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Abstract: Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult
to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic
differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether
addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can
shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional
protocol or modified with the addition of 25 pg/mL IL-6 and /or C2C12 CM (25% v/v). The expression
of MyoD and myogenine mRNA was significantly higher at 5-6 days after differentiation using the
modified protocol than with the conventional protocol. mRNA and protein expression of myosin
heavy chain, a marker of myotubes, was significantly upregulated at 28 and 42 days of differentiation
using the modified protocol, and the level achieved after a 4-week differentiation period was similar to
that achieved at 6 weeks using the conventional protocol. The expression of p-STAT3 was significantly
increased when the modified protocol was used. Similarly, addition of colivelin, a STAT3 activator,
instead of IL-6 and C2C12 CM, promoted the myogenic differentiation of ADSCs. The modified
protocol improved differentiation efficiency and reduced the time required for differentiation of
myocytes. It might be helpful to save cost and time when preparing myocytes for cell therapies and
drug discovery.
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1. Introduction

Muscle loss diseases such as sarcopenia, cachexia and atrophy are increased in the aging
population and those with chronic diseases [1-3], and represent a serious clinical problem with
few solutions. The homeostasis of skeletal muscle fibers is maintained by the continuous regeneration
and activation of satellite cells, which are the muscle-specific stem cells that differentiate into myoblasts
and form myotubes to replace the damaged myofibers [4]. Thus, the transplantation of skeletal muscle
stem cells or progenitor cells is a potential therapy for muscular dystrophies [5,6]. Previous studies
have reported the transplantation of muscle stem cell-derived myoblasts or myogenic cells in models
of muscle injury [7,8]. Recently, mesenchymal stem cells (MSCs) have been suggested for use in
cell therapies. These cells are derived from many organs, such as bone marrow, adipose tissue and
umbilical cord blood and can differentiate into various lineages such as bone cells, cartilage cells,
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and fat cells [9] as well as muscle cells [10-12]. Many studies have reported that MSCs possess
the ability to differentiate into the skeletal muscle cell lineage when treated with steroids such as
hydrocortisone or dexamethasone [13-15]. Myogenic differentiation of MSCs is also promoted by
co-culturing with skeletal myocytes, neonatal fibroblasts, or neonatal cardiomyocytes [16,17].

There are several animal models of muscular dystrophy, including non-mammalian
(Caenorhabditis elegans, zebrafish, etc.) and mouse, dog, mouse and pig-based systems [18,19].
However, animal models cannot mimic human clinical, physiological, and biochemical
manifestations [20]. Studies using animal models have inherently low throughput and are costly
and time-consuming. Alternatively, in vitro cell models using fully defined biomimetic patient-derived
cells are in the spotlight [21]. However, mature skeletal myocytes cannot be expanded in culture
systems, and this limited property restricts the development of in vitro models for muscular
dystrophies. Thus, differentiated stem cells are used for in vitro models of muscular dystrophy [22,23].
Myogenic differentiation using inducible pluripotent stem cells (iPSCs) for muscular dystrophy
research and drug development have been widely used [24-27]. iPSCs are generated by introducing
and expressing four specific genes, Oct3/4, Sox2, KIf4, and c-myc that cause reprogramming in somatic
cells such as adult skin cells [28,29]. Because iPSCs are made through genetic manipulation, they have
a problem with respect to safety of use, such as unpredictability and teratogenic potential in vivo [30].

MSCs, unlike iPSCs, are known to regulate immune responses, play a major role in the repair of
damaged tissues, and have the potential to serve as useful tools in drug discovery [31]. Adipose tissue
is a good source of MSCs [32-34], and adipose tissue-derived stromal/stem cells (ADSCs) are easier to
obtain and isolate than MSCs derived from other tissues. ADSCs possess the capacity to differentiate
into many lineages, including adipogenic, osteogenic, chondrogenic, myogenic, neurogenic and
hepatogenic lineages [35-37]. To induce myogenic differentiation using ADSCs, a myogenic medium
consisting of a mixture of 10% fetal bovine serum (FBS), 5% horse serum (HS) and 50 uM hydrocortisone
in Dulbecco’s Modified Eagle Medium (DMEM), is commonly used [13,38]. However, a 6-week long
period is required for the induction of differentiation. Thus, it would be advantageous to develop an
alternative method that would shorten the period of differentiation.

