuded from fetal blood via the fetal skin. After this time, the
constitution of amniotic fluid more likely reflects the products of
the fetal lungs and kidneys, as well as of the amniotic
membranes themselves.

INSL3 has also been measured in fetal fluids from rats (43),
pigs (44), and cows (45), where the timing of INSL3 expression
largely mirrors the dynamics of testicular descent which, for
example, occurs shortly after parturition in rodents, unlike in
humans or cows, where it occurs earlier during the second
trimester (45). These studies were also able to show that INSL3
from the testes of male fetuses was able to cross the placental
barrier either to the maternal circulation [cows (45)] or to
neighboring female fetuses [pigs (44)]. The mechanism of such
Frontiers in Endocrinology | www.frontiersin.org 4
transfer is unknown, but in analogy to insulin would suggest
some kind of mediating molecular transport system.
THE ROLE OF INSL3 IN TESTICULAR
DESCENT

Inactivation of the genes encoding INSL3 or its receptor, RXFP2,
in mice leads to the same essential phenotype, namely bilateral
cryptorchidism with a failure of the first transabdominal phase of
testicular descent (11, 12, 46). Similar bilateral cryptorchidism
was also achieved in the male offspring of pregnant rats treated
with a specific RXFP2 competitive antagonist (47). Genetic
evidence in humans is more problematic. Since both genes are
autosomally recessive, mutations in single alleles rarely lead to
cryptorchidism. Several population studies, however, have
indicated an association between heterozygous mutation in
either INSL3 or RXFP2 and the incidence of cryptorchidism
(usually unilateral) (48, 49). Because cryptorchidism, unless
corrected, inevitably leads to male infertility such deleterious
mutations are historically at a low frequency.

Testicular descent is a highly dynamic process. Prior to gonadal
sex determination, the indeterminate gonad lies adjacent to the
fetal kidney and adrenal complex (mesonephros) apposing the
dorsal wall of the coelomic cavity. It is attached dorsally to the
body wall by the cranial suspensory ligament (CSL) and ventrally
to the body wall in the inguinal region by the gubernacular
ligament. Initially, both ligaments are relatively short and
undeveloped. In the following days, the fetus grows with the
kidney moving in an antero-dorsal direction relative to the
inguinal region. In the male fetus, testosterone produced by the
differentiating Leydig cells causes the CSL to involute, becoming
longer and thinner. In contrast, INSL3 produced by the same cells
causes the mesenchymal core of the gubernacular ligament to
shorten and expand laterally to form the gubernacular bulb, which
now retains the fetal testis in the inguinal region as the kidney and
adrenal grow away in an antero-dorsal direction (18, 50). Thus,
this first phase of testicular descent does not involve any actual
ventral movement of the fetal gonads, but merely a retention of the
gonad in the inguinal region. Subsequently, in the second phase of
descent, the gubernacular bulb everts through an inguinal
weakening of the body wall, creating an inguinal canal and
causing the fetal testes to relocate into the scrotum (18). This
second phase may also require some INSL3 in addition to
androgens (16). In the female fetus, the CSL fails to involute,
retaining the ovary near the kidney; there is also no INSL3
produced and hence no gubernacular thickening and no gonadal
‘descent’. In the male tfm (testicular feminization) mouse, there are
no functioning androgen receptors, and hence the CSL remains
thick and fails to involute, but the INSL3 still induces gubernacular
development, with the result that in this mouse the fetal testis is
held by the two ligaments within the abdomen in an intermediate
location as if on a ‘taut bowstring’. In the INSL3 knockout mouse,
the opposite occurs, with neither ligament developed and the fetal
testes appearing to be loosely swimming within the peritoneal
cavity (11). In female fetal mice, which have been genetically
FIGURE 3 | INSL3 concentration measured by specific time-resolved fluorescent
immunoassay from human amniotic fluid samples collected at routine amniocentesis
at the times indicated. The pregnancies were identified postnatally as normal (control),
cryptorchid, or hypospadias [reproduced from (42)].
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engineered to produce INSL3, it appears that besides causing a
slight dislocation of the ovaries, INSL3 also induces abdominal
hernia (51), suggesting that the INSL3/RXFP2 system may
additionally be involved in aspects of the second inguino-scrotal
phase of testis descent in the males. It is to be noted though that
RXFP2 expression in female mice is likely to be much reduced
because of less androgen production (see below).