Skeletal muscle secretes a number of cytokines (myokines) such as interleukin (IL)-1p, IL-6, IL-8,
IL-10, and IL-15 [39]. Release of IL-6 is increased from skeletal muscle after prolonged exercise [40]
and is known to be associated with stimulation of hypertrophic muscle growth and myogenesis of
muscle stem cells [41]. Paradoxically, harmful effects of high doses of IL-6 have also been proposed,
such as increased muscle wasting and atrophy [40]. In this study, we hypothesized that addition of IL-6
and/or myocyte-conditioned media may improve the myogenic differentiation efficiency of ADSCs in
conventional medium.

2. Results

2.1. Combination of IL-6 and C2C12 CM Promoted Myogenic Differentiation

There is evidence that IL-6 is involved in myoblast differentiation: IL-6 gene expression is
upregulated during C2C12 myoblast differentiation, exogenous IL-6 promotes myoblast differentiation,
and inhibition of IL-6 mRNA expression by small interfering RNAs reduces C2C12 myoblast
differentiation [42]. In addition, several studies have reported that the use of conditioned medium
(CM) from myoblasts can induce myogenic differentiation of mesenchymal and embryonic stem
cells. [43—45]. Therefore we examined whether the addition of IL-6 (protocol M1), C2C12 CM (protocol
M2), or a combination of IL-6 and C2C12 CM (protocol M3) to the differentiation media would promote
myogenic differentiation (Figure 1a).
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Figure 1. hADSCs were seeded and myogenic differentiation was induced for 6 weeks. (a) Schematic
diagram of the differentiation protocols used. Protocol C is the conventional or common protocol.
Protocols M1-3 are modified as indicated. (b) mRNA expression of myosin heavy chain in hADSCs
after 6 weeks of differentiation. n = 3 independent preparations, each assay performed in duplicate. All
values are expressed relative to the gene expression observed using by protocol C (1 unit). All treatments
are significantly different from each other (c) After 6 weeks of differentiation, cells were incubated with
serum-free DMEM for 24 h, the media were collected, and IL-6 levels were measured. * p < 0.05 vs.
protocol C. DMEM: Dulbecco’s Modified Eagle Medium; HS: horse serum; FBS: fetal bovine serum.

After 6 weeks of differentiation, mRNA expression of myosin heavy chain (MYH), which is
marker for myotubes, was checked by qRT-PCR analysis (Figure 1b). Addition of IL-6 (protocol
M1) showed significantly increased expression of MYH compared with the conventional protocol
(protocol C). Addition of C2C12 CM (protocol M2) significantly increased mRNA expression of MYH
compared with protocols M1 or C. Addition of both IL-6 and C2C12 CM (protocol M3) showed the
highest expression level of MYH compared with any of the other protocols. As IL-6 is a representative
myokine [40], we measured the secretion of IL-6 as a myogenic differentiation marker. Addition of IL-6
(protocol M1) or addition of C2C12 CM (protocol M2) did not change the secreted IL-6 levels. However,
the combination of IL-6 and C2C12 CM (protocol M3) significantly increased IL-6 secretion compared
with the conventional differentiation medium (Figure 1c). These results suggest that addition of
both IL-6 and C2C12 CM into conventional differentiation media improved myogenic differentiation
of hADSCs.

2.2. Combination of IL-6 and C2C12 CM Reduced the Myogenic Differentiation Period

We checked the mRNA expression of MyoD, which is a myoblast marker, and MyoG, which is
a marker of multinuclear muscle cells, at various times during differentiation using two different
protocols—the conventional protocol (C) and the modified protocol using a combination of IL-6 and
C2C12 CM (M3). For both protocols, the expression of MyoD mRNA reached a peak at day 5 after
the initiation of differentiation and then gradually decreased. However, MyoD mRNA expression
at day 5 was 7.2-fold higher using the M3 protocol than using the conventional protocol (Figure 2a).
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With the M3 protocol, the expression of MyoG mRNA peaked at day 6 and was 22.3-fold higher than
the conventional protocol at this time. With the conventional protocol, MyoG mRNA expression did
not peak until day 15, a much later time point than the M3 protocol (Figure 2b). The mRNA expression
of MYH, a marker for mature myocytes, started to increase from day 21 using the M3 protocol, and by
day 28 had already reached a level similar to that of day 42 using the conventional protocol (Figure 2c).
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Figure 2. Effect of a combination of IL-6 and C2C12 CM on myogenic differentiation. mRNA expression
of (a) MyoD, (b) myogenin (MyoG), and (c) myosin heavy chain (MYH) during myogenic differentiation,
mRNA expression was analyzed by qRT-PCR. n = 3 independent experiments, each assay was
performed in duplicate All values are expressed relative to the gene expression observed at 6 weeks
using protocol C. * p < 0.05 vs. protocol C.

We next checked the expression of MyoD, MyoG and MYH protein expression by
immunofluorescence staining (Figure 3a) and western blotting (Figure 3b). Similar to mRNA expression,
MyoD and MYH protein expression was much higher using the M3 protocol. The expression of MYH
protein at day 28 using the M3 protocol was similar to that of day 42 using the conventional protocol
(Figure 3). MyoG protein expression started to increase earlier (at day 5) using the M3 protocol, but the
expression level was lower than that using the conventional protocol on days 28 and 42 (Figure 3b).
It is known that IL-6 may contribute to activation of the STAT3 signaling cascade and thereby myogenic
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differentiation [46]. The expression level of p-STAT3 protein, which is the activated form of STAT3,
was found to be higher throughout the differentiation period in the M3 protocol compared to the
conventional protocol (Figure 3).
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Figure 3. Effect of a combination of IL-6 and C2C12 CM on MyoD, MyoG and MYH protein expression
during myogenic differentiation. (a) The expression of MyoD, MyoG and MYH were checked by
immunofluorescence staining (scale bar, 200 um) (b) The expression of MyoD, MyoG, MYH and
p-STAT3 was analyzed by western blotting.
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In addition, myotube generation (Figure 4a) and IL-6 secretion levels (Figure 4b) were similar
between the M3 protocol at 4 weeks of differentiation and the conventional protocol at 6 weeks of
differentiation (Figure 4). These results indicate that the modified protocol using a combination of IL-6
and C2C12 CM enhanced myogenic differentiation and reduced the differentiation period.
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Figure 4. Effect of a combination of IL-6 and C2C12 CM on morphological changes during
differentiation and on IL-6 secretion. (a) Morphological changes of cells during the differentiation
process. (b) After 4 weeks (protocol M3) or 6 weeks (protocol C) of differentiation, media were changed
to serum-free DMEM and cells were incubated for 24 h. Media were collected and IL-6 levels were
measured. w: week(s).

2.3. Addition of STAT3 Activator Promoted Myogenic Differentiation

As we found that p-STAT3 expression was increased when we used the M3 protocol, it is possible
that the STAT3 signaling pathway could be responsible for promoting myogenic differentiation
Therefore, we used colivelin, a STAT3 activator, instead of IL-6 and C2C12 CM during myogenic
differentiation of ADSCs.

Western blot analysis showed that addition of 50 nM colivelin increased p-STAT3 expression
during the entire differentiation period compared to the conventional differentiation protocol
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(Figure 5d). The expression of mRNA levels of MyoD, MyoG, and MYH was also significantly increased
during the differentiation period (Figure 5a—c). In accordance with the mRNA levels, the protein
expression of MYH (Figure 5d) and myotube generation (Figure 5e) was also significantly increased by
the addition of colivelin into the differentiation media. These results indicate that activation of STAT3
by adding colivelin to the differentiation medium can promote the myogenic differentiation of ADSCs.
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Figure 5. Effect of a colivelin on myogenic differentiation. (a—c) mRNA expression of (a) MyoD,
(b) MyoG, and (c) MYH during myogenic differentiation. n = 3 independent experiments, each assay
was performed in duplicate All values are expressed relative to the gene expression observed at 6 weeks
using protocol C. * p < 0.05 vs. protocol C. (d) Cell morphology after 4 weeks of differentiation. (e) The
expression of MYH and p-STAT3 was analyzed by western blotting.