Whether the INSL3/RXFP2 hormonal system is involved in
later stages of testicular descent is unclear since disruption of the
first phase inevitably leads to a disruption of the relative
dynamics of testicular descent as a whole, including of
subsequent phases. This is a very active stage of fetal
development. Anatomical examination of unilateral and
bilateral cryptorchidism often indicates that other tissues or
ligaments have become interposed possibly because of altered
relative timing of their growth trajectories. Certainly, it is
understood that androgens as well as neural input from the
CGRP-expressing genito-femoral nerve are principally involved
in the second inguinal-scrotal phase of testis descent, at least in
rodents (18), though in vitro studies suggest that both INSL3 as
well as AMH may also have a role (52). Cryptorchidism
(unilateral or bilateral) is very common in the male population
and hints at more than the involvement of one or two simplistic
regulatory disorders; it has recently been suggested that it is
indeed a neuro-humoral multifactorial syndrome involving a
dynamic network of a range of diverse factors (53). However, it
should be noted that altogether much less is known about the
situation in humans compared to experimental animals. Because
the early left and right organ complexes are discrete from one
another and each appears to be regulated separately by local
paracrine factors during testicular descent, this might explain the
preponderance of unilateral cryptorchidism, whereby only one
such complex is dynamically disrupted.

Whether INSL3 is also involved in other fetal processes other
than testis descent is not known, nor whether RXFP2 is also
expressed in other fetal tissues than the gubernaculum. An
exception here is provided by horn buds in male ruminants,
where RXFP2 is expressed within the horn bud and mutations in
the RXFP2 gene are associated with polledness in sheep and
cattle (54). More research is needed here; it seems likely that the
INSL3/RXFP2 system may well be involved in areas of fetal
physiology with significant sex-specific aspects. This might prove
relevant, for example, in cases of twinning with male and female
fetuses sharing the same uterine environment (see above),
although studies of such effects to date are still ambiguous (55).
THE REGULATION OF INSL3 AND RXFP2

As mentioned earlier, the upstream promoter region of the INSL3
gene in most species evaluated appears to be relatively short,
encompassing maximally 1000bp. Specifically, it includes three
discrete responsive elements for the transcription factor
steroidogenic factor 1 (SF1) (32, 56), and in vitro, transfected
promoter-reporter constructs achieve maximal activity simply by
co-transfecting the unmodified transcription factor (27, 32). All
Frontiers in Endocrinology | www.frontiersin.org 5
three SF1-responsive elements (SFREs) appear to be functional
(32, 56). This could be enough to explain the up-regulation of
INSL3 in fetal Leydig cells in vivo which appears to occur
immediately following the expression of SF1 (35) in the same
cells, and in these as well as in adult Leydig cells appears to occur
constitutively. For example, there is full INSL3 expression in the
fetal Leydig cell population of the hpg (hypogonadal) mouse in
which the HPG axis is disrupted because of an absence of GnRH
and hence LH (6). However, whether all three SFREs are normally
occupied by SF1 is unclear, as is also whether or not other related
transcription factors may also compete for binding to the gene
promoter. An SFRE can also bind and respond to the closely
related transcription factor Nur77, which at least in adult Leydig
cells appears to be principally involved in INSL3 up-regulation
(57). It is also recognized that the inhibitory transcription factor
COUP-TF may also bind to an SFRE and compete with SF1 to
control the up- or down-regulation of a gene (58); and it is now
established that COUP-TF may play an important role in the
differentiation and development of the fetal testis (59) as well as in
regulating the INSL3 gene (60). However, it has also been shown
that several nuclear steroid receptors may also influence gene
expression using SFREs, probably in a non-classical manner which
does not involve direct interaction with the responsive element in
the DNA itself (61). Both rodent and bovine INSL3 promoter-
reporter constructs can be stimulated in vitro by activated estrogen
and androgen receptors (56, 62), though whether via classical or
non-classical mechanisms is not clear. If this is relevant and
important also for fetal INSL3 expression is not known. It
should also not be forgotten that INSL3 expression is extremely
cell-type specific. In the fetus, there is expression only in a subset
of fetal Leydig cells (63), and not in any other testicular cell
although, for example, fetal Sertoli cells also express SF1. Nor is
there any expression in steroidogenic adrenal cells even though
these share a similar mesonephric mesenchymal origin as fetal
Leydig cells. There are evidently specific elements within the
INSL3 gene which determine high cell-type specificity.