3. Discussion

Because of advantages such as a large cell population and easy isolation, ADSCs have attracted
attention for use in stem cell study. However, the long time period required for myogenic differentiation
is one of the reasons why actual application for cell therapy or drug discovery for diseases involving
muscle loss is difficult. In this study, we found that addition of IL-6 and myocyte-CM enhanced
the myogenic differentiation of ADSCs through STAT3 activation. Similarly, we found that a STAT3
activator also promoted myogenic differentiation.

The exposure of mesenchymal stem cells to a myogenic environment such as co-culture with
skeletal myoblasts is beneficial for myogenic differentiation [43,45]. Although the mechanisms are
not yet fully understood, paracrine secreted cytokines and/or the extracellular matrix might affect
the differentiation [11]. Muscle extracellular matrix scaffolds can recruit stem cells and induce
differentiation, and this extracellular matrix scaffold promotes regeneration of other tissues such
as bone cells depending on the surrounding environment [47].

In this study, the CM from C2C12 cells was beneficial to myogenic differentiation of
hADSCs. In our experiment, the expression of MYH, the final marker of myogenic differentiation,
was significantly increased by adding C2C12 myoblast CM to the conventional differentiation medium
(Protocol M2). Analysis of the myoblast secretome or myotube matrix is needed in future studies to
find a defined composition for promoting myogenic differentiation. It was reported that myogenic
differentiation of ADSCs is induced by co-culture with primary myoblasts [43]. It is also well known
that myokine, a cytokine produced and released by muscle cells, regulates muscle growth and
regeneration [48]. Thus, other factors besides IL-6 in CM conditioning media are also likely to promote
myogenesis, although IL-6 may play a major role.

Among the many secretory factors of myoblasts or myotubes, IL-6 is known to have two distinct
functions on skeletal muscle. IL-6 promotes muscle satellite cell proliferation via regulation of
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cell-cycle-associated genes such as cyclin D1 and c-myc and stimulates muscle growth through IL-4,
which promotes myoblast fusion [41,49]. Myoblasts from IL-6 null mice show reduced differentiation
and fusion capacities in vitro [46]. However, it is also known that an increase of circulating IL-6
concentrations or administration of high doses or long-term exposure to recombinant IL-6 leads to body
weight loss and muscle atrophy [50,51]. Therefore, the role of IL-6 in muscle function and differentiation
might be determined by its peripheral location and concentration. Thus, we hypothesized that a
low dose of IL-6, similar to that secreted by autocrine in myoblasts or myotubes, could promote
myogenic differentiation of ADSCs. The expression of MYH, the final differentiation marker of
myogenic differentiation, was significantly increased by addition of low-dose IL-6 to the conventional
differentiation medium (protocol M1) compared to the conventional protocol. The addition of IL-6
and C2C12 myoblast CM to the conventional differentiation medium resulted in better myogenic
differentiation than when added alone, and 4 weeks of induction of differentiation was similar to that
of induction of differentiation for 6 weeks using conventional differentiation medium.

Both undifferentiated and differentiated embryonic or mesenchymal stem cells have been tried
for transplantation therapy for muscle dystrophy in both animal and human models and show a
therapeutic effect [52-54]. Stem cells are generally differentiated to myoblasts, which are validated
by the expression of MyoD, a myoblast marker [52,55]. Overexpression of MyoD itself in stem cells
induces myogenic differentiation [56,57]. In this study, we found that MyoD is highly expressed 5 days
after induction of differentiation when we added IL-6 and C2C12 CM, and the expression was about
7.2-fold higher than using the conventional differentiation protocol. Therefore, we speculate that
transplantation of cells differentiated by the modified protocol might have better therapeutic effects.
In the M3 protocol, MyoG protein expression appeared earlier, but the expression level was lower than
that using conventional protocol from day 14. Recent reports suggest that MyoG-mutated cells have
been successfully differentiated into terminally differentiated myofibers [58]. Therefore, we speculate
that lower expression of MyoG during the M3 protocol may not significantly affect the terminal
differentiation into myotubes. In addition, similar levels of expression of MYH, a myotube marker,
were observed at 4 weeks of differentiation using the IL-6/C2C12 CM protocol, whereas 6 weeks were
required using the conventional protocol, suggesting that the modified protocol exhibits the same
differentiation efficiency over a shorter time period.

We found that the level of p-STAT3 protein increased during the entire differentiation period when
IL-6 and C2C12 CM was used. The major downstream signaling pathway of IL-6 is the JAK/STAT3
pathway [40], and this signaling pathway is involved in muscle growth and differentiation as well
as muscle atrophy and apoptosis [40]. Thus, it is thought that detailed regulation of the JAK/STAT3
pathway might be important to myogenic differentiation and function, and activation of this signaling
pathway may improve myogenic differentiation. Colivelin is a neuroprotective peptide and activator of
STAT3 [59,60]. When colivelin was added instead of IL-6 and C2C12 CM, the myogenic differentiation
of ADSCs was improved over the conventional differentiation protocol. These results suggest that
activation of STAT3 plays an important role in myogenic differentiation of ADSCs.

In summary, we found that a combination of IL-6 and C2C12 CM showed improvement
of differentiation capacity compared with the conventional protocol, evidenced by the increased
expression of MYH, myotube formation, and IL-6 secretion by STAT3 activation. As well, the STAT3
activator, colivelin, was able to induce the stimulation of myogenic differentiation of ADSCs.
This modified protocol for myogenic differentiation might be helpful to save cost and time when
preparing myocytes for cell therapies and drug discovery for skeletal muscle dystrophy. In addition,
this protocol in combination with muscle extracellular matrix scaffold [6,47] for in vivo regeneration
therapy for muscle dystrophy diseases and computer-aided design technology for in vitro research on
biomedical scaffolds [61] would improve our techniques.



Int. ]. Mol. Sci. 2018, 19, 1557 8of 12

4. Materials and Methods

4.1. Differentiation and Tissue Culture Reagents

Hydrocortisone was purchased from Sigma (St. Louis, MO, USA). HS was purchased from
Life Technologies (Grand Island, NY, USA). Phosphate-buffered saline, 0.25% trypsin/1 mM
ethylenediaminetetraacetic acid (Trypsin-EDTA), DMEM, antibiotic/antimycotic solution and FBS
were purchased from Wel GENE (Daegu, Korea).

4.2. Myogenic Differentiation of hADSCs

The conventional myogenic differentiation protocol (protocol C) is as follows [13,38]. hADSCs,
obtained from Invitrogen (Carlsbad, CA, USA), at passage 3-6 were seeded in 6-well plates
(0.5 x 10%/cm?) and incubated overnight for cell adherence. The cells were then incubated in 10% FBS
in DMEM for 1 day and then switched to the differentiation medium (10% FBS, 5% HS, and 50 uM
hydrocortisone in DMEM). The differentiation medium was replaced every 2-3 days for 6 weeks.
Protocol M1 was the same as the conventional protocol, except that IL-6 (25 pg/mL) was added to
the differentiation medium and the medium was changed every 2-3 days for 5 weeks. For protocol
M2, cells were incubated in 10% FBS in DMEM for 1 day and then switched to differentiation medium
containing 10% FBS, 5% HS, 50 uM hydrocortisone in DMEM, and 25% C2C12 v/v cell-conditioned
medium (C2C12 CM). The medium was replaced every 2-3 days for 6 weeks. Protocol M3 was the same
as M2, except that IL-6 (25 pg/mL) was also added to the differentiation media. The differentiation
medium was changed every 2-3 days for 5 weeks (Figure 1a). For STAT3 activation, 50 nM of colivelin
(Tocris, Minneapolis, MN, USA) was applied to the existing differentiation media. The differentiation
medium was changed every 2-3 days for 4 weeks

To produce C2C12 CM, mouse myoblasts (C2C12 cell line) were obtained from the American Type
Culture Collection (ATCC, Rockville, MD, USA). Cells were grown at 37 °C and 5% CO, in a humidified
chamber in growth medium (DMEM supplemented with 10% FBS and 1% penicillin-streptomycin
solution). Myogenic differentiation was induced on confluent cultured cells by changing the
growth medium to differentiation medium (DMEM supplemented with 2% HS instead of FBS).
The differentiation medium was replaced daily. C2C12 cells were differentiated for 1 week and then
the culture media were collected 24 h after replacement and used for differentiation of hADSCs.