Very little is known about the regulation of RXFP2 expression.
Indirect evidence from mice in which the LH receptor gene has
been disrupted implies that RXFP2 expression requires activated
androgen receptors to induce the appropriate level of the RXFP2
receptor (64). What is also evident is that in the male fetus (at least
in rodents) its expression is also specifically restricted to certain
cell types only (17), such as those of the mesenchymal core of
the gubernaculum.
INSL3 AS A MONITOR OF
ENVIRONMENTAL ENDOCRINE
DISRUPTION

INSL3 represents a major secretory product uniquely from the male
fetus and not from either a female fetus or the mother, at a time in
the human during the transition from first to second trimester,
when most organ systems are developing and differentiating most
rapidly. It thus offers to be an excellent biochemical biomarker for
such early organogenesis, particularly as this is a period in
April 2022 | Volume 13 | Article 868313
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pregnancy which is otherwise difficult to monitor (43). Numerous
studies in pregnant rats have shown that maternal exposure to a
variety of environmental endocrine disrupting chemicals (EDCs)
leads to a reduction in INSL3 mRNA or protein expression by the
fetal Leydig cells (Figure 4) with disruption of the male
reproductive phenotype, including cryptorchidism, hypospadias,
and reduced anogenital distance (65–67). These chemicals include
phthalate esters (Figure 4), used as plasticizers or previously in
cosmetics, as well as xenoestrogens, such as diethylstilbestrol or
bisphenol A (67, 68). The chief mode of action of these substances
appears to be to disrupt fetal Leydig cell differentiation leading to a
reduction in testosterone production and/or INSL3. Importantly,
even after only a brief maternal exposure, these substances also
appear to affect Leydig stem cells which reside within the testes even
into adulthood, and hence may also influence puberty and adult
Leydig cell function (67, 69).

For the human, studies have compared second trimester
INSL3 concentration in amniotic fluid with the levels of
phthalates and PFOS. Investigations in a large Danish biobank
showed at the population level that INSL3, and hence Leydig cell
function, was significantly reduced in proportion to the EDC
load (42, 70, 71). Similarly, other studies of INSL3 in cord blood
at term of pregnancy also indicated a significant negative
relationship between phthalate or bisphenol A exposure and
INSL3 concentration (39, 72). Similar studies have also indicated
that INSL3 concentration in term cord blood is significantly
different between control male infants and those exhibiting
cryptorchidism (38), implying that at least at a population level
these three factors (EDC load, INSL3, cryptorchidism) are
mechanistically linked, presumably via the common element of
fetal Leydig cell function. It is to be noted though that INSL3 in
second trimester amniotic fluid does not appear to differ
significantly between normal male infants and those born with
cryptorchidism or hypospadias (Figure 3) (42).

Explanted human fetal testis fragments have also been assessed
either using in vitro culture (73) or following xenotransplantation
to immune-compromised mice (74). Again, EDC exposure
suggests a disruption of fetal Leydig cell differentiation and/or
Frontiers in Endocrinology | www.frontiersin.org 6
functionality. The most commonly used EDC in these
experiments is represented by the phthalate esters which are
widespread especially in the environment through their
inclusion in numerous plastics, coatings, and cosmetics. More
recently, however, the focus has shifted to show that also common
analgesics, such as acetoaminophen (paracetamol) or ibuprofen,
which are widely taken to alleviate pain during pregnancy, appear
to have a similar impact on the development of fetal Leydig cells
and the expression of INSL3 (74, 75).

What is important in these investigations and is being
reinforced through several studies in rats (67, 76–78), is that
the impact of these EDCs is less an acute one acting, for example,
via modulation of steroid receptors, but rather an effect which is
altering the differentiation dynamics of Leydig cell precursors.
Both in the fetus and during puberty, and possibly also in later
life, Leydig cells are developing via the two processes of
proliferation and differentiation held in fine balance with one
another. Perturbation of either of these processes will lead to an
altered final Leydig cell functional capacity, and hence to an
altered capacity to produce testosterone and other hormones
essential to maintain health in later life. INSL3 is an accurate
measure of this Leydig cell functional capacity (5) and can
monitor the impacts of EDCs and other exogenous factors,
besides having endocrine functions in its own right, for
example, to improve bone quality (79).
CONCLUSION

INSL3 is a major secreted hormone produced by the Leydig cells of
the fetal testis, shortly after its differentiation from the
undetermined gonad. This occurs immediately following gonadal
sex determination and the expression of the transcription factor
SF1. Its main function in the male fetus is to induce thickening of
the gubernacular ligament anchoring the testes in the inguinal
region, thereby promoting the first transabdominal phase of
testicular descent. As a major male fetal hormone in the first and
second trimesters of human pregnancy, it likely also has other roles
FIGURE 4 | Immunohistochemical staining for INSL3 (brown color) in the fetal testes on gestational day E17.5 of male rats which had been maternally exposed to
dibutyl phthalate (B; DBP) or vehicle (A) during the important window for male development (E12-E16). Control section using pre-immune serum is indicated in the
bottom left of panel (A) [reproduced from (65)].
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about which we still have little information. Importantly, it can also
act as a biomarker for fetal physiology in this relatively obscure
phase of pregnancy, responding to maternal exposures such as to
EDCs or to analgesic pharmaceuticals.
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