4.3. Measurement of IL-6 Levels

After 4 or 6 weeks of myogenic differentiation, the medium was replaced with serum-free
DMEM. After 24 h of incubation, media were collected, and IL-6 levels were determined in duplicate
using a human IL-6 ELISA kit (R&D Systems Inc., Minneapolis, MN, USA) according to the
manufacturer’s instructions.

4.4. Quantitative Real-Time-PCR (gRT-PCR) Analysis

The total RNA was extracted from the cultured cells using TRIZOL reagent (Invitrogen) following
the manufacturer’s instructions, and cDNA was synthesized using a PrimeScript 1st strand cDNA
synthesis kit (Takara Bio Inc., Kyoto, Japan). qRT-PCR was performed using the SYBR Premix Ex
Taq II, ROX plus (Takara Bio Inc.) and the Prism 7900HT sequence detection system (Applied
Biosystems, Foster City, CA, USA). PCR was carried out for 40 cycles (2 min at 50 °C, 10 min at
95 °C, and 40 cycles of 10 s at 95 °C and 1 min at 60 °C). The relative copy number was calculated
using the threshold crossing point (Ct) as calculated by AACt. Primer sequences were as follows:
5'-GCCGCTAGAGGTGAAATTCTTG-3' and 5'-CATTCTTGGCAAATGCTTTCG-3’ for human 18s
ribosomal RNA; 5-CCAGAGCTGAACCTTGAGGG-3' and 5'- ACCTGCTACATTTGGGACCG-3' for
human MyoD; 5'-GATCATCTGCTCACGGCTGA-3" and 5-CCCGGCTTGGAAGACAATCT-3' for
human MyoG and 5-TAAGGTCGCATCTCTACGCC-3' and 5-AAGGCTTGTTCTGGGCTTCA-3' for
human MYH.
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4.5. Immunofluorescence Staining

The cells were fixed in 10% formalin. After antigen unmasking, the cells were permeabilized in
0.5% Triton X-100, and non-specific protein binding sites were saturated with protein block (Dako,
Carpentaria, CA, USA) for 1 h. The cells were incubated with primary antibodies (1:100) overnight in
a cold room, washed, and incubated with fluorescein isothiocyanate-conjugated secondary antibodies
for 30 min. Antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Nuclei were then fluorescently labeled with DAPI. The labeled cells were observed under a confocal
microscope (LSM 700, Carl Zeiss Inc., Oberkochen, Germany).

4.6. Western Blotting

Cells were lysed with Mammalian Protein Extraction Buffer (GE Healthcare, Milwaukee, WI,
USA) containing a protease and phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,
USA). The total proteins (50 ug) were resolved by 6% sodium dodecyl sulfate polyacrylamide gel
electrophoresis, transferred onto membranes, and blocked with 5% skimmed milk in Tris buffered
saline containing 0.1% Tween-20. The membranes were incubated with specific primary antibodies
and horseradish peroxidase-conjugated secondary antibodies. Antibodies were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). The membranes visualized by incubating with Immobilon
Western Chemiluminescent HRP Substrate (Millipore, St. Charles, MO, USA). Chemiluminescence
was detected by LAS-4000 (Fuji Film, Tokyo, Japan). The images derived from western blotting
were analyzed through Image]J software (National Institutes of Health, Bethesda, MD, USA) software
for Windows.

4.7. Statistical Analyses

All data are expressed as mean =+ standard error of at least three independent experiments. Data
were analyzed using Analysis of Variance followed by post-hoc analysis using the Tukey range test
(SPSS 10.0 statistical software). p-values less than 0.05 were considered statistically significant.
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Abbreviations

hADSCs human adipose tissue-derived stem cells
FBS fetal bovine serum

HS horse serum

DMEM Dulbecco’s Modified Eagle Medium

IL interleukin

cM conditioned medium

MyoG myogenine

MYH myosin heavy chain

MSC mesenchymal stem cells
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